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Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP),
which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by
recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep
features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to
improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM
(max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence
but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon
which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive
experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can
achieve 67.48% classification accuracy.

1. Introduction

Assessing facial beauty is a natural action for people, as an
attractive one has more advantages in social life. Psychology
research revealed that apart from cultural and contemporary
factors, what is more important is that one’s evaluation is
often influenced by various factors such as clothing, hair-
style, social status, personal feelings, and others’ evaluation.
As the saying goes, “Beauty lies in the eyes of the beholder,”
facial beauty is an abstract concept, and each person’s
definition of beauty is different. With the development of
artificial intelligence, studies [1–3] indicate that facial at-
tractiveness can be learned by machine learning using data-
driven methods. Recently, facial beauty prediction becomes
an emerging research area due to many potential applica-
tions, such as aesthetic surgery planning [1], cosmetic rec-
ommendation [2], and face-based pose analysis [3].

Deep learning has provided state-of-the-art performance
in many tasks in recent years, ranging from computer vision

[4] to natural language processing [5]. Contrary to traditional
machine learning methods, in which features are chosen
manually and extracted through instructed algorithms, deep
learning networks automatically discover increasingly higher
level features from data. For CNNs, the outputs of the last
convolutional layers encode the semantic information of
specific task, which are robust to significant appearance
variations [6]. However, their spatial resolution is too coarse
to preserve the texture information of the image, which is
extremely important for facial beauty prediction task. For the
facial beauty prediction task, which has large interclass var-
iance, the existing CNN methods exploiting the features
extracted from the last output layer may be insufficient.
Multiscale deep features [7] can extend the generalization of
the features represented, which fuse different layers’ feature
maps together.-emultiscale architecture has a large number
of tunable parameters as compared to others, and it covers
features at different resolutions and scales, which could
achieve higher performance [8].
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As we all know, effective training of neural networks
requires abundant data. However, in the real world, facial
beauty data with labels are often scarce, and it is expensive to
obtain sufficient labeled facial beauty samples directly. -e
deficiency of labeled facial beauty prediction data may lead
to overfitting on the training stage and further may result in
poor generalization on the test stage. To tackle the data
deficiency problem for such a small database task, the uti-
lization of transfer learning strategy before the training of
the target domain may be a good solution.

Transfer learning is utilized to improve a network learning
ability from target domain by transferring information from
source domain [9].When the sample size of the target domain
is too small to support the training of CNN, the use of transfer
learning can provide a fine initialization state, which benefits
further training and is much better than initializing the whole
network randomly. Transfer learning parameters can give the
network more relevant information and alleviate the phe-
nomenon of model overfitting caused by the insufficiency of
the training database, which will extremely improve the
performance of the network [10].

In this paper, BeautyNet for unconstrained facial beauty
prediction is proposed. BeautyNet adopted a multiscale
architecture that can produce more discriminative and ro-
bust deep features. -en, in order to mitigate the compu-
tational burden of the multiscale structure, we adopted the
MFM (max-feature-map) activation function to replace the
common activation function. Compared to other traditional
activation functions, such as ReLU, MFM activation func-
tion has a sparse gradient and compact representation si-
multaneously, which can extremely lighten the model and
speed the network convergence. Finally, we adopted transfer
learning to get a better initialization state for facial beauty
prediction task, which utilized face recognition database as
the source domain and facial beauty database as the target
domain. Experimental results shows that transfer learning
could perform much better. -e whole framework of this
paper is shown in Figure 1.

Our major contributions can be summarized as follows:

(i) A multiscale CNN architecture named BeautyNet is
designed specifically for FBP task. -e BeautyNet
consists of basic convolution layers and a multiscale
architecture. -e deep features which contain se-
mantic and texture information simultaneously,
extracted deep features from the proposed Beau-
tyNet, are suitable for our task.

(ii) MFM (max-feature-map) activation function is
presented here to achieve discriminative beauty
feature. Compared to other traditional activation
functions, MFM has a sparse gradient and compact
representation simultaneously, which could not
only lighten the model and fasten the convergence
but also benefit the performance.

(iii) Transfer learning strategy is also incorporated to
alleviate the overfitting problem for unconstrained
facial beauty prediction task with limited labeled
database. -e parameters of the pretrained model on
large-scale face recognition database are exploited.

For FBP task, some part parameters of the pretrained
model were transferred and further trained on the
BeautyNet. Experimental results show that transfer
learning strategy can significantly improve its
performance.

-e remainder of this paper is organized as follows. In
Section 2, we review the related work of facial beauty pre-
diction, multiscale CNNs, and transfer learning. Section 3
presents the details of the proposed BeautyNet and MFM
activation function. Section 4 proposes transfer learning
method and gives its details. Experimental results and
analysis are presented in Section 5. Finally, Section 6 con-
cludes this paper.

2. Related Work

In this section, we will discuss related work in facial beauty
prediction, multiscale CNN, and transfer learning.

