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Abstract: Lung cancer is one of the most commonly diagnosed cancers and is responsible for a
large number of deaths worldwide. The pathogenic mechanism of lung cancer is complex and
multifactorial in origin. Thus, various signaling pathways as targets for therapy are being examined,
and many new drugs are in the pipeline. However, both conventional and target-based drugs have
been reported to present significant adverse effects, and both types of drugs can affect the clinical
outcome in addition to patient quality of life. Recently, miRNA has been identified as a promising
target for lung cancer treatment. Therefore, miRNA mimics, oncomiRs, or miRNA suppressors have
been developed and studied for possible anticancer effects. However, these miRNAs also suffer from
the limitations of low stability, biodegradation, thermal instability, and other issues. Thus, nanocarrier-
based drug delivery for the chemotherapeutic drug delivery in addition to miRNA-based systems
have been developed so that existing limitations can be resolved, and enhanced therapeutic outcomes
can be achieved. Thus, this review discusses lung cancer’s molecular mechanism, currently approved
drugs, and their adverse effects. We also discuss miRNA biosynthesis and pathogenetic role, highlight
pre-clinical and clinical evidence for use of miRNA in cancer therapy, and discussed limitations of
this therapy. Furthermore, nanocarrier-based drug delivery systems to deliver chemotherapeutic
drugs and miRNAs are described in detail. In brief, the present review describes the mechanism
and up-to-date possible therapeutic approaches for lung cancer treatment and emphasizes future
prospects to bring these novel approaches from bench to bedside.

Keywords: lung cancer; angiogenesis; apoptosis; miRNA; oncomiRs

1. Introduction

According to World Health Organization (WHO), lung cancer (LC) is a major cause of
death and is the second most commonly diagnosed cancer worldwide. According to the
published report in 2020, 2.2 million (11.44%) new lung cancer cases were diagnosed, and
1.8 million (18%) deaths were reported worldwide. It is further predicted that by the end
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of 2035, the mortality rate due to LC may exceed 3 million [1,2]. LC is the leading cause
of death in men, whereas it is the third leading cause of death in women following breast
and colon cancer [2]. As per published report in 2021, in 112 countries, prostate cancer has
been commonly diagnosed as the leading cause of death, followed by LC in 93 countries
and colorectal cancer in 11 countries [2]. Another challenge for LC is its survival rate. The
average survival rate of patients was reported to be 10–20% with the highest survival rates
found in Japan, Israel, and Korea (33%, 27%, and 25%, respectively) [2]. Among various risk
factors, smoking is one of the factors that is responsible for the pathogenesis of LC. More
than 80% of deaths among confirmed cases of LC are caused by smoking, while 4.7–14%
are caused by inhaling particles less than 2.5 µM (PM2.5) [3]. It has also been demon-
strated that passive smoking contributes to one-third of the total cases. Among various
airborne particulates and gases, asbestos (a carcinogen) is primarily responsible for LC, and
when smokers are exposed to it, the chance of developing LC increases significantly [4–8].
Radon is a gas produced by radium 226 that becomes trapped in buildings with poor
ventilation. Radon emits an alpha particle, and hence, exposure to this gas initiates an
LC cascade. Aside from the factors mentioned above, previous exposure to heavy metals,
such as nickel, chromium, aromatic hydrocarbons, ether, and α1–antitrypsin deficiency
have been identified as major causes of LC [9–11]. However, with the understanding of
the cellular and molecular etiology, it was found that miRNA deregulation significantly
contributes in the etiology of LC. Based on the histological findings, LC is subdivided into
small cell and non-small cell LC (SCLC and NSCLC). NSCLC represents approximately
85–90% of cases, and SCLC represents 10–15% of cases [12]. At present, chemotherapy,
radiotherapy, and surgery either alone or in combination are the available therapeutic
regimens. Among the three available options, chemotherapy is extensively used. How-
ever, the use of chemotherapy or targeted anticancer drugs is associated with multiple
challenges, such as unintended side effects, multi-organ toxicities, and drug resistance [13].
Chemotherapeutic drugs are non-selective in nature, which means, when administered,
they damage healthy or normal cells in addition to cancerous cells, resulting in homeostatic
alterations. To overcome these challenges, nanocarrier-based targeted drug delivery and
miRNA-based pharmacotherapeutic regimens with site-specific mechanisms of action
have been developed. Thus, in this review, we discuss the mechanistic pathogenesis of
lung cancer, available pharmacotherapeutic regimens, their challenges and limitations,
promising roles of various nano-encapsulated natural/synthetic drugs, and the emerging
role of miRNA in the management and treatment of LC.

2. Signaling Pathways and Targeted Therapy in LC

The pathogenesis of LC is complex and multifactorial in origin. Its pathogenesis is
mediated by several cellular and molecular signaling pathways, and selective targeting
of these pathways is now being considered as a novel and targeted therapeutic approach
for treating LC [13]. Signaling pathways are either stimulated by the pro-oncogenes or
inhibited by anti-oncogenes, resulting in tumor proliferation, migration, angiogenesis, and
apoptotic escape [14]. Thus, inhibition of pro-oncogenes and stimulation of anti-oncogene-
related signaling pathways are emerging targets for various pharmacotherapeutics.

2.1. Epidermal Growth Factor (EGFR) Receptor Deregulation and EGFR Inhibitors in LC

Altered cellular proliferation is considered as one of the primary causes of LC initiation
and progression, in which normal or healthy cells are transformed into malignant cells [15].
Numerous published reports have shown the pathogenetic role of the epidermal growth
factor receptor (EGFR) in tumor initiation and progression. EGFR is a member of the
tyrosine kinase receptor (RTK) family, as shown in Figure 1 [16]. In clinical studies, 43–89%
of cases of NSCLC were found to be related to EGFR mutations [17].
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Figure 1. Showing the role of the epidermal growth factor receptor (EGFR) pathway in lung cancer. 
epidermal growth factor (EGF), transforming growth factor (TGFα), Growth factor receptor-bound 
protein 2 (Grb2), son of sevenless (SOs), Mitogen-activated protein kinase (MAPK) and signal trans-
ducer and activator of transcription (STAT). . 

Currently, erlotinib and gefitinib are the two drugs that cause functional inactivation 
of the EGFR intracellular domain and are used to treat lung cancer [14]. Cetuximab and 
bevacizumab are two potent monoclonal antibodies (mAb) and act as EGFR blockers [14]. 
When cetuximab was used in combination with radiotherapy, a synergistic anticancer ef-
fect was observed. When cisplatin and vinorelbine were used in combination with cetux-
imab, a significant improvement in patient survival rate was found [18]. Additionally, 
erlotinib and gefitinib were shown to penetrate the lung’s tumor cells more potentially 
than cetuximab [19]. A Phase III clinical trial (OPTIMAL) was conducted to compare the 
efficacy and tolerability of erlotinib against standard chemotherapy. Among patients with 
EGFR mutation, specifically with EGFR 19 deletion or an EGFR L858R point mutation, the 
results revealed significant clinical outcomes with minimal side effects [20]. TORCH, an-
other Phase III trial, was conducted to determine the efficacy of erlotinib and cisplatin–
gemcitabine among the patient with advanced NSCLC, and the outcome showed superior 
efficacy of erlotinib [21]. Similarly, the Phase III TITAN trial was conducted to check the 
efficacy of erlotinib against docetaxel among the patients of recurrent NSCLC. The result 

Figure 1. Showing the role of the epidermal growth factor receptor (EGFR) pathway in lung cancer.
epidermal growth factor (EGF), transforming growth factor (TGFα), Growth factor receptor-bound
protein 2 (Grb2), son of sevenless (SOs), Mitogen-activated protein kinase (MAPK) and signal
transducer and activator of transcription (STAT).

