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Locating critical events in AFM 
force measurements by means 
of one‑dimensional convolutional 
neural networks
Javier Sotres1,2*, Hannah Boyd1,2 & Juan F. Gonzalez‑Martinez3

Atomic Force Microscopy (AFM) force measurements are a powerful tool for the nano-scale 
characterization of surface properties. However, the analysis of force measurements requires 
several processing steps. One is locating different type of events e.g., contact point, adhesions and 
indentations. At present, there is a lack of algorithms that can automate this process in a reliable 
way for different types of samples. Moreover, because of their stochastic nature, the acquisition 
and analysis of a high number of force measurements is typically required. This can result in these 
experiments becoming an overwhelming task if their analysis is not automated. Here, we propose 
a Machine Learning approach, the use of one-dimensional convolutional neural networks, to locate 
specific events within AFM force measurements. Specifically, we focus on locating the contact point, a 
critical step for the accurate quantification of mechanical properties as well as long-range interactions. 
We validate this approach on force measurements obtained both on hard and soft surfaces. This 
approach, which could be easily used to also locate other events e.g., indentations and adhesions, has 
the potential to significantly facilitate and automate the analysis of AFM force measurements and, 
therefore, the use of this technique by a wider community.

Since its invention1, the Atomic Force Microscope (AFM) has not only been revealed as a powerful tool to visual-
ize surfaces at the nanoscale, but also to characterize different sample properties. The most common procedure 
for these characterizations is based on the acquisition of the so-called normal force curves, a method also known 
as force spectroscopy, where the force between the AFM probe and the investigated sample is registered at dif-
ferent positions along the sample normal direction2. AFM force curves have been widely used to perform a vast 
variety of e.g., chemical3,4, mechanical5–7 and electrical8,9 characterizations.

The analysis of force curves requires a number of processing steps, often with the goal to transform the 
experimental raw data i.e., position sensitive photodetector (PSD) values vs sample vertical positions, into a 
representation of forces vs probe-sample separations. This then allows, for example, the identification of the 
forces and separations at which certain events like adhesions and indentations occur, or to fit different sections 
of the curves to physical laws in order to quantify sample properties. While it is fairly easy to automate some of 
these required processing steps, for some others the input of AFM experienced users is often required. Moreo-
ver, because of the stochastic nature of force measurements and the lateral heterogeneity of most samples, the 
acquisition and analysis of a high number of force curves is typically required to obtain statistically significant 
results. This can result in the force spectroscopy experiments becoming an overwhelming task if their analysis 
are not automatized.

Here, we explored a Machine Learning (ML) approach for one of the most common processing steps required 
for AFM force curves analysis: the precise location of events of interest. As mentioned, this task can include 
locating indentation and adhesion events. In this work, we focused instead on locating the contact point. Accu-
rately locating the contact point or point of zero distance is critical for representing a force curve in terms of 
force vs probe-sample separation. This then allows, for example, to correctly define indentation distances that in 
turn allow the characterization of mechanical properties of the samples10. Correctly determining probe-sample 
distances is also critical for the analysis of long-range interactions11. In the case of hard surfaces this is relatively 
simple. The contact point is defined as the point where two regions of the curve, which are characterized by 
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clearly differentiated slopes, intersect each other. This can be further facilitated in the case that a jump-to-contact 
event is observed. However, locating the contact point is significantly more difficult in the case of soft surfaces, 
and even more if they exhibit long-range interactions. In this case, the slope change between the contact and the 
non-contact regions might not be clearly differentiated and jump-to-contact events are not always observed. Typi-
cally, an accurate location of the contact point in these cases requires the attention of an experienced AFM user.