2.1. Facial Beauty Prediction. Traditional facial beauty pre-
diction focuses on a geometry-based method. For geometry-
based methods, firstly, meaningful feature points from face
images are extracted manually; then, geometric distances
and ratio vectors between feature points are computed; fi-
nally, the feature vectors will be used for machine learning.
Mao et al. [11] first proposed a method of automated facial
beauty prediction, which presented a simple but effective
feature extractor; then, the extracted geometric feature was
used to train the SVM (support vector machine). Zhang et al.
[12] adopted a normalized face and mapped it onto a facial
shape space, then quantitatively analyzed the effect of facial
geometric to overcome the transformation influence. Gunes
et al. [13] computed the ratios of different facial components
as features for facial beauty assessment. Schölkopf et al. [14]
computed the distances and slopes of these landmarks. -e
extraction of geometry features depended on the detection of
face landmark in the preprocessing stage, and the accuracy
of landmark detection could directly affect the performance
of facial beauty prediction. -erefore, geometry-based
methods could achieve good prediction results for frontal
face with constraint experiment environment, which could
locate face landmark accurately. However, it cannot achieve
satisfactory results in unconstrained facial beauty prediction,
while the landmark detection may be seriously affected by
many factors, such as illumination, occlusion, and blurring.
To avoid heavily manual intervention and burden landmark
in geometry-based methods, and take advantage of large
data, we established a large database named LSFBD in [15],
and multiscale apparent features are utilized for facial beauty
prediction. In this paper, we continue to explore the po-
tential of CNN on the facial beauty prediction task based on
the LSFBD.

Recently, deep learning has been demonstrated to be a
promising area of research in machine learning. Some re-
searchers have used deep learning to predict facial beauty
and achieved satisfactory results. Gray et al. [16] directly
employed images to CNN network for learning, without
marking the key points of the images, and realized automatic
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facial beauty prediction. Gan et al. [17] adopted deep self-
taught learning method to extract facial beauty features
without depending completely on artificial feature selection
and obtained human-like performance. Xu et al. [18]
carefully constructed a convolution neural network (CNN)
for facial beauty prediction, which cascaded various in-
putting channels, such as the original RGB face image, the
detail layer image, and the lighting layer image. Chen et al.
[19] fused rule-based features, global features, and local
descriptors and then reduced the dimension of feature and
selected it, which could serve as a competitive prediction
method. Xu et al. [20] proposed a psychologically inspired
convolutional neural network (PI-CNN) to achieve facial
beauty prediction, which facilitated both the facial beauty
representation learning and predictor training. Zhang et al.
[21] combined several low-level face representations and
high-level features to predict facial beauty. Although con-
temporary CNN models obtained significant performance
improvement, they only exploited the features extracted
from the last output layer for classification, which may be
insufficient for facial beauty prediction task.

2.2. Multiscale CNNs. Multiscale representation is a classic
concept in computer vision and has been widely used in
visual recognition [22], edge detection [23], and person
reidentification [24]. Typical approaches train a CNN using
features extracted from a single output layer. Instead,
multiscale CNN can train an output predictor using features
extracted from multiple layers, and this special structure has
more advantages.

Yang and Ramanan [25] used DAG-CNNs (directed
acyclic graph) to learn multiscale deep features and showed
the effective of both coarse and fine-grained classification
tasks. Li and Yu [26] utilized multiscale segmentation
instead of single segmentation and then computed the
visual saliency to boost the visual recognition performance.
Ma et al. [27] combined the feature representations of last
convolutional layers and early convolutional layers to
complement each other and improved the accuracy and
robustness of visual target tracking. Zhao et al. [28] adopted
multiscale feature maps to obtain richer information, and
the proposed SMSC (selected multiscale convolution

feature) obtained more compact deep representations.
Faraji et al. [29] presented a multiscale method on the
maximum response filter bank and the gradients of faces,
mitigating the effect of illumination variations in face
recognition systems.

For a CNN, the top layer encodes the high-level features,
such as semantic similarity; and the bottom layer encodes
the low-level feature, such as texture similarity. For facial
beauty prediction task, semantic information and texture
information are both critical. Hence, in this paper, we
proposed a multiscale architecture for facial beauty pre-
diction, which could combine both high-level and low-level
features. Experimental results show that the multiscale
structure could obtain more satisfying classification results.

2.3. Transfer Learning. Transfer learning [9] is a simple but
effective technique that can improve a network from one
domain (target domain) by transferring parameters from an
already trained related domain (source domain). It is es-
sential to adjust the weight of data in the source domain for
use in the target domain discriminately. Since the pretrained
model already contains a lot of basic information, transfer
learning can achieve better performance than the scratch
network. -e difference between traditional machine
learning and transfer learning is illustrated in Figure 2.
Transfer learning can address the sample deficient problem
of a small database, improving the model learning perfor-
mance, which is desirable for our task.