Currently, erlotinib and gefitinib are the two drugs that cause functional inactivation
of the EGFR intracellular domain and are used to treat lung cancer [14]. Cetuximab and
bevacizumab are two potent monoclonal antibodies (mAb) and act as EGFR blockers [14].
When cetuximab was used in combination with radiotherapy, a synergistic anticancer
effect was observed. When cisplatin and vinorelbine were used in combination with
cetuximab, a significant improvement in patient survival rate was found [18]. Additionally,
erlotinib and gefitinib were shown to penetrate the lung’s tumor cells more potentially than
cetuximab [19]. A Phase III clinical trial (OPTIMAL) was conducted to compare the efficacy
and tolerability of erlotinib against standard chemotherapy. Among patients with EGFR
mutation, specifically with EGFR 19 deletion or an EGFR L858R point mutation, the results
revealed significant clinical outcomes with minimal side effects [20]. TORCH, another Phase
III trial, was conducted to determine the efficacy of erlotinib and cisplatin–gemcitabine
among the patient with advanced NSCLC, and the outcome showed superior efficacy of
erlotinib [21]. Similarly, the Phase III TITAN trial was conducted to check the efficacy of
erlotinib against docetaxel among the patients of recurrent NSCLC. The result showed
no significant difference in terms of clinical outcome, effectiveness, and safety of erlotinib
versus chemotherapy in second-line treatment of patients with advanced, non-small-cell



Pharmaceutics 2021, 13, 2120 4 of 26

lung cancer with poor prognosis [22]. The outcome of the Phase III trial (INFORM), in
which gefitinib was studied as maintenance therapy among patients with advanced NSCLC,
showed significantly beneficial clinical outcomes [23]. Likewise, cetuximab (an anti-EGFR
mAb) was also tested in a Phase III clinical trial (FLEX), and the outcome of this trial
showed significant clinical benefit and reduced EGFR expression [24].

2.2. Vascular Endothelial Growth Factor (VEGF) Receptor Deregulation and VEGF Inhibitors
in LC

Angiogenesis is the process of development of vasculature from coexisting blood
vessels in response to normal physiological processes such as growth, reproduction, and
development of various organs. Angiogenesis is strictly controlled under normal physiolog-
ical conditions and occurs only for a limited period [25]. However, during carcinogenesis,
the physiological balance becomes disrupted, and uncontrolled angiogenesis occurs as
shown in Figure 2. During angiogenesis, endothelial and cancerous cells release proan-
giogenic factors, such as vascular endothelial growth factor, fibroblast growth factor, and
transforming growth factor-beta (VEGF, FGF, and TGF-β, respectively) that regulate angio-
genesis in association with other signaling molecules [25].
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C (PLC), protein kinase C (PKC), Phospholipase A2 (PLA2), extracellular-signal-regulated kinase
(ERK), and endothelial nitric oxide synthase (eNOS).
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Pazopanib is a tyrosine kinase inhibitor (TKI) that inhibits the growth of tumor cells
and the process of angiogenesis [26]. A Phase II clinical trial was conducted to determine
the efficacy of pazopanib among patients with NSCLC. The study’s outcome showed
excellent tolerability and reduction in the tumor volume [26]. Vandetanib is also a TKI and
inhibits EGFR and VEGF. A Phase III clinical trial (ZEPHYR) was conducted to determine
the efficacy and tolerability among the patients with NSCLC. However, unfortunately,
the outcome of this trial showed non-significant clinical outcomes and some serious side
effects [27]. Bevacizumab is a mAb and is the first approved drug to inhibit angiogenesis
via selectively targeting VEGF among NSCLC patients [28]. In a Phase III clinical trial
(ECOG 4599), the combined use of bevacizumab with carboplatin and paclitaxel showed
a significant clinical outcome along with prominent hypertension [29]. In another Phase
III clinical trial (BeTa), the combination of bevacizumab and erlotinib was studied among
NSCLC patients [30]. However, in another Phase III clinical trial, bevacizumab used in
combination with cisplatin and gemcitabine demonstrated a significant improvement in
survival time [31]. Apart from these three drugs, motesanib, axitinib and BIBF1120 are
currently being evaluated in different clinical trial phases [32].

2.3. PI3K/AKT/mTOR Signaling Pathway and PI3K/AKT/mTOR Inhibitors in LC

Phosphoinositide 3-kinase (PI3K) is one of the important members of the lipid kinase
family. HER2 and IGF receptors are considered upstream regulators of PI3K [33]. Under
stressed conditions or after ligand binding, p11 regulates phosphorylation of PIP2 to PIP3
and results in the activation of protein kinase B (AKT) [33]. Once AKT is activated, it
becomes separated from the surface of the cell membrane and modulates various down-
stream signaling pathways as shown in Figure 3. Mammalian target of rapamycin (mTOR)
is one of the important and extensively studied serine/threonine kinases and is present in
the form of mTOR1 and mTOR2, as shown in Figure 3 [33].

Considering the role of the PI3K/AKT/mTOR signaling pathway in LC, it was
found that this pathway is significantly activated (50–73%) in NSCLC [34,35]. Apart from
PI3K/AKT’s proven role in LC, the study also showed the involvement of the mTOR
pathway and reported 30% mutated mTOR among 188 patients [36].

The pan-PI3K inhibitors are a class of drugs that bind to p110 and abrogate PI3K
activation. The PI3K inhibitors, GDC 0941, 0032, and 0973, PX-866, BKM 120, XL-147, and
BAY 80-6946 are some of the recently developed pan-PI3K inhibitors for LC patients in
various clinical studies [36]. Apart from the pan-PI3K inhibitors, AKT inhibitors have also
been developed to eventually stop LC tumor survival and mitogenic properties. GDC
0068, NVP-BKM120, GSK 2141795, MK2206, perifosine A-443654, and GSK690693 are AKT
inhibitors that have shown significant antitumor effects in LC patients [36]. Additionally,
when the AKT inhibitor, MK-2206, was used with other chemotherapeutic drugs, such
as docetaxel, doxorubicin, and erlotinib, the combinations showed significant synergistic
anticancer effects [36]. Everolimus, ridaforolimus, deforolimus, and temsirolimus are
mTOR1 inhibitors and are approved for treating various types of cancer, including LC. The
mTOR1 inhibitors, such as everolimus, were tested in combination with gefitinib, docetaxel,
and sorafenib, and the outcome of these studies showed synergistic antitumor effects [37].
Apart from mTOR1 inhibitors, dual mTOR1/2 inhibitors have also been developed and
tested in various clinical studies. OSI-027 and INK128 are two mTOR1/2 inhibitors that
additionally show inhibitory actions toward VEGF and heat inducible factor (HIF-1α) [38].
Interestingly, not only dual mTOR1/2 inhibitors, but also PI3K/mTOR inhibitors, act
as inhibitors of both PI3K and mTOR [36]. XL765, BEZ235, PF-04691502, NVP-BEZ235,
BGT226, PI-103, and GDC-0980 are some of the tested dual-acting PI3K/mTOR inhibitors
among patients with LC [36].
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Figure 3. Showing the role of PI3K/Akt pathway in lung cancer. Pyruvate dehydrogenase kinases
(PDKs), Phosphatidylinositol 4,5-bisphosphate (PIP), mammalian target of rapamycin (mTOR),
eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), TSC Complex Subunit 1 (TSC1),
cyclin-dependent kinase (CDK), pRB (retinoblastoma protein), mouse double minute 2 (Mdm2),
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα).

2.4. p53, Bax/Bcl-2, Fas, and p16INK4/Cyclin D1/Rb Pathway Dysfunction and Their Inhibitors
in LC

p53 is one of the most extensively explored tumor suppressor genes; it acts as a
gatekeeper and maintains genetic stability. p53 senses stress, mutagenic action, damage
to DNA, hypoxia, and activation of pro-oncogenes [39]. In LC, the p53 mutation has been
extensively studied [39]. Exposure to PM2.5, cigarette smoke, and other carcinogens cause
transverse mutation, for example, change of TA to GT and GC to TA (G–A) transitions,
which are responsible for LC [40]. Various downstream signaling molecules, such as B-cell
lymphoma 2 (Bcl-2), which is anti-apoptotic and downregulated, Bcl-2-associated X protein
(Bax), which is pro-apoptotic and upregulated, Fas, tumor necrosis factor receptor-like
apoptosis-inducing ligand (TRAIL), and death receptor 5 (TRAIL-DR5; upregulated) are
under the control of p53 and act to modulate apoptosis in LC [41].

