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Abstract Natural biomacromolecules have attracted increased attention as carriers in biomedicine in
recent years because of their inherent biochemical and biophysical properties including renewability,
nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent
advances in our understanding of the biological functions of natural-origin biomacromolecules and the
progress in the study of biological drug carriers indicate that such carriers may have advantages over
synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this
review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-
based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in
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Figure 1 The properties and applica
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recent laboratory development are summarized. Finally the current challenges and future prospects of
present biological carriers are discussed.
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1. Introduction

The development of carrier systems for effective delivery of
therapeutic compounds or imaging agents is crucial in the battle
against various diseases. The ideal carriers should be safe, efficient
and have optimal bioavailability. In addition, stability, nontoxicity
and non-immunogenicity, and targeting ability to a specific site are
very important.

Miscellaneous drug carriers including liposomes, synthetic
polymeric micelles, hydrogels, magnetic nanoparticles, micro-
spheres and microcapsules have been developed in recent years
tions of biomacromolecule-based c
for the diagnosis and treatment of disease1–8. However, it is very
difficult to identify an ideal drug carrier system. The shortcomings
of the above carrier systems are obvious: liposomes have poor
stability, high cost, low drug loading content and undesired release
of hydrophobic drugs1,9. The toxicity and nondegradable property
of some nano-materials also limit their applications as drug
carriers10.

Natural-origin biomacromolecules perform a diverse set of
functions in their native setting. For example, polysaccharides
function in membranes, intracellular communication and as storage
sites, whereas proteins function as structural materials, transport
arriers and structures of representative proteins and polysaccharides.
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vehicles, nutrients and catalysts. Transport proteins as carriers for
delivery of nutrients and other necessary molecules are of special
interest. Inspired by such natural processes in organisms, scientists
started to utilize natural and biological macromolecules, including
proteins, polysaccharides, and lipoproteins, for the delivery of
drugs and tissue engineering11–13. Biomacromolecule-based drug
carriers are nontoxic, non-immunogenic and have high drug
loading content, good biocompatibility and targeting ability12.
Meanwhile, they are also capable of controlled and sustained drug
release13–16. Many meaningful designs have been reported using
biological carriers, some of which are already approved for clinical
use. Biomacromolecules used as carriers include proteins (albu-
min, transferrin, lipoproteins, silk fibroin, collagen, keratin) and
polysaccharides (chitosan, cyclodextrin, hyaluronic acid, heparin
and pectin). The structural diagrams of these carriers are shown in
Fig. 1. These biomacromolecules can be naturally obtained from
animals and plants in abundant amounts and are renewable
resources. They have good affinity to organisms and weak immune
rejection, and can be degraded by in vivo enzymes; the metabolites
also have low toxicity to organisms17–19. Biomacromolecule-based
carriers have been reported in the form of prodrugs, drug
conjugates, nanoparticles, microcapsules, hydrogels and tissue
engineering scaffolds3,11,12. The use of biomacromolecule-based
carriers has been shown to improve the pharmacokinetics of the
payloads and to reduce systemic toxicity and immunogenicity20–22.
Furthermore, the hydroxyl, amine and carboxyl groups on the
chains of these biomacromolecules can be utilized for chemical
modification, making them of great significance in biomedical
field.

In this review, we focus on advances in development of natural
biomacromolecule-based carriers for drug delivery. First, the
biochemical and physiological properties of the carriers will be
presented by class. Secondly, some representative examples of
biomacromolecule-based carriers with applications in clinical use
or in development will be summarized. Finally, the existing
challenges and prospects of the natural biological carriers will be
discussed.
2. Natural proteins as carriers for drug delivery and tissue
engineering