Many research found transfer learning is truly beneficial.
Lu et al. [30] designed a framework, SFTL (source free
transfer learning), to improve the text classification per-
formance. Zhao et al. [31] used active transfer learning to
realize the cross-system recommendation. Zhu et al. [32]
adopted transfer learning to improve the image classifica-
tion. Yosinski et al. [33] verified that the transferred pa-
rameter from almost any number of layers can produce an
improvement to target domain task even after fine tuning to
the target database. Shelhamer et al. [34] transferred some
contemporary classification network’s parameters to a fully
convolution network by fine tuning in the segmentation
task. Shin et al. [35] examined when and why transfer
learning from pretrained ImageNet could be useful for
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Figure 1: -e whole framework of this paper.
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image recognition. Girshick et al. [36] adopted a transfer
learning method to address the problem of inadequate
model performance caused by the deficiency of training data
for object detection performance.

In this paper, transfer learning method is utilized to
obtain low-level features from the source domain and speed
BeautyNet converge to an optimal solution. Extensive ex-
periments proved that transfer leaning can alleviate the
overfitting phenomenon to some extent, improving the final
classification accuracy and the Pearson correlation co-
efficient of facial beauty prediction.

3. Network Architecture

In this section, we first introduce the multiscale architecture
based BeautyNet, which could have more expressive features
and less computation expenditure. -en, the compact MFM
(max-feature-map) activation function was introduced,
which can not only lighten the network but also accelerate
the network convergence. -us, BeautyNet could improve
the model performance finally.

3.1. BeautyNet. For the facial beauty prediction task, with a
large interclass variance, contemporary CNN models only
exploit the features extracted from the last output layer, as
classification may be insufficient. Multiscale CNN features
have been widely used in visual recognition [37], object
detection [38], and visual tracking [39] due to their diversity.
For multiscale connection, the top convolution layers en-
code high-level beauty information of facial parts, and such
representations are robust to significant appearance varia-
tions, while bottom layers can capture the low-level beauty
detail information of facial images, such as the object shapes

or parts which may be important for facial beauty prediction
task. Fusing multiple layers output feature, the diversity of
the deep features will lead the model to achieve a better
classification performance.

In this paper, we proposed BeautyNet to further improve
the facial beauty prediction performance. Based on Beau-
tyNet, we extract deep features from multiple CNN layers;
these high-level and mid-level features were fused together
for the final classification.

-e architecture of the proposed BeautyNet is illustrated
in Figure 3, and the parameter setting is shown in Table 1.
-is CNN model is constructed by 11 convolution layers,
MFM activation functions, 7 max-pooling layers, 3 nor-
malization layers, 1 dropout layer, and 2 fully connected
layers. -e input image of the network is 120×120 RGB
images from LSFBD. In the training stage, we also mirror
and shuffle images. -e MFM activation function and max
pooling layer are utilized before convolutional layers. -e
Fc1 layer is a 512-dimensional facial beauty representation.
And, the Fc2 layer serves as the input of Softmax cost
function, and the number of output feature map set as the
number of facial beauty categories.

-e multiscale connection could achieve deep features
with different resolutions and scales, render the network has
more adjustable parameters, and extend the learning ability,
leading BeautyNet to achieve the highest facial beauty
prediction performance. Although themultiscale structure is
valid, the multiscale connection will also bring much pa-
rameter calculations. Hence, in order to lighten the multi-
scale network, we also adopted MFM (max-feature-map)
activation function instead of the common one, such as
ReLU, which can obtain more sparse gradients and compact
representation simultaneously. Owing to MFM’s better
characters, the model is lightened and the training

Learning system Learning system

Training items

(a)

Learning system

Learning systemKnowledge

Training items

(b)

Figure 2: (a) Traditional machine learning vs. (b) transfer learning.
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convergence speed is faster. We compared the proposed
model with the state-of-the-art methods, and experimental
results validate its effectiveness.

Our contribution to the network structure is mainly
embodied in the following three aspects:

(1) -e convolution kernels of the network in this paper
only use three small values, 1× 1, 3× 3, and 5× 5.-e
smaller convolution kernel size can effectively reduce
the computation cost and obtain a lighten network.

(2) -e MFM activation function after each convolution
layer can obtain not only sparse gradient but also
compact feature representation. -e number of in-
put feature maps will reduce by half after the MFM
activation function, greatly reducing the computa-
tion of network parameters. A suitable activation
function will make the model converge faster.

(3) Before the fully connection layer, we design a
multiscale structure. -e BeautyNet gives the highest
performance because it has a large number of tunable
parameters as compared to others and it covers
features at different resolutions and scales.

3.2. Max-Feature-Map Activation Function. -e activation
function introduces nonlinear elements to CNN, making it a
powerful nonlinear fitting capability. Nowadays, there are
various activation functions available, such as Sigmoid,
Tanh, and ReLU. -ese activation functions are well known
because of robust optimization in network training, but they
are also resented by researchers for their vulnerability to
vanishing gradient. When the vanishing gradient phe-
nomenon appears, the CNN training will be destroyed
because of which the convergence of CNN will be slowed
down or even fail.