One of the important features of cancer cells is evasion of apoptosis. Apoptotic evasion
is an important phenomenon that promotes both tumor growth and proliferation [42]. Bcl-2
and Bax are two apoptotic proteins involved in mitochondrial-mediated apoptosis [42]. In
LC, overexpression of Bax and deficiency of Bcl-2 proteins have been reported [43]. Death
receptor-mediated apoptosis is another mechanism involved in the antitumor effect [44].
When FasL binds to its receptor, the subsequent signaling pathway is activated and causes
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apoptosis via caspase-8. In LC, the Fas receptor was found to be downregulated, suggesting
apoptotic evasion [44].

ABT-737 and Bcl-2 antisense oligonucleotides were developed to trigger apoptosis
in the case of NSCLC [45]. Considering the role of TRAIL in LC, rhTRAIL (AMG 951),
Mapatumumab (anti-TRAIL-R1 mAb), and AMG 655 have been developed to target the
death receptor in the lungs [32]. These drugs are currently under different phases of clinical
trials and are in the pipeline for approval. Apart from these pipeline drugs, several small
molecules, such as sorafenib (RAF/MEK/ERK inhibitor), AZD6244 (mitogen-activated
extracellular signal-regulated kinase (MEK) inhibitor), and enzastaurin (serine/threonine
inhibitor) are being tested either alone or in combination with other anticancer drugs
among the patient with LC [32].

3. Limitations of the Approved and Pipeline Drugs of Lungs Cancer

Currently, various anticancer drugs have been approved for the treatment and man-
agement of LC. However, most of the conventional and signaling pathway-specific drugs
exhibit significant long- and short-term adverse effects, such as cardiotoxicity, hepatotoxi-
city, nephrotoxicity, rashes, and others [46]. Apart from these significant adverse effects,
these approved drugs also cause drug resistance, leading to a poor rate of patient sur-
vival and low quality of life. In one of the clinical studies, cisplatin and etoposide were
used for the treatment of LC, and thrombocytopenia, leukopenia, and neutropenia were
observed [47]. Additionally, most chemotherapeutics are administered via the oral route.
These drugs possess poor solubility, low bioavailability, and permeability, and cause GI
irritation. To overcome this problem, inhalation-based drug delivery was used, but unfor-
tunately, the direct exposure of the drug to the lungs caused significant pulmonary toxicity.
Details of the mechanism of action, year of approval, and adverse effects are shown in
Table 1.

Table 1. Showing the details of FDA approved drugs and their adverse effects.

Drugs Year of Approval Mechanism of Action Adverse Effect References

Afatinib 2013 EGFR tyrosine
kinase inhibitor

Diarrhea, rash, mucositis, swelling of
the lips, nail infection, and nose bleeds. [48]

Alectinib 2017 EGFR tyrosine
kinase inhibitor

Bloody urine, joint pain or swelling,
increased blood pressure, immobility,

and nephrotoxicity.
[48]

Amivantamab-vmjw 2021 EGFR tyrosine
kinase inhibitor

Shortness of breath, muscle and joint
pain, swelling of hands. [48]

Atezolizumab 2020 PD-1 receptor inhibitor Bladder pain, bloating, ear congestion
and dyspnea. [47]

Bevacizumab 2006 VEGF inhibitor
Cardiotoxicity, alopecia, xeroderma,

hemorrhage, proteinuria, and
necrotizing fasciitis.

[49]

Brigatinib 2020 Inhibitor of AKT, ERK,
and STAT3

Headache, skin rashes, nausea,
constipation and numbness. [47]

Capmatinib 2020 MET kinase inhibitor Loss of appetite, chest pain
and bloating. [47]

Cemiplimab-rwlc 2021 PD-1 receptor inhibitor Blisters, immobility, gland and joint
swelling and mouth ulcers. [47]

Ceritinib 2017 ALK
phosphorylation inhibitor

Reduced hemoglobin, hepatotoxicity,
and nephrotoxicity. [47]

Crizotinib 2016 RTK inhibitor Oedema, reduced appetite, loss of taste
and hepatotoxicity. [47]

Dabrafenib 2017 BRAF and RAF
kinase inhibitor

Joint pain, papilloma, alopecia,
and hepatotoxicity. [47]
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Table 1. Cont.

Drugs Year of Approval Mechanism of Action Adverse Effect References

Dacomitinib 2018 EGFR tyrosine
kinase inhibitor

Dermatitis, acne, stomatitis, dry skin,
and paronychia. [48]

Docetaxel 2005 Microtubule depolymer-
ization inhibition

Neutropenia, dysgeusia
hypersensitivity, anemia,

thrombocytopenia, anorexia, nail
disorders and fluid retention.

[47]

Doxorubicin 1970 Topoisomerase II inhibitor Cardiotoxicity, hepatotoxicity
and nephrotoxicity. [47]

Durvalumab 2020 PD-1 receptor inhibitor Musculoskeletal pain, loss of appetite,
and UTI. [47]

Entrectinib 2019 RTK inhibitor Peripheral edema, hepato-reno
toxicity, myelotoxicity. [47]

Erlotinib 2010 EGFR tyrosine
kinase inhibitor

Fatigue, rashes, hepatotoxicity, cough,
mouth ulceration, and dry skin. [48]

Everolimus 2016 mTORC1 inhibitor Insomnia, weight loss, and dry mouth. [48]

Gefitinib 2015 EGFR tyrosine
kinase inhibitor

Rash, diarrhea, hepatotoxicity, acne,
and anorexia. [48]

Gemcitabine 2005 DNA synthesis inhibitor Hair loss, nausea, mouth ulcer. [47]

Ipilimumab 2020 Inhibition of
T-cell inactivation

Diarrhea, fatigue, skin rash,
and pruritus. [49]

Methotrexate 1970 Dihydrofolate
reductase inhibitor

Alopecia, hepatotoxicity, and
tender gums. [47]

Necitumumab 2015 EGFR tyrosine
kinase inhibitor

Weight loss, hypokalemia, mouth ulcer,
acne, and chest infection. [47]

Nivolumab 2018 PD-1 receptor inhibitor Lymphopenia, fatigue, diarrhea,
pruritus, and vitiligo. [49]

Osimertinib 2020 EGFR tyrosine
kinase inhibitor

Diarrhea, nausea, reduced appetite,
dry skin, paronychia. [48]

Paclitaxel
protein-bound
nanoparticle

2012 Causes cell cycle arrest
Low blood counts, alopecia, mouth

ulcer, peripheral neuropathy,
arthralgias, and myalgias.

[47]

Pembrolizumab 2016 PD-1 receptor inhibitor Anemia, hypertension, hyponatremia,
hypoalbuminemia, and cough. [49]

Pemetrexed 2017 Purine and pyrimidine
synthesis inhibitor

Weight loss, vomiting, fatigue, loss of
appetite, and insomnia. [49]

Pralsetinib 2020 RET kinase inhibitor
Shortness of breath, cough, bleeding

gums, nosebleeds, and
mental confusion.