2.1. Albumin

2.1.1. Properties of albumin
Albumin is the most abundant plasma protein (35–50 g/L human
serum) with a molecular weight of 66.5 kDa. The average half-life
of human serum albumin (HSA) is about 19 days23. HSA plays
several essential biological roles24,25. It maintains colloid osmotic
blood pressure, transports metal ions, insoluble small molecules
and nutrients (including long chain fatty acids) to various organs.
HSA binds many drugs and impacts the distribution, metabolism
and therapeutic effects of such drugs. Finally, HSA degrades into
amino acids, providing nutrition to surrounding tissues and cells.
Since albumin has a molecular size of ~7.2 nm, which is above the
renal clearance threshold, the blood circulation time of albumin is
prolonged compared to other small molecules. In addition,
albumin can be internalized by cells through caveolin-1-mediated
gp60 receptor, can bind to the neonatal Fc receptor (FcRn) in
circulating endosomes, and is known to enter the recycling
pathway, consistent with the long half-life of this protein26–31.
2.1.2. Accumulation of albumin in solid tumors and inflamed
joints
It was first reported in 195432 that tumors were able to trap plasma
proteins and utilize their degradation products for proliferation.
During the next few years, the “EPR” (enhanced permeability and
retention) effects of tumors were discovered33–35, which provided
a rationale for choosing suitable macromolecular carriers. Since
1990, many studies characterized the increased distribution of
albumin in tumor and inflamed tissues. Stehle et al.36 proposed
albumin to be the major source of energy and nutrients for tumor
growth as an explanation of the high albumin accumulation in
tumor sites.

Similarly, studies reported since the late 1990s37–46 found that
SPARC (secreted protein acidic and rich in cysteine, known as
osteonectin earlier) is overexpressed in stroma and various
advanced cancer types including breast, lung, pancreatic cancers
and melanoma. SPARC modulates cellular interactions with the
extracellular matrix and is reported to have a high affinity for
albumin, possibly contributing to the accumulation of albumin in
tumors and inflamed tissues47.

As a natural biomacromolecule, albumin posseses numerous
positive characteristics of an ideal carrier for drug delivery48,49.
These include good water-solubility, ready availability, biodegrad-
ability, lack of toxicity, minimal immunogenicity, and its prefer-
ential accumulation in tumor and inflamed tissues. Notably, both
exogenous and endogenous albumin can act as carriers48.

Generally, albumin can carry drugs through two main mechan-
isms: albumin–drug conjugation and drug encapsulation into
albumin nanoparticles. Three forms of albumin–drug conjugates50

include chemically-coupled exogenous albumin to drugs, endo-
genous albumin binding to prodrugs, and albumin-fusion proteins.
The second albumin carrier methodology uses physical interac-
tions to encapsulate drugs into albumin nanoparticles51. Both
methods demonstrate positive drug delivery features. Whereas the
chemically modified albumin can improve the pharmacokinetics of
drugs, encapsulated formulations may improve stability and
solubility.
2.1.3. Drug albumin conjugates and albumin binding prodrugs
The first drug albumin conjugate entering phases I/II clinical
studies was a methotrexate–albumin conjugate (MTX–HSA)52,53.
MTX was directly conjugated to the lysine residues of HSA
through an amidation reaction. Stehle et al.54,55 synthesized MTX–
albumin conjugates bearing 1, 5, 7, 10 and 20 molecules of MTX
on average and found that the loading rate determines tumor
targeting properties of MTX–albumin conjugates in rats. Only
loading rates of close to 1 mol of the cytostatic drug MTX/mol of
albumin offered optimal conditions for targeting MTX–albumin
conjugates into rodent tumors, which formed the basis for further
preclinical and clinical research52. These conjugates enjoy the
same favorable tumor targeting properties of albumin, e.g., high
tumor uptake rates, low liver uptake rates and a very long
biological half-life. Since MTX is the most common drug used
in the treatment of rheumatoid arthritis, MTX–HSA conjugates
were also evaluated in a human model of rheumatoid arthritis
using severe combined immunodeficient mice which were co-
transplanted with human cartilage. Synovial fluid from patients
with rheumatoid arthritis, synovial fibroblast invasion and cartilage
degradation were reduced by MTX–HSA in vivo.