To alleviate this problem, we adopted MFM (max-
feature-map) activation function, which has a sparse
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Figure 3: -e architecture of BeautyNet.

Table 1: -e proposed BeautyNet architecture dimensions.

Name Filter size/stride,
pad Output size No. of parameters

Input — 120×120× 3 —
Conv1 5× 5/1, 2 120×120× 96 7296
MFM1 — 120×120× 48 —
Pool1 2× 2/2 60× 60× 48 —
Conv2 1× 1/1 60× 60× 96 4704
MFM2 — 60× 60× 48 —
Conv3 3× 3/1, 1 60× 60×192 83136
MFM3 — 60× 60× 96 —
Pool3 2× 2/2 30× 30× 96 —
Conv4 1× 1/1 30× 30×192 18624
MFM4 — 30× 30× 96 —
Conv5 3× 3/1, 1 30× 30× 384 332160
MFM5 — 30× 30×192 —
Pool5 2× 2/2 15×15×192 —
Conv6 1× 1/1 15×15× 384 74112
MFM6 — 15×15×192 —
Conv7 3× 3/1, 1 15×15× 256 442624
MFM7 — 15×15×128 —
Conv8 1× 1/1 15×15× 256 33024
MFM8 — 15×15×128 —
Conv9 3× 3/1, 1 15×15× 256 295168
MFM9 — 15×15×128 —
Pool9 2× 2/2 8× 8×128 —
Conv10 1× 1/1, 0 8× 8× 512 66048
MFM10 — 8× 8× 256 —
Conv11 1× 1/1 8× 8× 2048 526336
MFM11 — 8× 8×1024 —
Res1 — 8× 8×1152 —
Pool12 2× 2/2 4× 4× 256 —
Pool13 2× 2/2 4× 4×128 —
Pool14 2× 2/2 4× 4×128 —
Fc1 — 1× 1× 512 786944
MFM12 — 1× 1× 256 —
Drop1 — 1× 1× 256 —
Fc2 — 1× 1× 5 1280
Total 2671456
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gradient and compact representation simultaneously. It is
worth noting that the MFM function is the combination of
activation function and dimension reduction operation.
MFM activation function divides the input feature map into
two parts randomly, then compares the neuron of two parts,
and preserves the maximum parts. Specially, given an input
convolution layer C ∈ Rh×w×2n, as is shown in Eq. (1), the
MFM activation function can be written as follows:

f
k
i,j � max

1≤k≤n
C

k
ij, C

k+n
ij , (1)

where the number of feature map in the input convolution
layer is 2n, 1≤ i≤ h, 1≤ j≤w. As is shown in Equation (1),
the output f via MFM activation function belongs to Rh×w×n.

According to Equation (2), the gradient of MFM acti-
vation function can be shown as

zf

z C
k′

�
1, if Ck

ij ≥Ck+n
ij ,

0, otherwise,

⎧⎪⎨

⎪⎩
(2)

where 1≤ k′ ≤ 2n and

k �
k′, 1≤ k′≤ n,

k′, n + 1≤ k′≤ 2n.

⎧⎨

⎩ (3)

-e MFM activation function can get sparse gradients,
where 50% gradients values are 0. -e input layer’s feature
maps were divided into two candidate neuron units A and B.
-eMFM activation layer is the maximum between A and B,
forming new feature maps and output. MFM activation
function which utilizes a statistics method can not only
obtain a sparse gradient but also a compact representation
and is important for classification tasks. Among them, sparse
gradients can fasten the convergence of the model and
compact representation can help reducing data dimensions
while maintaining model performance. -e structure of the
MFM activation function is illustrated in Figure 4.

4. Transfer Learning

Deep convolution neural networks are successfully used in
wide applications due to their ability to learn rich image
representations. However, large amounts of data are re-
quired to learn these features. For facial beauty prediction
database, the data amount is deficient, leading to the
overfitting phenomenon. Since facial beauty prediction and
face recognition tasks have different marginal probability
distribution and the same feature space, the network’s
performance could be improved by transfer learning.
Transfer learning is a method of transferring knowledge
from a related domain to a new problem. Transfer learning
strategy learns both low- and mid-level features from the
transferred domain, and thus requires a little amount of data
from the new domain to achieve higher performance. In this
paper, we adopted the strategy of transfer learning to
compensate the impact of small facial beauty database on the
performance of BeautyNet.-e experimental results indicate

the effectiveness of transfer learning. -e schematic diagram
of transfer learning is illustrated in Figure 5.

4.1. Definition of Transfer Learning. Given a source domain
DS and a target domain DT, which correspond to learning
task TS and TT, the purpose of transfer learning is to improve
the learning ability of target prediction function f(T(·)) in
DT using the knowledge of DS and TS, where DS≠DT or
TS≠TT.