Different approaches have been proposed for the automated detection of the contact point in AFM force 
curves. In the literature there are two main trends. One focuses on determining the point for which the deflec-
tion of the cantilever increases above a threshold value set by the user, typically a multiple of the signal to noise 
ratio of the non-contact region of the force curve12,13. This approach can be complemented with fitting the 
contact region to different models that include the contact point as a fitting parameter, allowing the contact 
point to be re-defined in a second step14. This strategy has also been combined with additional algorithms to 
separate the non-linear and linear regions of the contact regime13. The second approach focuses on determin-
ing the point for which the first15 or second16 derivative of the force curve surpass a pre-defined threshold. 
Additionally, this approach is usually preceded by the prior application of smoothing filters. While powerful 
and well-tested, these approaches require the values of different parameters to be pre-defined e.g., window size 
for calculating the signal-to-noise ratio or the curve derivatives, threshold values and ratios of the total curve 
length corresponding to the non-contact region. However, the parameter values that allow to accurately locate 
the point of interest depend on the curve shape. This will in turn depend on specifics of the investigated sample 
e.g., mechanical properties, presence of indentation events and long-range interactions, as well as on several 
acquisition parameters e.g., ramp length of the non-contact region, maximum applied load, sampling frequency 
and number of averages per sample vertical position. Here, we explore a different approach to this problem: the 
use of ML algorithms, specifically one-dimensional (1D) convolutional neural networks (CNNs). Based on how 
neural networks excel in identifying patterns in heterogeneous data samples, we hypothesized that they would 
show better generalization i.e., an ability to accurately locate the contact point without the need to search for 
optimal values for parameters of the event location algorithm for each set of curves obtained under different 
environmental or acquisition conditions.

ML techniques have already started to be applied in the field of AFM, even thought to a lower extent than 
in other microscopies. This includes works on the automation of AFM operation17–21 but mostly on AFM data 
analysis, both in the context of image analysis22–29 and force curves analysis30–32. However, in the context of 
force curves analysis the goal of ML techniques has mostly been to classify the curves e.g., according to the type 
of adhesion exhibited. Here, we were interested in inference instead, specifically in using these techniques to 
locate the position of critical events, with a specific focus on the contact point. As mentioned, for this goal we 
propose the use of 1D CNNs. Convolutional neural networks were developed33 with the main goal of classify-
ing two-dimensional (2D) data i.e., images. Since then, they have shown an extraordinary performance in this 
field34. Moreover, 2D CNNs have also been used for inference purposes. An example of relevance for this work 
being the location of specific objects within images35–38. Prompted by the success of 2D CNNs, 1D CNNs were 
developed for the context of analysis of 1D signals and rapidly achieved a high performance in a diversity of 
applications39. Here, we explored the performance of two different 1D CNNs architectures to locate the contact 
point in force measurements performed in two different systems: (i) a hard surface in the presence of long-range 
forces (mica in aqueous solutions) and (ii) a soft surface in the presence of long-range forces (salivary pellicles 
in aqueous solutions).

Results and discussion
Since the development of convolutional neural networks, one of the most common basic architectures consisted 
of combining blocks containing convolutional layers followed by sub-sampling layers in the beginning of the 
network, these blocks then are followed by fully connected layers33,40. This type of architecture has also been 
proved successful in the analysis of 1D data just by using one-dimension convolutional layers rather than two-
dimensional ones41–44. Subsequently, we also explored this architecture. Specifically, we report results obtained 
using the architecture depicted in Fig. 1a, from now on named ConvNet-1D. It consists in three blocks of 1D 
convolutional layers and sub-sampling (max-pooling) layers, followed by two fully connected layers (specific 
layers parameters are provided in Fig. 1a), the last one consisting of only one unit accounting for the predicted 
position of the critical event to be located, in this case the contact point within the experimental force curves.

We first investigated the performance of ConvNet-1D to locate the contact point in force curves performed 
with Si3N4 tips on mica in aqueous solutions. Specifically, we experimentally collected a set of 1806 force curves 
obtained in 100 mM, 10 mM and 1 mM NaCl solutions using three different probe/sample pairs for each type 
of solution. Representative examples are shown in Fig. 2a,b. These force curves exhibit long range electrostatic 
forces when interacting at neutral pH values, as a result of both sample and tip being negatively charged8. At very 
short separations, the attractive van der Waals forces overcome the repulsive electrostatic force, often resulting 
in a mechanical instability known as jump-to–contact2. From this point, mechanical contact is established and 
the cantilever deflection increases approximately with the same rate as the sample displacement considering that 
mica surfaces (effective stiffness as measured by AFM ~ 82 N m−1)45 are significantly harder than the employed 
cantilevers (nominal force constant 0.1 N m−1). First, we manually labelled the contact point in all collected 
force curves. Then, we randomly divided them into a training (70% of the curves) and a validation (30% of the 
curves) data sets. The curves shown in Fig. 2a,b correspond to the validation data set. Neural networks require a 
fixed input data size, and force curves are usually collected at a variety of sizes/points. This was also the case for 
those used in this work. To account for this, all curves were interpolated up to a total size of 5120 points, a value 
higher than the size of any of the collected experimental curves. Additionally, before feeding the curves to the 
networks, they were normalized both in the vertical (PSD values) and horizontal (sample displacement) axis. 
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The output of the network will then be the normalized sample position of the contact point. Then, we trained 
the ConvNet-1D network on the training set using the mean square error (mse) loss function. The evolution of 
the mse loss while training the network over 2000 epochs is shown in Fig. 2c for both the training and valida-
tion data sets. No signs of exploding gradients, vanishing gradients or overfitting were observed. However, for 
avoiding overfitting we needed to incorporate L2 regularization in the different layers of the network. We then 
chose the weights obtained for the epoch with the minimum loss. As a quantity to validate the performance of 
the network, we used the difference between the sample positions of the hand-labelled, zc, and the predicted, 
zc_pred, contact points (recalculated for the non-normalized force curves). The distribution of this quantity for 
the validation data set is shown in Fig. 2d. The mean and standard deviation values for this distribution were 
0.06 ± 0.78 nm (Table 1). Overall, we can see how a fairly simple and shallow architecture as that of ConvNet-1D 
provided excellent accuracy.