[49]

Ramucirumab 2020 VEGF inhibitor Cardiotoxicity, wound healing
problem and skin rashes. [49]

Selpercatinib 2020 RTK inhibitor Dry mouth, hypertension, peripheral
edema, diabetes, and hepatotoxicity. [47]

Sotorasib 2021 KRAS G12C inhibitor Bone/joint pain, constipation, and
stomach pain. [47]

Tepotinib 2021 Kinase inhibitor Anxiety, tachycardia, loss of appetite,
sore throat, and stomach pain. [47]

Trametinib 2015 MEK 1
2 inhibitor

Losing of fingernails, eye dryness,
damaged taste buds, dry skin, and

canker sores.
[47]

Vinorelbine 1994 Cycle arrest via binding
with microtubular spindle

Muscle or joint pain, constipation, and
loss of appetite [47]
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4. Nanocarrier-Based Targeted Drug Delivery in LC

As far as conventional chemotherapeutic drugs are concerned, no doubt these agents
are potent and effective therapeutic moieties. Still, non-specificity, adverse effects, and poor
pharmacokinetic profiles are limiting factors for their use [50]. Thus, in recent years, various
nanocarriers, such as liposomes, nanoemulsions, polymeric nanoparticles, and polymeric
micelles have been fabricated, as shown in Figure 4 [51]. This development is in response
to problems caused by conventional drugs can be overcome and targeted drug delivery,
enhanced pharmacological effect, and mitigation of adverse effects can be achieved [51].
These nanocarrier systems vary greatly in shapes, sizes, and surface charges. One of the
advantages of these nanocarriers is the delivery of various drugs without using any toxic
excipients [52]. Concerning targeted drug delivery in the lung, nanocarriers easily cross
the various barriers and prolong the drug residence time in the tumor environment via
escape from mucociliary clearance and phagocytosis in lung cells [53]. Currently, various
nanocarriers are being studied in the clinical and preclinical setups, and some of them have
entered clinical trials.
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4.1. Polymeric Nanoparticles

Polymeric nanoparticles (PNPs) are mainly prepared from either natural or synthetic
polymers. Based on the surface charge, polymeric PNPs are classified as cationic or anionic.
Cationic PNPs are positively charged because of the presence of primary, secondary or
tertiary amines, and subdivided as natural or synthetic PNPs. Cationic polymers are less
toxic, possess improved encapsulation efficacy and offers controlled release. Additionally,
cationic polymers can encapsulate hydrophobic drugs which are otherwise impermeable
to the cell membrane and DNA. Some of the commonly studied polymers used in the fabri-
cation of PNPs consist of chitosan, cyanoacrylates, poly (lactic-co-glycolic) acid (PLGA),
gelatin, poly alkyl-, poly (lactic acid) (PLA), albumin, and polycaprolactone. These poly-
mers are biodegradable and offer a controlled release pattern. Currently used intravenous
anticancer drugs for lung cancer treatment are not feasible for patients as their use has
been reported to cause systemic toxicities, pain, and discomfort. Orally-used anticancer
drugs suffer from the lack of significant clinical efficacy and adverse effects. Thus, due
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to the distinctive properties of PNPs in terms of sizes and zeta potentials, they have been
regarded as a revolutionary anticancer drug administration approach to treat LC [54,55].

A significant anticancer effect with minimal toxicities was observed when taxanes
were loaded with polyethylene–polylactide (PEG–PLA) and studied in in vitro and in vivo
studies [54]. Similarly, when paclitaxel and cisplatin were loaded into PEG–PLA copoly-
mers, an excellent anticancer effect was offered. Based on the outcome, the Phase I clinical
trial was successfully completed, and the Phase II clinical trial (Genexol-PM) was initiated
among NSCLC patients [56]. In another study, the PEG–PLA copolymer was used to load
gemcitabine for oral drug delivery, and the developed nanoformulation is currently under-
going a Phase II clinical trial [57]. Recently, polycaprolactone (PCL)- and chitosan-loaded
mucoadhesive nanoformulations were developed for lung-targeted drug delivery [12].
When the docetaxel nanoparticle was compared with Taxotere (injectable docetaxel), a
superior anticancer potential of the docetaxel nanoparticle was found [58]. Cisplatin and
doxorubicin are extensively used in the treatment for LC, but these drugs’ side effects
are limiting factors for their use. To overcome this problem, cisplatin and doxorubicin
were loaded into gelatin and poly (isobutyl cyanoacrylate polymers, and the developed
nanofabrication showed a potent antitumor effect with minimal toxicity [59]. In one study,
hyaluronic acid in conjugation with cisplatin NP was explored in an in vivo study. Even
when administered intravenously, the outcome showed a more significant antitumor effect
than the conventional formulation [60]. Additionally, the outcome of the study showed
minimal neurotoxicity and nephrotoxicity [60].

4.2. Liposome

Liposomes are bi-layered phospholipid nanocarriers and are classified as either unil-
amellar or multilamellar vesicles [61]. Unilamellar vesicles consist of a single bilayer,
whereas multilamellar vesicles are composed of multilamellar vesicles. The size of the lipo-
some varies from 1 to 100 nm and possesses the property of incorporating both lipophilic
and hydrophilic drugs; hence, the therapeutic efficacy of the formulation is enhanced [61].
The stability, drug loading capacity, and release pattern of liposomes depend on the size
and the number of the lipidic bilayer. Considering liposome-mediated pulmonary drug
delivery, the use of phospholipid and cholesterol are considered as most effective and
biocompatible [61].

Additionally, liposome-mediated drug delivery has been studied to overcome the
problem of drug resistance and reduce side effects [62]. One of the advantages of liposomes
is that the surface of the liposome can be modified, and hence, desirable targeted drug
delivery can be achieved. Thus, among the various NPs, liposomes are considered as the
most successful carrier system for the lungs [62]. Many of the United Food and Drug
Administration (USFDA)-approved liposomal drugs are commercially available on the
market. As an amphiphilic carrier system, hydrophilic drugs, such as doxorubicin and
paclitaxel, can be easily loaded into a liposome [63]. When etoposide and docetaxel
were incorporated into liposomes and tested for the anticancer potential in lung cancer,
a significant synergistic pro-apoptotic activity via enhanced p53 activity was found [64].
A paclitaxel liposome was developed, and when pharmacokinetic profiling was done
after nebulization, the area under the curve (AUC) of the nanoformulation was found to
be twenty-fold higher than the paclitaxel administered via the intravenous route [65]. A
significant reduction in tumor mass was found when this paclitaxel liposomal formulation
was studied for its antitumor potential. As we have previously discussed, cisplatin is an
extensively used drug for LC, but nephrotoxicity and hematological toxicity often restrict
its use [65]. Thus, sustained-release liposomal cisplatin was fabricated to overcome this
problem, and a Phase I study is ongoing. In one interesting study, an interleukin 2 (IL-2)
liposome inhalation formulation was designed, fabricated, and tested, and the outcome of
the study showed no evidence of toxicity, and it was found to be safe for LC patients [66].
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4.3. Nanoemulsion