More specifically, for facial beauty prediction task, the
source domain is defined as D � F, P(X){ }, where
F � f1, f2, . . . , fn  is a feature space with n dimensions, fi
is a feature, X � x1, x2, . . . , xn  is a facial beauty database,
and P(X) is the marginal probability distribution of X. For a
domain that is thought to be different, the feature spaces or
marginal probability distribution is different. -e task do-
main is defined as T � y, P(y ∣ X) , where y is the label
space and P(y ∣ X) is the classification model.

In this paper, we implement transfer learning as follows:

(1) Firstly, we adopted the proposed network (Beau-
tyNet, which only changes the output of the last fully
connected layer for specific classification task) to
train the face recognition tasks on CASIA-WebFace
database, and through continuous parameter opti-
mization, the net has obtained the state-of-the-art
face recognition performance on the LFW database.
-is step is to help the model learn the facial features
from a large-scale face database, which could contain
the generalization ability of CNN and help the model
to learn more discrimination deep features.

(2) Secondly, for network parameter initialization of
facial beauty prediction, we transfer the shallow
layer’s parameters, whereas other layers were
randomly initialized; then, the parameters of the
learned layer is frozen, and the hyperparameters of
BeautyNet are retrained on LSFBD until the model
converges to the optimal solution. Retraining the
high-level features of the model is aimed at getting
related features to our task. Specifically, when we
transferred the parameters of conv6, we will shut
the parameters update of the layer before it and
only open the parameters update of the layer after
it.

(3) Finally, we refrozen the shallow layer and adopted
the small learning rate to further fine tune the model,
until model convergence stability. -is step fine
tunes the entire network parameters slightly, to make
the model more suitable for the facial beauty pre-
diction task, and obtained the best performance.
Experimental results show performance improve-
ment of the BeautyNet when transfer learning
strategy is incorporated.

5. Experiments and Analysis

-e experiments were configured with a desktop computer
with an Inter3-6100, 3.70GHz CPU, 16GB RAM, and a
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single Nvidia GeForce GTX 1080 on a Windows 10 oper-
ating system. -e training and testing of the proposed
BeautyNet are based on the publicly available Caffe library
[40].

5.1. LSFBD. LSFBD is a large-scale facial beauty database
constructed by Zhai et al. [15], which is used in facial beauty
prediction as a benchmark. LSFBD contains 20,000 labeled
images, including 10,000 unconstrained male images and
10,000 unconstrained female images. In this database, each
facial beauty image has a label, that is to say, “1” is ex-
tremely unattractive, “2” means unattractive, “3” means
averages, “4” means attractive, and “5” is most attractive.
-e LSFBD images are selected from the website and
contained a variety of variations, such as age, expression,
angle, light, and occlusion. Moreover, the image quality is
also diverse and uneven, which makes it difficult to predict
the facial beauty.

In this paper, we focused on predicting female beauty
and only adopted 10,000 female images of LSFBD to verify
the effectiveness of our overall framework for our facial
beauty prediction task. For the convenience of subsequent
description, in the following content, we still called the
female part of LSFBD as LSFBD. Among LSFBD, category
“1” contains 948 female images, category “2” contains 1,149
female images, category “3” contains 3,846 female images,
category “4” contains 2,718 female images, and category “5”
contains 1,339 female images, which contain 10,000 images
totally. Figure 6 shows some examples of LSFBD; each
column of images belongs to the same category, and the
degree of beauty increases in turn. -e LSFBD distribution
histogram is illustrated in Figure 7.

5.2. Configuration of Training Parameters. Training pa-
rameters are set as follows:

(1) Prepare database, and divide the LSFBD into 9 :1 as
training and testing database, respectively. More
specifically, the training set randomly selected almost
90% images from each class. -e remaining images
compose the testing database.

(2) We select the initial learning rate of 0.001, adopt a
batch size of 32, then initialize the tunable network
parameters, and start the training of the network.

(3) During the training stage, the learning rate is set as
10 times smaller when the test accuracy is no longer
trending upwards, and training is continued until the
test accuracy is no longer increasing.

(4) -e test results were obtained by balancing the
model of test accuracy and stable loss.

5.3.1e Impact ofNetworkDepth. For deep neural networks,
depth is an essential element of learning more abstract and
robust representations. Numerous studies have demon-
strated that deeper representations have more effective
performance than insufficient ones. To evaluate the impact
of network depth and find the most suitable layer sets, we
compared the single-scale deep neural network with five,
seven, nine, and eleven convolutional layers, denoted as
NET-5, NET-7, NET-9, and NET-11, respectively. -e ex-
perimental result is shown in Table 2.

MaxSplit

Figure 4: Operation performed by the max-feature-map activation function.