Encouraged by the previous results, Kratz et al.56 focused their
work on a prodrug concept that utilize endogenous albumin as a



Figure 2 Schematic illustration of the in vivo process of ABD-based indirect targeting of FcRn in tumor tissues.
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drug carrier. In this strategy, the prodrug, (6-maleimidocaproyl)
hydrazone derivative of doxorubicin (DOXO-EMCH) was
designed to bind rapidly and specifically to the cysteine-34 residue
of circulating serum albumin after intravenous administration
thereby forming a macromolecular drug complex in blood.
DOXO-EMCH demonstrated dramatically improved therapeutic
efficacy of doxorubicin in preclinical tumor models. The phase I/II
study of DOXO-EMCH also gained favorable results in cancer
patients57,58.

Exploiting endogenous albumin as a carrier would have several
advantages over exogenous albumin drug conjugates. The former
would avoid the use of commercial (possibly pathogenic) albumin.
In addition, the albumin-binding prodrugs could be chemically
well-defined and based on straightforward organic chemistry.
Manufacturing processes would be inexpensive and applicable to
a wide range of drugs. Regulatory analytical requirements would
be comparable to any other low-molecular weight drug candidate.

Besides low-molecular weight drugs, peptides and proteins can
also be conjugated to albumin. Byeon et al.59 presented a HSA
conjugate linked to tumor necrosis factor-related apoptosis-indu-
cing ligand (TRAIL) via a bifunctional PEG derivative. The
prepared HSA–TRAIL had a size of 15.4 nm and exhibited good
bioactivity in MiaPaca-2 cells and mouse splenocytes. In collagen-
induced arthritis (CIA) mice, HSA–TRAIL showed superior
targeting to inflamed tissues compared with naive TRAIL. The
circulating half-life for HAS–TRAIL was more than 26 times
longer than that of TRAIL. Furthermore, HSA–TRAIL showed
superior anti-inflammatory efficacy in CIA mice.
2.1.4. Albumin fusion proteins
As an alternative to chemically coupling albumin to drugs, the
application of genetic engineering allows the DNA of albumin and
the therapeutic proteins or peptides to be expressed as one
continuous open reading frame typically in yeast or mammalian
cells as albumin fusion proteins60. Albumin-fusion technology
represents a simple and flexible alternative platform for the
productions of proteins with extended circulatory half-lives. Over
the last 20 years, various peptides and proteins with diverse
functions as well as biochemical/biophysical properties have been
genetically fused to albumin including small bioactive peptide
hormones (such as glucagon-like peptide-1 and β-natriuretic
peptide), growth factors (erythropoietin and granulocyte colony-
stimulating factor), coagulation factors (FVIIa, FIX, and von
Willebrand factor), anticoagulants (hirudin, infestin and barbourin)
cytokines (IL-2, interferon (INF)-α-2b, INF-β), hormones (growth
hormone and insulin), enzymes (human betyrylcholinesterrase),
redox modulators (thioredoxin) and a variety of antibody frag-
ments and alternative antibody scaffolds61.

Albinterferon-α-2b, a recombinant polypeptide composed of
INF-α-2b genetically fused to human albumin, has an extended
half-life and early evidence indicates that it is efficacious and well
tolerated. Albinterferon-α-2b has been evaluated in phase III
clinical trial and its safety and efficacy are thus far confirmed.
Thus, albinterferon-α-2b has the potential to become an important
therapy for chronic hepatitis C and other diseases60. This platform
could potentially be used to produce a broad spectrum of bioactive
molecules and this approach is not restricted by molecular size or
biological activity.