We then investigated the performance of ConvNet-1D for locating the contact point on force curves per-
formed on salivary pellicles with Si3N4 tips in aqueous NaCl solutions. Salivary pellicles are nm-thick proteina-
ceous films that rapidly form on almost any surface when exposed to saliva. They do not only confer oral surfaces 
with extraordinary protection against chemical and mechanical insults46,47. Salivary pellicles also constitute 
excellent aqueous boundary lubricants with the ability to provide low friction coefficients and high yield strengths 
to a wide variety of tribological contacts48–51. Several experimental results point towards a two-layer model for 

Figure 1.   Convolutional neural networks used in this study: (a) ConvNet-1D and (b) ResNet-1D.
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salivary pellicles reconstituted at solid–liquid interfaces, with an inner thin dense layer, mainly formed by low 
molecular weight proteins, and an outer thick diffuse layer mainly formed by the long glycoproteins known as 
mucins46. AFM force measurements are one of the main techniques that contributed to elucidate the structure of 
salivary pellicles11,52. AFM force measurements have also been used to determine how this structure is affected 
by oral health products like surfactants53. Force curves performed on salivary pellicles, for which representative 
examples are shown in Fig. 3a,b, resemble up to some extent those obtained on mica surfaces (Fig. 2a,b). When 
approaching probe and sample, a long range interaction with an exponential-like dependence with distance is 
initially observed. This is originated by the repulsive steric interaction that develops between the AFM probe 
and the diffuse pellicle outer layer. At shorter separations, a transition to a different regime is observed where the 

Figure 2.   (a) and (b) Representative examples of force curves obtained with Si3N4 AFM tips on mica surfaces 
in NaCl aqueous solutions. The insets correspond to zooms of the contact point region. The curves also contain 
markers for the labelled contact point (green circle) as well as the contact points predicted by ConvNet-1D 
(black triangle) and by ResNet50-1D (red cross). (c) Evolution of the mse loss function i.e., the mean squared 
differences between labelled and ConvNet-1D predicted normalized sample positions corresponding to the 
contact point, obtained while training ConvNet-1D on force curves on mica. Loss values for both the training 
and validation sets are shown. Total training time = 1096 s (~ 0.55 s/epoch). (d) Distribution of the difference 
between the sample positions of the hand-labelled, zc, and the ConvNet-1D predicted, zc_pred, contact points 
(recalculated for the non-normalized force curves). (e) Loss (mse) values for the same training and validation 
sets obtained in this case while training the ResNet50-1D network. Total training time = 4366 s (~ 2.18 s/epoch). 
(f) zc-zc_pred distribution for the force curves on mica validation set as predicted by ResNet50-1D.
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cantilever deflection exhibits a steeper dependence with the separation from the probe. This regime is typically 
well-fitted by mechanical contact models. In this system, the contact point delimits the transition between these 
two different regimes, and its accurate determination is critical for a correct interpretation of the mechanical 
properties of the pellicle and, therefore, of its structure. However, the position of the contact point in this system 
is not as clear as in the case of force curves performed on mica. Often, the slope difference between the steric and 
the mechanical contact regime is not clearly differentiated because of the sample softness. The jump-to-contact 
event is not as prominent either, or even sometimes absent. The location of the contact point can be facilitated 
though by the fact that the deflection noise typically decreases when entering the contact region54. Overall, the 
location of the contact point in this case is fairly difficult to determine by means of hard coded algorithms, and 
typically requires that an expert user analyzes each of the registered force curves.