CASIA-WebFace 
database

LSFBD 
database

Pretrain

Parameter transfer

Retrain

Classification results

Source domain Target domain

BeautyNetBeautyNet

Figure 5: Transfer learning schematic diagram.
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It can be seen from NET-5 to NET-9 that with the in-
crease of the depth, the classification performance of the
proposed network is improved gradually, where the per-
formance of classification from 64.36, 64.65, to 64.85, re-
spectively, while Pearson’s correlation coefficient is also
increased from 79.61, 79.20 to 80.20. With the increase of the
network depth, the performance showed a downward trend.
-e experimental results show that the network perfor-
mance can be improved by increasing the network depth
appropriately. However, for specific tasks and database size,
when the network depth exceeds a certain range, overfitting
phenomenon occurs and performance degrades. Hence, we

choose nine convolution layers to construct the proposed
network in this paper. Specifically, with two convolution
layers contained in the multiscale structure, the proposed
BeautyNet has a total of 11 convolution layers.

5.4. 1e Impact of Activation Function. -e multiscale net-
work structure adopted in this paper has improved the
performance to some extent, but it brings the computational
burden and makes the network difficult to converge.
-erefore, this paper used MFM activation function to re-
place the traditional activation function, such as ReLU,
Sigmoid, and Tanh, which could reduce the computational
complexity of themodel and speed up the convergence of the
model. To verify the effectiveness of multiscale network
structure on network performance via experiment, we re-
moved the multiscale structure of BeautyNet and named this
network as LightenNet.

MFM activation function has the effect of halving the
number of feature maps; the amount of network parameter
is reduced by half. For the fairness of experimental com-
parison, this section reduces the number of feature maps
before every activation function of BeautyNet and Light-
enNet. In this section, we performed different activation
functions to compare the parameters of themodel, the size of
the deep model, the speed of testing an image, and the
classification accuracy. In addition, in order to further an-
alyze the effect of different activation function, we visualized
all the convolution layers of LightenNet and BeautyNet, and
showed the visualization effectiveness of the first 25 feature
maps of each convolutional layer.

From Table 3, it can be seen that for the same network,
when different activation functions are used, the parameter
calculation amount and the model size are consistent, which
ensures the fairness of the comparison. When using
LightenNet (the first four experiments), with ReLU acti-
vation function, the classification accuracy is 62.79; however,
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Figure 6: Some female examples of LSFBD.
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Table 2: Classification and Pearson’s correlation coefficient results
under various numbers of convolution layers.

Proposed network
with different depths

Classification
accuracy (%)

Pearson’s correlation
coefficient

NET-5 64.36 79.61
NET-7 64.65 79.20
NET-9 64.84 80.20
NET-11 62.21 79.05
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LightenNet cannot converge with Sigmoid or Tanh activa-
tion function; by using MFM activation function, Light-
enNet could converge and reach a 64.36 classification
accuracy rate, which could perform better and faster than the
other three activation functions. When adding multiscale
structure (the last four experiments adopted BeautyNet),
with ReLU or Tanh activation function, their classification
accuracy all are 63.48; however, BeautyNet still cannot
converge with Sigmoid activation function; by adopting
MFM activation function, BeautyNet could reach a 64.84
classification accuracy rate, which could perform better and
faster than the other three activation functions. It can be seen
that for the same network, the MFM activation function has
gained a greater advantage, showing its effectiveness; by
adopting a multiscale structure, BeautyNet could achieve
higher performance than LightenNet. Since the multiscale
structure provides more facial beauty information, the
BeautyNet with Tanh activation function could converge.
MFM activation function divided the input feature map into
two parts and output the maximum parts of it, which could
reduce the nonsalient part of the feature map and remove the
redundancy of feature representation.

To explore the specific effect of each convolution layers
and analyze the situation of training, we visualized the
feature map of LightenNet and BeautyNet with different
activation function, as shown in Figure 8. For LightenNet, an
intuitive phenomenon is that the feature maps of each
convolutional layers using 8(a) ReLU and 8(d) MFM as
activation functions are clear and have strong in-
terpretability. However, it can be found that using 8(b)
Sigmoid and 8(c) Tanh as activation functions, the feature
maps after conv2 and conv6 are not interpretable, re-
spectively. Since the network cannot learn useful in-
formation in the subsequent convolutional layer, the
network cannot converge. By utilizing multiscale architec-
ture with 8(e) Relu, 8(g) Tanh, and 8(h) MFM as activation
function, the feature maps contain more information,
leading the model to converge better. Specifically, by
adopting multiscale architecture (adds more beauty in-
formation), the network with Tanh activation function could
converge, which shows the effectiveness of multiscale
structure. -e performance of the network learning facial
beauty prediction task under different activation functions is
clearly in feature map shown as Figure 8. It can be seen that
due to the sparse gradient of the MFM activation function,
the compact representation of the network could avoid

gradient disappearance phenomenon effectively, obtaining
stronger learning performance.

5.5.1e Impact ofMultiscale Architecture. -e existing facial
beauty predictionmethod only extracts features from the final
output layer for classification; however, semantic information
and textural information are both important for our task.
-us, we adopted a multiscale architecture which could fuse
low-level and high-level features to obtain deep features with
different resolutions and scales. -e diversity of the fused
features could render with more robustness and stronger
classification ability. -e performance comparison results are
shown in Table 4. Among them, LightenNet is the model of
removing multiscale structure on BeautyNet.