Nanoemulsions (NEs) are one of the most extensively studied nanocarriers for various
disease conditions. NEs can be formulated as water in oil or oil in water, having a particle
diameter in the range of 20 to 200 nm [67]. NEs are transparent and stable and consist
of hydrophilic and hydrophobic phases, surfactant, and cosurfactant. Thus, most of the
hydrophilic or hydrophobic drugs can be incorporated into the NE for effective targeted
delivery [67]. Additionally, NE is considered an ideal carrier system for the delivery of
anticancer drugs as far as bioavailability, stability, release pattern, and targeted delivery is
concerned [68]. Moreover, NE protects the drug against ultraviolet (UV)-induced degra-
dation; microbe-induced degradation offers long-term storage and can be administered
intravenously, topically, or orally [69]. Considering NE in lung cancer, various synthetic,
semisynthetic, and natural drugs have been incorporated into NEs and have been studied
for possible anticancer effects [50,68]. Doxorubicin is another extensively used anticancer
drug, but cardiotoxicity, nephrotoxicity, and hepatotoxicity are limiting factors for its use.
Thus, pH-sensitive NE was explored for the possible efficacy and toxicity mitigation. The
outcome of the study showed improved effectiveness and reduced mortality among the
patients [70]. Paclitaxel is another extensively used anticancer drug used to treat LC, but
dose-related toxicity and pharmacokinetics limit its use. Thus, to overcome this problem,
NE containing paclitaxel in conjugation with hyaluronic acid was fabricated and tested
in NSCLC [71]. Docetaxel was also fabricated in oil–water emulsion in which medium-
chain triglycerides were used as the oil phase. When this formulation was tested for its
anticancer potential, the study’s outcome showed improved AUC, slow clearance, im-
proved volume of distribution, and tumor necrosis (as analyzed by the histopathological
study) [72]. Curcuminoids are isolated from Curcuma longa and have been explored for
multiple pharmacological activities. To enhance the pharmacological activity of lung cancer,
NEs of curcuminoids were fabricated and studied in lung cancer cell lines (H460 and A549
cells). The study’s outcome showed significant antitumor activity via reduced expression
of cyclin-dependent kinase 1 (CDK1), cyclin B, increased expression of p21, p53, and cell
cycle arrest at the G/M phase [6]. Curcumin is among the most explored natural bioactive
compounds for use in treating different types of cancer. However, curcumin suffers from
the limitation of low solubility, low bioavailability, and rapid hepatic metabolism [73]. Thus,
NEs of curcumin were fabricated and explored for their possible antitumor efficacy [73].
The fabricated formulation showed enhanced entrapment efficiency and improved release
pattern. Furthermore, a 7.4-fold increase in bioavailability was found as compared to
conventional formulation upon oral administration [73]. The molecular mechanism in-
volved in the anticancer potential of curcumin NE in lung adenocarcinoma was found
to be a modulation of extracellular receptor kinase, cyclooxygenase-2, protein kinase C,
matrix metalloproteinases, and activating transcription factor 2 (ERK 1/2, COX-2, PKC,
MMPs, and ATF-2, respectively) signaling pathways [74,75]. Similarly, diferuloylmethane
isolated from the turmeric, 9-bromo noscapine (a tubulin-binding alkaloid), and quercetin
are natural products and possess potent antitumor activities. Despite being potent and
effective molecules, these two drugs suffer from pharmacokinetic limitations. Hence,
their NEs were fabricated and explored for possible anticancer effects in LC [76–78]. The
study outcome showed an improved pharmacokinetic profile and enhanced antitumor
activity via apoptosis initiation and angiogenesis inhibition [78]. Lycobetaine (LBT) is a
well-known alkaloid and showed significant anticancer potential via topoisomerases I and
II inhibition. However, lycobetaine has a short half-life and poor bioavailability and hence,
its NE was fabricated and tested in LC [79]. Danshen, tanshinones, and Brucea javanica
oil are well-known Chinese herbs and possess potent anticancer potential. However, to
enhance their pharmacological and pharmaceutical potentials, their NEs were formulated
and studied in in vitro and in vivo setups [80–83].
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4.4. Polymeric Micelle

Polymeric micelles (PMs) are biodegradable and biocompatible nanocarriers that
have shown great potential for targeted drug delivery of chemotherapeutic drugs in
LC [84]. They are self-assembled amphiphilic NPs that become aggregated in the pres-
ence of copolymers and solvents [84]. A wide variety of polymers are available for PM
fabrication, and the choice of these polymers depends upon compatibility with the se-
lected drugs to allow incorporation, desired loading capacity, and stability. The cores
of the PMs are hydrophobic, and poorly soluble drugs are generally incorporated into
these micelles [85]. PMs offer the advantages of prolonging circulation time, bypassing
hepatic metabolism, and offering an improved volume of distribution. PM sizes vary
from 20 to 200 nm; hence, they can easily travel through the tumor microenvironment
and escape from the reticuloendothelial system (RES), usually found in the liver, spleen,
kidney, lymph nodes, and bone marrow cells [85]. A large number of polymers, such as
poly (styrene-co-maleic anhydride [SMA]), poly(ethylene glycol)-block-poly(D-L-lactic acid
[PEG-b-PLA]), poly(ethylene glycol)-block-poly(D,L-lactic-co-glycolic-acid [PEGb-PLGA]),
poly(ethylene-glycol)-block-poly(
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peutic drugs into the LC tumor [84]. SMA is a synthetic copolymer composed of maleic acid
and albumin. SMA is advantageous as it is stable in the body fluid and is non-toxic [86].
SMA conjugated to neocarzinostatin was explored for the anticancer effect in lung can-
cer, while SMA conjugated to paclitaxel was studied for the anticancer potential against
adenocarcinoma [87]. PEG-b-PLA is an FDA-approved excipient and is used for the encap-
sulation of various anticancer drugs [88]. PEG-b-PLA is a copolymer consisting of PLA and
PEG and offers excellent properties for the encapsulation of anticancer drugs. The ratio of
PLA and PEG determines the release rate and pattern of encapsulated drugs, in which low
molecular weight structures showed rapid release pattern whereas high molecular weight
showed a delayed release pattern [88–90]. Recently, paclitaxel, curcumin, and rapamycin
encapsulated polymeric are being investigated for their possible effect against lung cancer.
The FDA also approves PEG-b-PLGA, and it is a biodegradable polymer [91]. Similar to
PEG-b-PLA, the release pattern of the drug from PEG-b-PLGA can be modulated via a
change in the ratio of PEG, glycolide, and lactide [91]. PEG-b-PLGA loaded with paclitaxel
and doxorubicin was studied in NSCLC. The outcome of the study showed improved and
synergistic antitumor potential of these two drugs along with minimal side effects [92].
Similarly, paclitaxel and cisplatin were also encapsulated and studied for the synergistic
anticancer effect in combination with radiotherapy [93].

5. The Limitations of Nanocarrier Drug Delivery Systems and miRNA as Emerging
Tools against Lung Cancer

Currently, a lot of research is going into the development and delivery of safe and
effective nano carrier-based systems targeting LC, but most of these drugs failed in clinical
trials [94]. Some of the investigated reasons for the failure appear to be a lack of precise
mechanism of action, toxicity due to excipient or particle size, and higher retention times
in the circulatory system [53]. Thus, looking into the potential of nanocarriers against lung
cancer and negative outcome in the clinical trials, researchers are now using FDA-approved
excipients. Additionally, the nanocarriers have to cross numerous barriers and obstacles,
such as dense matrix, protein-corona effect, phagocytosis, and drug efflux proteins before
reaching the site of action [1]. Moreover, different types of tumor microenvironments
respond differently to the same nanocarriers, which is one of the major issues [1]. Recently,
Doxil has been reported to accumulate in Kaposi sarcoma, related to acquired immunod-
eficiency syndrome (AIDS), and this issue is a major area of concern for clinicians [95].
Additionally, a deep understanding of nanomedicine in the tumor microenvironment is
lacking because of the unavailability of reliable preclinical models. Although xenograft
models are currently being used, the findings from these models differ significantly from
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the human tumor microenvironment [95]. Thus, to overcome these challenges, microRNA
(miRNA)-based therapeutics are being explored as possible therapeutic tools in LC [96].

6. miRNAs and Lung Cancer

Currently, many chemotherapeutics are being explored for their possible anticancer
effects, but most of them suffer from pharmacokinetic limitations and exhibit significant
toxic effects [47]. Thus, a nano carrier-based drug delivery system was explored to address
this limitation, but unfortunately, a lacuna in the desired therapeutic effect still exists.
Thus, recently the role of miRNA is under investigation for its possible application in the
management and treatment of LC [96]. RNA polymerase II was found to be responsible
for the transcription of miRNA or pri-miRNA, upon which ribonuclease Drosha further
acts, and pri-miRNA is converted into pre-miRNA [97]. This process occurs in the nucleus,
and once pre-miRNA is formed, it moves out of the nucleus and into the cytoplasm, in
which it is cleaved and mature miRNA is produced as shown in Figure 5 [97]. The mature
mRNA gets incorporated or loaded into RNA-induced silencing complex (RISC) and
argonaute. Finally, these miRNAs are involved in the silencing of mRNA. The miRNA
usually binds with the complementary sequence of mRNA at three prime ends and inhibits
the translation process [97]. It was further found that a single miRNA regulates the
function of multiple mRNAs in humans. More than 50% of genes involved in LC are
associated with miRNA [98]. Thus, miRNA is considered an emerging pathogenic factor
in LC etiology and has emerged as a clinically relevant tool for managing and treating
LC [99]. Based on the involvement of miRNA in carcinogenesis, miRNAs are classified
as oncomiRs and tumor suppressor miRNA [99]. As the name suggests, oncomiRs are
responsible for overexpression of pro-oncogenes or suppression of tumor suppressor genes,
and are consistently found to be overexpressed in the tumor cells [96]. Tumor-suppressor
miRNA suppresses the translatory activity of mRNA that is responsible for oncogene
transcription. Thus, oncomiRs cause tumor initiation, progression, angiogenesis, invasion,
and metastasis [96].
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6.1. Mechanism of miRNA Deregulation in Lung Cancer