We initially tested the performance of ConvNet-1D for locating the contact point on a set of force curves 
on salivary pellicles obtained both in NaCl 100 mM and NaCl 10 mM aqueous solutions, using three different 
probe/sample pairs for each type of solution. Specifically, we experimentally collected a total of 2584 force curves 
for this system. We then manually labelled the contact point in all curves and randomly divided them into a 
training (80% of the curves) and a validation (20% of the curves) sets (the ratio of the curves used for validation 
was lower than that used for the dataset of curves performed on mica surfaces as the total number of curves was 
higher in the current case). The curves in Fig. 3a,b correspond to the validation set. Before feeding the curves 
to the network, they were interpolated and normalized as previously described. The network was trained again 
over 2000 epochs. The mse loss for both the train and validation data sets during training is shown in Fig. 3c. 
As in the case of force curves obtained on mica, no signs of exploding gradients, vanishing gradients or overfit-
ting were observed. Here, we also chose for prediction purposes the weights obtained for the epoch with the 
minimum validation loss. The distribution of the difference between the sample positions of the labelled and 
predicted contact points (recalculated for the non-normalized force curves) is presented in Fig. 3d. The mean 
and standard deviation values for this distribution were 0.04 ± 1.19 nm (Table 1). Overall, our results show again 
a good performance of ConvNet-1D, even though the distribution of values was slightly wider than that obtained 
when applying the same network to locate contact points in force curves performed on mica. Of relevance is that 
ConvNet-1D was able to easily distinguish contact points from indentations, as observed in Fig. 3b.

Subsequently, we investigated the generalization of ConvNet-1D for locating contact points in a set of curves 
not used for training. For this, we tested the already trained network on a set of 153 force curves corresponding 
to a different salivary pellicle sample/Si3N4 AFM tip pair than those used for training the network. This test set 
was also obtained in different conditions i.e., NaCl 1 mM. Representative curves are shown in Fig. 4a,b. The dis-
tribution of the difference between the sample positions of the labelled, zc, and ConvNet-1D predicted, zc_pred, 
contact points (recalculated for the non-normalized force curves) is presented in Fig. 4c. The mean and standard 
deviation values for this distribution were 1.20 ± 1.80 nm (Table 1). While still reasonable, it is clear that the 
performance of ConvNet-1D decreased when applied to data different than that used for training.

We then explored whether we could improve our results by means of a different network architecture. First, 
we explored different hyper-parameter values for ConvNet-1D, but we did not find a set of values that signifi-
cantly improved its performance. Small increments in the network depth did not have a significant effect either. 
We then investigated the use of significantly deeper networks. Specifically, we focused on residual networks, 
which contain residual blocks that include short paths (Fig. 1b) with the ability to carry gradients throughout 
very deep networks mitigating in this way the problem of vanishing gradients55. We used as a starting point the 
ResNet-50 network56 as implemented in Keras (57, https://t.​ly/​uLupD) and modified it in order to use 1D rather 
than 2D convolutional layers. The specific implemented architecture, from now on named ResNet50-1D, is shown 
in Fig. 1b. The train and validation mse losses obtained while training ResNet50-1D on force curves on mica 
and on salivary pellicles are shown in Figs. 2e and 3e respectively. The distribution of the difference between the 
sample positions of the hand-labelled and predicted contact points (recalculated for the non-normalized force 
curves) is presented in Figs. 2f and 3f for the validation sets of force curves performed on mica and salivary pel-
licles respectively. The mean and standard deviation values for these distributions were 0.03 ± 0.46 nm for the 
mica validation set and 0.01 ± 0.71 nm for the pellicle validation set (Table 1). Therefore, already on these sets 
ResNet50-1D exhibited a slightly better performance than ConvNet-1D, with narrower zc-zc_pred distributions. 
We subsequently tested the performance of the already trained ResNet50-1D network on the test set consisting of 
force curves on salivary pellicles in NaCl 1 mM not used for training the network. The corresponding zc-zc_pred 
distribution is shown in Fig. 4d. The mean and standard deviation values for this distribution was 0.20 ± 0.97 nm 
(Table 1) i.e., the width of the distribution was approximately half than that obtained with ConvNet-1D.