From Table 4, compared with LightenNet, BeautyNet
increased 0.48% of classification accuracy, and 0.79 of the
Pearson correlation Ccoefficient, respectively. Although the
performance of the network is improved after the in-
corporation of the multiscale structure, the computation of
network parameters is also increased. -erefore, before the
multiscale structure, MFM is adopted as the activation
function behind each convolutional layer to compress the
model parameters by at least half, thus greatly reducing the
possibility of a long time to training and slow convergence
caused by excessive calculation of model parameters.

5.6. Transfer Learning vs. Scratch. Researches show that for
many deep neural networks trained on natural images all
have one thing in common: the bottom layers learned the
basic texture and color information, which appeared not to
be specific to a particular database and tasks, so they could
also be transferred to similar or different tasks to improve
their performance. -e top layer is adaptive to the specific
task, and different tasks have different specific information.
For small database task, to alleviate the overfitting phe-
nomenon and further improve the model’s prediction
performance, we adopted transfer learning strategy for
utilizing information in another source task.

Specifically, in this paper, the BeautyNet will be pretrained
on the CASIA-WebFace database for face recognition task
first, then parameters of this model were transferred for facial
beauty prediction task, which could help BeautyNet obtain
more related information, and finally the model will be
retrained on LSFBD adaptive for facial beauty prediction task.
To specifically observe the improvement of performance of

Table 3: Comparison of network parameters using different activation functions.

Proposed network Activation function No. of parameters Storage space (M) Time (ms/frame) Classification accuracy (%)

LightenNet

ReLU

1357664 20.9

224.57 62.79
Sigmoid 234.64 —
Tanh 233.90 —
MFM 180.78 64.36

BeautyNet

ReLU

2671461 55.2

287.94 63.48
Sigmoid 282.18 —
Tanh 291.10 63.48
MFM 203.68 64.84

— indicates that the model does not converge.

Computational Intelligence and Neuroscience 9



facial beauty prediction task by transfer learning, we
performed transferring parameters on all convolution
layers of the network separately, among which multiscale
structure was transferred as a whole to observe the effect of

multiscale structure on network performance. For trans-
ferring parameters of each convolution layers, we retrained
the model sufficiently to achieve the optimal performance.
Table 5 shows the specific results of the proposed network
architecture validation on the LFW database which is
trained in CASIA-WebFace database. Table 6 shows the
comparison between the scratch training and transfer
learning training, and classification accuracy and Pearson’s
correlation coefficient are adopted for performance mea-
surement. Among them, the larger the Pearson correlation
coefficient, the greater the correlation between prediction
labels and ground truth labels.

Conv10 Conv11

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv10 Conv11Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv10 Conv11Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv10 Conv11Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9

Conv1 Conv2 Conv3 Conv4 Conv5
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Conv6 Conv7 Conv8 Conv9

Figure 8:-e visualization of the convolutional layers between different activation functions. LightenNet with (a) ReLU activation function,
(b) Sigmoid activation function, (c) Tanh activation function, and (d) MFM activation function. BeautyNet with (e) ReLU activation
function, (f ) Sigmoid activation function, (g) Tanh activation function, and (h) MFM activation function.

Table 4: Performance comparisons with and without multiscale
structures.

Proposed
network

Classification
accuracy (%)

Pearson’s
correlation
coefficient

LightenNet 64.36 79.41
BeautyNet 64.84 80.20
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From Table 5, the proposed network could reach a
99.23% face recognition rate on the LFW database, which
has outperformed the mainstream methods of DeepFace,
DeepID2+, FaceNet, and VGG networks 1.46%, 1.96%,
52.13%, and 0.53%, respectively. Hence, the proposed net-
work has learned enough facial detail information on the
large-scale face database. For the facial beauty prediction
task, the facial information learned from the face recognition
task may be used to alleviate the impact of the lack of facial
beauty data on the model performance.

From Table 6, we found that compared to the 64.84%
accuracy rate of scratch, results via the proposed transfer
learning are better, which is consistent with the previous re-
sults. -e reason for this phenomenon is that no matter which
layer is transferred, it will have more information before
training the LSFBD than scratch, which is just trained by using
the LSFBD. Among them, transferring the parameters of
multiscale structure obtained the highest classification accu-
racy of 67.48%, which is 2.64% higher than the scratch one. At
the same time, we also find that the accuracy of transferring Fc1
layer is only 65.53%, which is lower than transferring multi-
scale structure. -is is because the convolution layers near the
bottom of CNN network learn some texture and color in-
formation, and is not specific to a certain task. -erefore,
transferring the weighting parameters of these layers maxi-
mum is useful to help the small database task to use the related
information. However, the convolution layers near the top of
CNN network learn the classification information, which
should take appropriate adjustment for different tasks. Spe-
cifically, transferring the parameters of these layers may not be
as straightforward as using random methods to initialize these
layers. Hence, when we adopt transfer learning to improve the
performance of the network, we should better choose the
bottom layer parameters to transfer, rather than top layers.