Involvement of miRNA in pathogenesis has been well established, and it was found
that the factors that affect the biosynthesis of miRNA at the pri- or pre-miRNA level are
primarily responsible for causing dysregulated miRNA and carcinogenesis [100]. Recently,
p53, c-Myc, and E2F were identified as the transcription factors responsible for increased
oncomiRs and reduced tumor suppressor miRNA expression [101,102]. Apart from the role
of these transcription factors, epigenetic malfunction was also found to be an important
factor in the increased level of dysregulated miRNA. Studies have suggested the role
of hypo or hypermethylation and alterations in histone acetylation [103]. CpG methy-
lation was studied for the increased expression of miR-223 that leads to acute myeloid
leukemia [104]. Similarly, methylation of DNA and histone deacetylation were associated
with dysregulated miRNA in bladder cancer [105]. Additionally, reduced expression of
miRNA-148a and miR-34b and their associations with carcinogenesis were found to be
associated with methylation of CpG [106].

miR-29b was found to be reduced in NSCLC, whereas miR-29b was found to increase
the sensitivity of cisplatin in LC [107]. The epithelial–mesenchymal transition (EMT) is
one of the critical steps in tumor metastasis, and recently, miR-101, miR-200, miR-27,
miR15b, and miR-451 were found to be suppressed and involved in EMT in LC [108–110].
Similarly, miR-17-92, miR21, miR-16, miR-200c, miR-34, and miR-29b were found to be
overexpressed in LC and act as oncomiRs [111]. In LC, miR-21, and phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) were found to be downregulated and
positively correlated with chemoresistance against TKIs. However, selectively targeting
miR-21 and PTEN can be used to chemo-sensitize cisplatin in NSCLC [112]. miR-34 (a-c) has
been extensively explored for involvement in the cell cycle progression via modulation of c-
Myc, Bcl-2, sirtuin-1, forkhead box P1 (FOXP1), and histone deacetylase (HDACs). Among
these subtypes of miRNAs, miR-34c was found to be down-regulated in LC [113,114]. miR-
212 and miR-350 have been reported as tumor suppressor miRNAs that exhibit antitumor
effects in LC via TRAIL-mediated apoptosis [111]. Thus, looking into the therapeutic
involvement of miRNA in LC, two therapeutic approaches are currently used: (1) inhibition
or blockage of oncomiRs and (2) stimulation of tumor suppressor miRNA. Various carriers,
such as small molecules, oligonucleotides, or viruses, are currently being used to target the
various miRNA as shown in Figure 6.
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6.2. Preclinical Based Evidence of miRNA in Lung Cancer

Generally, for targeting oncomiRs, antisense anti-miR oligonucleotides (AMO) or
locked nucleic acid (LNA), miRNA sponges, or miRNA antagomirs are used. AMO is
synthetic antisense complementary to the targeted miRNA [96]. AMO binds to the miRNA
and inhibits its interaction with the mRNA so that the translation of oncogenic proteins is
inhibited and the mRNA performs its normal functions [115]. AMO is thermally unstable
and has poor aqueous solubility [116]. Hence, LNA with improved thermal stability and
enhanced aqueous solubility was developed. The use of LNA has been reported to silence
miR-21 and results in increased apoptosis and reduced tumor burden [117]. Similar to LNA,
antagomirs and miRNA sponges have been explored to silence the oncomiRs [118]. Apart
from miRNA inhibition, restoration of miRNA is also an important therapeutic approach
for treatment and management of LC. Generally, miRNA mimics or viral vectors (lentivirus,
adenovirus, and retrovirus) are responsible for the miRNA expression (miR-15 and let-7)
and are used to restore the normal activity of miRNA functionally [118]. Considering LC,
miR-34, 29b, 20c, 145, and let-7 are tumor suppressor miRNAs, and their levels were found
to be downregulated in LC [111]. To restore the normal functioning of tumor suppressor
miRNA, H460/A549 cells for NSCLC were treated with the let-7 mimic, and the outcome
of the study showed a significant antitumor effect [113,119]. Based on the outcome of this
study, let-7 was dissolved in lipid base. It was further evaluated in a xenograft model,
and a significant reduction in tumor volume was observed [119]. As we have already
discussed, miR-34a is downregulated in cancer; hence, synthetic miR-34a was formulated
in a lipid-based vehicle and administered to the NSCLC mice. Surprisingly, the use of
this lipid-based miRNA-34s caused an effective reduction in cancer severity [113]. The
observed mechanism involved in the anticancer effect was found to be reduced expression
of ki-67, CDK4, and Bcl-2 [113]. Additionally, the use of this mimic was found to be safe as
no sign of toxicity was observed in liver, kidney, and heart [113]. In one interesting studies,
miR-145 was administered intratumorally in a lung adenocarcinoma model of mice by
incorporating it into the biodegradable polyurethane-branched polyethyleneimine [120].
The study’s outcome showed EMT inhibition, increased apoptosis, reduced tumor growth,
and angiogenesis [120]. Similar to miR-34a, miR-29b is also a tumor suppressor gene, and
in the absence of the normal functioning of miR-29b, CDK-6 is activated and regulates
the cascade of tumorigenesis [111]. Thus, a cationic-carrier-based miRNA was developed
to incorporate mir-29b and administered to the A549 xenograft mice model to yield a
significant antitumor effect [111].

6.3. Translatory and Clinical-Based Evidence of miRNA in Lung Cancer

After looking into the potent role of miRNA in the pathogenesis of LC and various
preclinical studies reported so far, pharmaceutical industries have come forward to initiate
studies for therapeutic implications. Recently, LNA for targeting miR-122 (SPC3649) was
developed by Santaris Pharma [121,122]. This anti-miRNA was the one that was entered
into a clinical trial [123,124]. MRX34 is a miR-34a mimic, and its efficacy in NSCLC has
been investigated in a Phase I clinical trial (NCT01829971) with the concept of miRNA
replacement therapy [125,126]. Another clinical trial (NCT01829971) has shown absolute
safety, efficacy, and tolerability of this compound. Based on the outcome of these trials,
Phase I (NCT02862145) was continued, and a Phase II trial was designed [111]. However,
in 2016, severe immunotherapeutic adverse effects (cytokine syndrome) were reported,
and this study was terminated [111]. Similarly, another ongoing trial (NCT02862145)
involving MRX34 in melanoma was stopped due to unwanted side effects. Apart from
MRX34, MesomiR-1 has been entered into a Phase I clinical trial (NCT02369198) for treating
NSCLC [111].

7. Challenges in Developing miRNA-Based Therapeutics

In recent years, miRNA-based therapy has gained significant attention for LC man-
agement and treatment. Indeed, miRNA-based therapy offers several advantages over con-
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ventional and target-based therapy, however some hurdles still need to be overcome [127].
One of the major hurdles is successful penetration by the oncomiRs or tumor suppressor
miRNA into the tumor cells [128]. Tumor cells consist of an extensive vascular network and
a complex leaky surface that significantly alters miRNA penetration into the tumor [128].
Another major challenge for successful miRNA delivery is maintaining their stability and
integrity in the systemic circulation. When an miRNA enters the systemic circulation,
miRNA is degraded immediately by various RNAases and eventually cleared from the
circulation [127].

Additionally, administered miRNA is also excreted via renal excretion [129]. Apart
from renal clearance, fast hepatic metabolism, RE and splenic Kuffer’s cell-mediated uptake
and phagocytosis via the phagosome are other barriers limiting miRNA-based therapeutic
outcomes [129]. Apart from these discussed limitations, miRNAs have also been reported
to induce immunotoxicity. This limitation occurs because when miRNAs are administered,
the innate immune system undergoes activation and causes immunotoxicity in which
interferons or Toll-like receptors (INFs or TLRs) are activated [130]. Importantly, miRNA
has been reported to cause off-target silencing of various genes and results in unwanted
side effects [111,130].