Overall, our results prove that 1D CNNs can be used for accurately locating the contact point in AFM force 
curves. This was quantified by comparing the hand-labelled and the predicted contact point positions, zc-zc_pred, 

Table 1.   Mean and standard deviation values for the difference between the sample positions of the labelled 
and predicted (by the two networks used in this work) contact points for all validation and test data sets.

zc-zc_pred (nm)

ConvNet-1D ResNet50-1D

Mica—validation set (NaCl 100 mM/10 mM/1 mM) 0.06 ± 0.78 0.03 ± 0.46

Pellicle on Mica—validation set (NaCl 100 mM/10 mM) 0.04 ± 1.19 0.01 ± 0.71

Pellicle on Mica—test set (NaCl 1 mM) 1.20 ± 1.80 0.20 ± 0.97

https://t.ly/uLupD
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which was below 1 nm in most cases (Table 1). Common 1D CNNs networks with a relative simple and shallow 
architecture, like ConvNet-1D, can already accomplish this task with good accuracy. However, we also showed 
that deeper networks that make use of residual blocks, like ResNet50-1D, result in a more accurate location of this 
event as well as better generalization i.e., performance when used on data from a different set than that used for 
training. Obviously, this improved performance comes at a cost in terms of time. As reported, the time needed 
for training the networks was a factor ~ 4 higher for ResNet50-1D (~ 2.18 s/epoch on the mica train & validation 
datasets; ~ 3.38 s/epoch on the pellicle train & validation datasets) than for ConvNet-1D (~ 0.55 s/epoch on the 

Figure 3.   (a) and (b) Representative examples of force curves obtained with Si3N4 AFM tips on salivary 
pellicles in NaCl (100 mM and 10 mM) aqueous solutions. The insets correspond to zooms of the contact 
point region. The curves also contain markers for the labelled contact point (green circle) as well as the contact 
points predicted by ConvNet-1D (black triangle) and by ResNet50-1D (red cross). (c) Evolution of the loss 
mse function while training ConvNet-1D on force curves on pellicles. Loss values for both the training and 
validation sets are shown. Total training time = 1615 s (~ 0.81 s/epoch). (d) Distribution of the difference 
between the sample positions of the hand-labelled, zc, and the ConvNet-1D predicted, zc_pred, contact points 
(recalculated for the non-normalized force curves). (e) Loss (mse) values for the same training and validation 
sets obtained while training the ResNet50-1D network on the same data set. Total training time = 6760 s 
(~ 3.38 s/epoch). (f) zc-zc_pred distribution for the force curves on the pellicles validation set using the values 
predicted by ResNet50-1D.
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mica training & validation datasets; ~ 0.81 s/epoch on the pellicle training & validation datasets). Nevertheless, 
this increase in training time should not be a major limitation for choosing deeper networks (as seen in Figs. 2 
and 3, for all datasets the losses for both models converged to an almost constant value after ~ 250 epochs) unless 
one is dealing with very large datasets or only has access to low speed processors for training the networks. Infer-
ence time should also not be a major limitation for choosing ResNet50-1D like architectures (~ 15 ms/curve) over 
ConvNet-1D like ones (~ 8.5 ms/curve). It is worth highlighting the improvement this represents in comparison 
to a hand-labeling approach, where the user would spend in the best of cases few seconds on each curve.

The inference time is similar though to that achieved by other event locating algorithms. For instance, Offroy 
and co-workers13 reported (~ 23 ms/curve) for their algorithm based on an increase of the cantilever deflection 
above the value of the signal-to-noise ratio of the non-contact region of the curve, or even probably slightly higher 
taking into account that they used a standard PC and that their algorithm also calculated the border between 
the linear and non-linear regimes of the contact region. However, it is also worth highlighting the generaliza-
tion capability of the proposed ML-based approach. As stated in the Methods section, the datasets used in this 
work contained force curves obtained while randomly varying acquisition parameters like the ramp length, the 
maximum applied load, the sampling frequency and the ramp velocity. This heterogeneity is exemplified by the 
differences exhibited between the curves plotted in the figures of the manuscript for each dataset. Moreover, 
our datasets combined curves obtained in different environments (ionic strength), which result in different 
long-range interactions. Interestingly, our results show that 1D CNNs could accurately locate the contact point 
despite these differences, even in the presence of unexpected events like indentations (Fig. 3b). In contrast with 
previous proposed approaches, this could be achieved without pre-defining values for parameters of the event 
location algorithm.