For the Pearson correlation coefficient, transfer learning
method could increase 80.20 of the scratch one to 83.54.
Although transferring the parameters of the Fc1 layer

obtained the highest Pearson correlation coefficient and
showed a strong correlation between predict label and ground
truth label, transferring the parameters of conv1, conv2, and
conv3 layers obtained lower correlation. In general, the
method of transfer learning was adopted to achieve a higher
Pearson correlation coefficient than the scratch one.

5.7. Performance Comparison. In order to verify the effec-
tiveness of the proposed BeautyNet, in this section, we
compared its performance with that of other existing al-
gorithms, and the comparison results are shown in Table 7.
In Table 7, besides the proposed LightenNet, BeautyNet, and
our previous method [15], there are four kinds of CNN
models which reached outstanding performance in other
research fields.

In Table 7, the first five experimental results are from
[15], and the K-means method using multiscale images
achieves the highest performance. -is shows that the
multiscale idea is beneficial to network performance. -e
next eight experimental data were adapted from NIN_I-
magenet [45], DeepID2 [46], GoogLeNet [47], and
VGG_CNN_S [48] network for facial beauty prediction,
and shows the classification accuracy and Pearson corre-
lation coefficient on the LSFBD. For the completeness of
the experiment, we also added the performance of these
four networks with transfer learning. -e transfer learning
method used here is consistent with that adopted by
LighenNet and BeautyNet. For these four networks, the
transfer learning method increases the classification ac-
curacy by 4% to 5%, and the Pearson correlation coefficient
by 2% to 3%, which shows that transfer learning could
improve network performance. Due to the deep CNN
architecture, however, deep network NIN_Imagenet,
DeepID2, GoogLeNet, and VGG_CNN_S all achieve better
performance than the method we proposed in [15]. Al-
though these networks all achieved excellent performance

Table 5: Model validation on the LFW database.

Network DeepFace [41] DeepID2+ [42] FaceNet [43] VGG [44] Proposed network
Classification accuracy (%) 97.77 97.27 47.1 98.70 99.23

Table 6: Prediction accuracy and Pearson’s correlation coefficient for transferring different layers.

Transferring proposed network 1 2 3 4 5 Classification accuracy (%) Pearson’s correlation coefficient
Scratch 77.00 29.00 72.00 58.00 56.00 64.84 80.20
Transferring conv1 66.00 39.00 75.00 56.00 55.00 65.92 79.00
Transferring conv2 62.00 34.00 75.00 57.00 50.00 65.82 79.26
Transferring conv3 77.00 30.00 74.00 52.00 53.00 65.52 79.37
Transferring conv4 70.00 27.00 72.00 59.00 56.00 65.53 80.44
Transferring conv5 66.00 40.00 71.00 61.00 58.00 65.92 81.07
Transferring conv6 74.00 25.00 74.00 54.00 58.00 64.90 80.91
Transferring conv7 69.00 36.00 73.00 57.00 55.00 66.02 81.46
Transferring conv8 72.00 37.00 72.00 55.00 51.00 65.23 80.35
Transferring conv9 70.00 25.00 80.00 62.00 39.00 65.82 81.59
Transferring multiscale layer 68.00 32.00 73.00 59.00 62.00 67.48 82.96
Transferring Fc1 layer 73.00 28.00 74.00 53.00 54.00 65.53 83.54
1, 2, 3, 4, and 5 show the classification accuracy for each specific category.

Computational Intelligence and Neuroscience 11



in the mainstream recognition tasks, these network
structures were too complex and deep for the facial beauty
prediction tasks and are not specifically designed for our
task, so the satisfying classification result was not achieved.
Experimental results show that both LightenNet and
BeautyNet with transfer learning are obviously superior to
the state-of-the-art networks. BeautyNet designed in this
paper has a simple structure and a moderate depth of
convolution layers. -e deep features used for the final
classification combine semantic information and texture
information simultaneously, with diversity and compact-
ness, achieving better performance. It also inspired us;
when using CNN to extract features, the depth of the
network and related parameters should be adjusted
according to the sample size of the training database in
order to achieve better performance.

6. Conclusion

In this paper, we proposed a BeautyNet for unconstrained
facial beauty prediction task. Different from the previous
CNN model for facial beauty prediction, the multiscale
which integrates the different scales features is presented
here to obtain deep features, which is more effective for our
task. In order to alleviate the computational burden of
multiscale architecture, MFM activation function is
adopted as a nonlinear unit for lightening the network and
acceleration network convergence. Furthermore, transfer
learning strategy is adopted to alleviate the overfitting
phenomenon and achieved robust performance for un-
constrained facial beauty prediction with limited labeled
data. Extensive experiments performed on LSFBD show
that the proposed scheme outperforms other state-of-the-
art methods, which can obtain a 67.48% classification

accuracy rate on the LSFBD. In our future work, we will
further explore the specific brain inspiration and visual
attention mechanism for unconstrained facial beauty
prediction task.
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