Nanocarrier-Based miRNA Delivery in Lung Cancer

As we have already discussed, despite the therapeutic potential of miRNA, this system
suffers from major pharmacokinetic limitations and exhibits immunotoxicity and off-target
gene silencing. Thus, to overcome these limitations, nanocarrier-based miRNA (NC-miR)
delivery has been used for the selective targeting of lung cancer cells [131]. When NC-miR
delivery is used for lung cancer, several factors, such as tumor vasculature, interstitial
fluid pressure, extracellular matrix composition, and lymphatic drainage are taken into
consideration [131]. One of the most extensively used NC for the delivery of miRNA is
polymeric nanoparticles [132].

Polymeric nanocarriers have also been studied for targeted delivery of miRNA in
LC [133]. PEI, LGA, and poly(amidoamine [PAMAM]) are some of the well-studied cationic
synthetic polymers [134]. These polymers are advantageous in terms of enhanced stability,
cellular specificity, cellular uptake, a low toxicity profile, and being non-immunogenic [134].
PEI was recently used to successfully deliver miR-145 and miR-33a in a xenograft model
of colon cancer. The outcome of this study showed an increase in apoptosis and a re-
duction in tumor growth [134]. miR-154 in combination with cisplatin encapsulated in
polyurethane–polyethyleneimine was also studied in LC [135]. In one interesting study,
polyarginine-disulfide in conjugation with PEI was studied for the targeted delivery of
miR-145 in prostate cancer [136]. A disulphide linker was used to enhance biocompatibility
and exhibit desired cytotoxic effects [136]. The study’s outcome showed a significant re-
duction in the rate of tumor growth and increase in the duration of survival. Poly(L-lysine)
and polyethyleneimine were used to successfully deliver anti-miR-21 in breast cancer,
whereas miR-145 was delivered via polyurethane conjugated with PEI for the treatment of
LC [135,137]. Apart from the aforementioned polymeric nanocarriers, N-(3-aminopropyl)
methacrylamide (APM), ethylene glycol dimethacrylate (EGDMA), and acrylamide (AAM)
have been used for the delivery of miRNA, such as anti-miR-21 [138,139]. Gemcitabine is
one potent anti-cancer drug, but it suffers from the limitation of chemoresistance. Recent
findings have demonstrated the chemosensitizing property of miR-205; hence, a PEG
and polypropylene carbonate copolymer nanocarrier was used for delivery of miR-205
in pancreatic cancer [140]. The study’s outcome showed a reduction in resistance, tumor
size, growth, and weight, and caused an effective reversal of metastasis and tumor inva-
sion [140]. Similarly, a poly(
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molecular mechanism involved in the anticancer potential of curcumin NE in lung ade-
nocarcinoma was found to be a modulation of extracellular receptor kinase, cyclooxygen-
ase-2, protein kinase C, matrix metalloproteinases, and activating transcription factor 2 
(ERK 1/2, COX-2, PKC, MMPs, and ATF-2, respectively) signaling pathways [74,75]. Sim-
ilarly, diferuloylmethane isolated from the turmeric, 9-bromo noscapine (a tubulin-bind-
ing alkaloid), and quercetin are natural products and possess potent antitumor activities. 
Despite being potent and effective molecules, these two drugs suffer from pharmacoki-
netic limitations. Hence, their NEs were fabricated and explored for possible anticancer 
effects in LC [76–78]. The study outcome showed an improved pharmacokinetic profile 
and enhanced antitumor activity via apoptosis initiation and angiogenesis inhibition [78]. 
Lycobetaine (LBT) is a well-known alkaloid and showed significant anticancer potential 
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bioavailability and hence, its NE was fabricated and tested in LC [79]. Danshen, 
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drophobic, and poorly soluble drugs are generally incorporated into these micelles [85]. 
PMs offer the advantages of prolonging circulation time, bypassing hepatic metabolism, 
and offering an improved volume of distribution. PM sizes vary from 20 to 200 nm; hence, 
they can easily travel through the tumor microenvironment and escape from the reticulo-
endothelial system (RES), usually found in the liver, spleen, kidney, lymph nodes, and 
bone marrow cells [85]. A large number of polymers, such as poly (styrene-co-maleic an-
hydride [SMA]), poly(ethylene glycol)-block-poly(D-L-lactic acid [PEG-b-PLA]), poly(eth-
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-caprolactone [PCL]) and PEG nanocarrier was used for the
delivery of miR-200c and docetaxel, and the outcome was studied in both in vitro and
in vivo studies [141]. PLGA is another FDA-approved polymer with an established safety
profile for miRNA drug delivery [142]. PLGA offers the advantage of surface modification
and multiple ligand targeting [142]. When miR-221 was encapsulated into PLGA, increased
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apoptosis, reduced tumor growth, migration, angiogenesis and invasion was observed
in lung and hepatic carcinoma [143]. Moreover, when PLGA in combination with PEF
was studied for miR-10b in addition to anti-miR-21 delivery, a significant reduction in the
rate of tumor growth was observed in breast cancer [144]. Additionally, PLGA in combi-
nation with PEI was used for co-delivery of doxorubicin and miR-542-3p. The outcome
of the study showed enhanced loading capacity, increased drug uptake, cytotoxicity, and
significant anti-tumor effects [145].

Dendrimers are branched polymers with the presence of an amine branch that acts as
a proton sponge and helps in endosomal escape. Dendrimers have been extensively used
for the targeted delivery of miRNA in various types of cancer. Poly-amidoamine (PAMAM)
is a cationic polymer and one of the commonly used dendrimers used for the delivery of
miRNA [146]. Recently, PAMAM was used as a nanocarrier for the targeted delivery of
miR-21 in brain tumors, and the outcome of the study showed an increase in apoptosis
and reduction in the rate of tumor growth [146]. Similarly, codelivery of miR-205 and
anti-miR-221 using PAMAM showed a significant reduction in tumor size and an increase
in survival [147].

It is also important to highlight that various natural polymers, such as chitosan and
peptides, have also been studied to deliver miRNA [139]. Chitosan is extensively studied
in natural polymers and reported to be biocompatible, safe, and biodegradable [139].
Chitosan and hyaluronic acid nano-complexes were used to incorporate miR-34a and
doxorubicin and miR-145 in breast cancer, and the outcome of the study showed synergistic
antitumor effects [148,149]. A self-assembly noncomplex was prepared by using protamine
sulfate and hyaluronic acid and successfully incorporated miR-34a for the targeted delivery
in breast cancer [150]. Similarly, aptamer-conjugated atelocollagen loaded miR-15a and
miR16-1 (tumor suppressor miRNA) was used for targeted delivery in prostate cancer [151].

Apart from PNPs, lipid-based nanocarriers for the targeted delivery of miRNA in
LC have been extensively studied. Currently, cationic, anionic, and neutral lipid-based
nanocarriers (liposomes) have been studied. Liposomes easily cross the cell membrane
and release the miRNA inside the cells. However, liposomes suffer from low selectivity
and specificity; hence, surface modification techniques have been used to overcome these
limitations [152]. Cationic liposomes are more often used for miRNA delivery because of
their enhanced cell membrane affinity [107]. They are comparatively easy in terms of pro-
duction and are considered safe, non-immunogenic, and non-pathogenic. In LC, reduced
miR-29b was shown to be positively correlative with pathogenesis. Thus, when a cationic
liposome-encapsulated with miR-29b was used, a significant reduction in tumor growth
rate was observed [107]. Similarly, the administration of cationic liposomes encapsulated
with miR-107 yielded a significant anti-tumor effect [153]. Based on successful preclini-
cal and clinical reports of cationic liposomes, several products such as Lipofectamine®,
TransIT® 2020, and Oligofectamine™ are now commercially available [154]. Despite being
a potent nanocarrier for miRNA delivery, liposome use is limited because of low stabil-
ity and nonspecific binding affinity toward serum proteins. Hence, to overcome these
limitations, polymers, such as PEG, have been conjugated to enhance their stability and
half-life [155]. Moreover, liposomes offer the advantage of synergistic drug delivery of
chemotherapeutic drugs and miRNA. Recently, cisplatin in combination with miR-375
has been successfully delivered using liposomes in lung cancer [89]. Liposome-based
miR-34a and miR-200c have been studied for possible anticancer effects in LC, and the
study outcome’s shows promising anticancer effects [156]. Additionally, miR-135a-loaded
cationic immunoliposomes was also explored in cancer therapy [154].