The specific focus of this work was on locating the contact point. However, we see no limitations in using the 
same approach to locate other events in AFM force curves e.g., indentations and adhesions. It should also be 
possible to use architectures that would allow locating a variable number of different type of events within the 
same AFM curve by using similar approaches as the available object detector networks for 2D data. Overall, we 
foresee that these ML-based approaches will significantly facilitate AFM data analysis and, therefore, the use of 
this technique by a wider community.

Figure 4.   (a) and (b) Representative examples from the test set of force curves obtained with Si3N4 AFM tips 
on salivary pellicles in NaCl 1 mM aqueous solutions. The insets correspond to zooms of the contact point 
region. The curves also contain markers for the labelled contact point (green circle) as well as the contact points 
predicted by ConvNet-1D (black triangle) and by ResNet50-1D (red cross). (c) and (d) zc-zc_pred distributions 
for this test data set, obtained with the ConvNet-1D and ResNet50-1D networks respectively. The total inference 
time when using ConvNet-1D was 1.3 s (~ 8.5 ms/curve) whereas for ResNet50-1D it was 2.3 ms (~ 15 ms/
curve).
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Methods
Materials.  All water used to prepare salt solutions was of ultrahigh quality (UHQ), processed in an Elgastat 
UHQ II apparatus (Elga Ltd., High Wycombe, Bucks, England). Mica sheets were purchased from Electron 
Microscopy Sciences (Hatfield, PA).

For saliva experiments, unstimulated human whole saliva (HWS) was collected from two healthy donors, after 
they provided written informed consent, using the protocol described in58, pooled and then used immediately. 
Ethical approval was obtained from the Swedish Ethical Review Authority through the committee of research 
ethics at Lund University (2018/42), and saliva collection was performed following the protocol in the mentioned 
ethical permit, which was in accordance with the Declaration of Helsinki.

Unless otherwise specified, all other chemicals used were of at least analytical grade.

Force spectroscopy.  A commercial Atomic Force Microscope (AFM) setup equipped with a liquid cell 
(MultiMode 8 SPM with a NanoScope V control unit, Bruker AXS, Santa Barbara CA) was employed for 
the acquisition of force curves. Rectangular silicon nitride levers with a nominal normal spring constant of 
0.1 N m−1 were employed in all the experiments (OMLC-RC800PSA, Olympus, Japan). The choice of cantilevers 
with this spring constant was based on our previous experience, as they exhibit significant deflection values that 
allow investigating electrostatic forces on mica8 as well as steric forces and deformation of salivary pellicles11,53. 
Choosing cantilevers with significantly higher spring constants would have resulted in a negligible influence of 
long-range forces or mechanical deformation on the measured cantilever deflection, in which case the location 
of the contact point becomes a straightforward problem to solve. Before every experiment, tips were rubbed 
against a clean freshly cleaved mica surface, a procedure that also leads to the removal of asperities and achieves 
a smooth tip surface59.

Force spectroscopy on mica experiments were performed on freshly cleaved mica sheets. For force spec-
troscopy on salivary pellicles, freshly cleaved mica sheets (~ 1 cm2) were drop-coated with 100 µL of HWS, and 
subsequently rinsed with NaCl 100 mM after 1 h. Samples were then immediately placed on the AFM, ensuring 
they did not dry at any time. Force curves were then obtained while randomly varying acquisition parameters 
like the ramp length, the maximum applied load, the sampling frequency and the ramp velocity.

ML analysis of force curves.  The contact point of all force curves was manually labelled with a custom made 
application available at https://t.​ly/​Y0hC.

Before feeding the force curves to the neural networks, they were interpolated to a final size of 5120 points, 
and subsequently normalized in the vertical and normal directions. The labelled contact point was also encoded 
by the normalized sample position at which it occurred,

The 1D CNNs architectures depicted in Fig. 1 were implemented using Keras57. The specific implementation 
is available in the repository of this work: https://t.​ly/​MkVf. For training, we used mse loss and Adam optimiza-
tion with an initial learning rate of 10–4, a 1st momentum of 0.9 and a 2nd momentum of 0.999. All models were 
trained and validated on a system with the following characteristics: Intel Core i9 7980XE (18 cores, 36 threads) 
CPU, 64 GB of DDR4 RAM and a GPU NVIDIA 2080 RTX Ti 11 GB GDDR6 (4352 computation cores). Models 
were always trained and evaluated using the GPU.

Data availability
All used force curves and code can be found in the repository of this work, available at: https://t.​ly/​MkVf.
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