For a long time, inorganic components have been used to fabricate nanocarriers,
keeping the size and morphology as the top priority. Inorganic materials are non-toxic,
non-irritating, biocompatible, and easy to synthesize. Among various inorganic nanocar-
riers, gold nanoparticles (AuNP) have been extensively used for the targeted delivery of
miRNA in various types of cancer [157]. AuNPs are advantageous in terms of shape, size,
biocompatibility, physio-chemical properties, surface functionalization, and amphiphilic-
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ity [139]. AuNP encapsulated with miR-205 was used to treat prostate cancer in PC-3 cell
lines in which the administration of nanocarriers showed enhanced apoptosis in addition
to reduced proliferation and rates of tumor growth [139]. It was found that the presence
of miR-20a is associated with a pro-oncogenic role and protects the tumor cells against
doxorubicin-induced cytotoxicity [139]. Thus, cysteamine-functionalized AuNP was used
for the delivery of miR-31 that acted as a suppressor of miR-20a and exhibited a significant
anti-tumour effect [158]. It was further found that AuNP showed a 10–20-fold increase
in concentrations of miR-31 and miR-1323 as compared to the conventional delivery in
neuroblastoma and ovarian cell lines [139]. Additionally, when thiolated AuNP was used
to deliver miR-145, a significant anti-tumor effect was observed in prostrate and breast
cancer [159].

Silica is one of the extensively used inorganic materials and has also been successfully
used to fabricate nanocarriers for the targeted delivery of miRNA in various types of
cancer [160]. Mesoporous silica nanoparticles (MSN) are silica-based inorganic nanocarriers
that offer the advantage of safe, biocompatible, stable, and greater surface loading of
miRNA [160]. MSN was successfully used for the delivery of miRNA-34, which is a
tumor suppressor for miRNA [161]. The use of MSN-loaded miR-34 showed an increase in
apoptosis and reduction in tumor growth in tumor cells. Recently, an immunoliposome
loaded with PD-L1 antibody and miR-10a was tested in a cancer model, and the outcome
of the study showed the significant anticancer potential of this nanocarrier system [139].
MSN was also used for the delivery of temozolomide and anti-miR-221, which eventually
resulted in inhibition of the cell cycle, proliferation, and stimulated apoptosis, and overcame
the issue of drug resistance [162].

Recently, magnetic compounds were also used for the targeted drug delivery of
miRNA in cancer. In one study, zinc–iron oxide loaded with lethal-7a miRNA was used
to treat cancer [163]. Similarly, lanthanide Ce3/4+ cations combined with oxidized PEI
were used to deliver antisense miR-486, anti-miR-99a, and anti-miR-21 into human CMK
leukemia and pancreatic cells [164]. Apart from MSN, carbonate apatite has been studied
for the possible nanocarrier property for miRNAs. In one of the studies, miR-4689 was
incorporated into carbonate apatite NP to target KRAS in addition to AKT in cancer
cells [165]. Similarly, miR-29b-1-5p was also incorporated into carbonate apatite NP against
Caco cell lines with confirmed KRAS mutation. The outcome of the study showed increased
apoptosis, reduced proliferation, and a better safety profile [166].

8. Conclusions and Future Prospects

LC is one of the major causes of morbidity and mortality worldwide. The etiology of
LC has been identified as multifactorial in origin [167,168]. Various signaling pathways
and molecules are involved in the initiation, progression, angiogenesis, and invasion of
LC [14]. Many conventional and signaling molecular-based targeted drugs have been
approved by the FDA, and many more are in the pipeline. Undoubtedly, the clinical
use of these approved drugs has contributed significantly to increasing progression-free
survival and improved patients’ quality of life [14]. However, most of these drugs suffer
from pharmacokinetic limitations of low solubility, low bioavailability, and fast hepatic
metabolism, which are not capable of reaching the target site, or penetration across the
tumor cell [47]. Not only this, but most of the approved drugs also suffer from the pharma-
codynamic limitation of severe adverse effects when used through oral and intravenous
routes [47]. In order to overcome these limitations, inhalation and intratumoral routes were
used, but unfortunately, these approaches were also not up to the expectation [169,170].
Thus, nanocarrier-based targeted drug delivery was used in which many of the approved
drugs were encapsulated into the suitable nanocarrier to minimize pharmacokinetics and
dose-related adverse effects [53]. Additionally, nanocarrier-based drug delivery increases
stability, avoids fast hepatic metabolism, and ensures the maximum drug concentration at
the site of action [53]. A large number of preclinical and clinical studies have confirmed the
therapeutic utility of nanocarrier-based drug delivery in LC [53]. Currently, a few clinical
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trials are being conducted so that more and more patients can benefit from this therapeutic
approach [170].

It is of further importance to understand that the epithelial tissue of the lungs is the
center of origin, and inhalation-based therapy has access to this area. However, NSCLC or
SCLC can originate from any part of the lungs, such as bronchial epithelium, peripheral
bronchioles, or alveolar epithelium [171]. Thus, a nanocarrier for the treatment of SCLC
or NSCLC must reach a specific area for exerting a desired pharmacological effect. For
example, NC with particles size of 5 to 10 µm can reach the central epithelium [171].
However, a particle size in the range of 0.1 to 3 µm is needed for crossing the deep
pulmonary tissue. Moreover, an ideal nanocarrier must exhibit a sustained drug release
profile, and for the treatment of stage IV lung cancer, systemic absorption is desirable. At
this stage, tumor cells gain access to lymph nodes or vital organs [172]. Thus, with the same
nanocarrier system, systemic in addition to localized absorption of the drug is challenging.
Thus, extensive research concluded that a multilamellar liposome is the best option for
localized absorption, whereas dendrimers are suitable for systemic absorption [173].

Another problem encountered in using nanocarriers in LC is the later stage of di-
agnosis. Presuming that it is diagnosed at the early stage, patients also have difficulty
in breathing, breathlessness, lower tidal volume, and total lung capacity. In such cases,
drug delivery and absorption from the peripheral tissue are difficult [172]. Hence, spacers
and power sources were used to deliver drugs at the nano size so that they could be
absorbed in the deep tissue. Despite being a novel and promising therapeutic approach,
nanocarrier-based drug delivery has limitations, such as toxicity due to multiple com-
ponents, phagocytosis, and drug efflux ineffectiveness due to complex vasculature and
the inability to penetrate the tumor mass [174]. Hence, recently, miRNA has been iden-
tified as an emerging weapon against lung cancer. However, the use of necked miRNA
was associated with fast degradation by RNAse, problems in crossing biological mem-
branes, rapid clearance, and thermal instability when administered [99]. Hence, techniques,
such as chemical modification, encapsulating them in suitable nanocarriers, and using
cationic polymers, have been used to overcome these limitations [175]. Currently, a few
nanocarrier-based (lipid-based) miRNAs, such as MRX34, miR-34a, and let-7, are under
clinical investigation for possible use in LC treatment [175].

Thus, based on the in-depth literature survey, available clinical evidence, and com-
pleted clinical trials, we suggest that a safe and effective nanocarrier system should be
developed for the targeted delivery of chemotherapeutic drugs in addition to miRNA.
Genomic expression of mRNA in addition to pathway enrichment analysis should be done
to identify selective targets for miRNA. Furthermore, to avoid the toxicity and off-targeted
side effects and also achieve cell/target-specific delivery of chemotherapeutic drugs and
miRNA, low dose combinations of miRNA and anticancer drugs, radiotherapy, and im-
munotherapy can be used. Additionally, the antibody-coated combination of miRNA and
existing anticancer agents should be used in a suitable nanocarrier system. This novel drug
delivery system may pave the way for clinical treatment in the coming years.
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