Noncovalent association of macromolecules with endogenous
albumin has been explored as an alternative to direct fusion with
albumin. It was reported that albumin binding domain (ABD)
derived from streptococcal protein G is composed of 46 amino
acids forming a left-handed three-helix bundle and shows very
strong affinity to HSA, bovine serum albumin (BSA) and mouse
serum albumin (MSA)62,63. The use of endogenous albumin as a
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carrier for ABD-fused proteins is attracting more and more
attention. Andersen et al.64 designed ABD-(ZHER2:342)2 and
(ZHER2:342)2-ABD fusion proteins and found that protein geneti-
cally fused to ABD does not interfere with shFcRn binding of
HSA. Thus, the ABD fusion technology is a widely applicable
strategy for extending circulatory half-life and improving bioavail-
ability of protein and peptide drugs. Li et al.65 used ABD to
modify the N-terminal of hTRAIL and got ABD-hTRAIL fusion
protein, which could quickly and specifically bind to plasma
albumin once administrated. The ABD-hTRAIL fusion protein
utilized endogenous albumin as a carrier to extend the circulatory
half-life of hTRAIL, and the half-life of ABD-hTRAIL was 40–
50-fold greater than that of hTRAIL. Tumor uptake of ABD-
hTRAIL was also significantly increased. Thus the use of
endogenous albumin as a drug carrier is an attractive and efficient
strategy for tumor therapy. Fig. 2 illustrates the in vivo process of
ABD-based indirect targeting of FcRn in tumor tissues.

Another ABD consisting of 52 amino acid residues from protein
Zag was also reported to bind human, rat, mouse, horse and dog
serum albumin66. Cantante et al.67 has developed a Zag ABD
fused with an anti-TNFα VHH camelid derived sdAb. The fusion
protein showed specific binding to human, rat and mouse serum
albumins and exhibited a strong increase in circulating half-life in
mice to approximately 39-fold compared with the parental sdAb.

In conclusion, ABD-fused proteins utilizing endogenous albu-
min as a carrier can be potentially used as a universal method to
improve the pharmacokinetics properties and therapeutic effects of
protein and protein-derived drugs.
2.1.5. Albumin microspheres and nanoparticles
Albumin microspheres are generally prepared by chemical cross-
linking or by addition of an organic solvent and stabilization at
elevated temperatures. 99mTc macroaggregated albumin has been
developed for clinical diagnosis for various disease including
sentinel node detection in breast cancer and other solid tumors, leg
edema, protein-losing enteropathy and rheumatoid arthritis68.

Abraxane®, one of the commercialized nanoparticle drug
delivery systems, is an albumin-bound form of paclitaxel (PTX)
which uses nab-technology developed by American Bioscience,
Inc.69. This formulation, consisting of water-soluble nanoparticles
with a diameter of ~130 nm, is the first albumin-based delivery
system approved by the US FDA for the treatment of metastatic
breast cancer (2005), metastatic non-small cell lung cancer
(NSCLC) (2012), and metastatic pancreatic cancer (2013).

Inspired by the success of Abraxane®, albumin-based nano-
particles as a carrier for drug delivery have stimulated great
interest. Choi et al.70 fabricated inhalable TRAIL/Dox HSA
nanoparticles with a diameter of ~340 nm by conjugating Dox
onto albumin and adsorbed with apoptotic TRAIL protein. The
TRAIL/Dox HSA-NP displayed synergistic cytotoxicity and
apoptotic activity in H226 lung cancer cells. Later, they developed
a new nanoparticle formulation of TRAIL/Dox HSA NPs with a
diameter of 60–120 nm by using the nabTM technology. The
TRAIL 1.0%/Dox HSA NPs had markedly greater apoptotic
activity than Dox HSA NPs in HCT116 tumor-bearing BALB/c
nu/nu mice71.

Recently our group has developed a Wpep-conjugated cross-
linked HSA nanoparticle loaded with PTX for efficiently targeting
therapy to metastatic breast cancer72, the cross-linked biomimetic
HSA nanoparticle is considerably stable under physiological
conditions while it realizes redox-responsive drug release in
intracellular environment with high concentration of glutathione
(GSH) (~10 mmol/L). The Wpep–HSA NP showed significant
accumulation at tumor site and exhibited stronger antitumor
efficacy.

As the most widely studied biological carrier, albumin has
achieved successful application in the clinic. The albumin–drug
conjugates, albumin binding prodrugs, albumin nanoparticles and
albumin fusion proteins or peptides in clinical studies are
summarized in Table 1.
2.2. Transferrin

2.2.1. Properties of transferrin
Human transferrin (Tf) is an iron-binding protein containing 679
amino acids and has a molecular weight of 79.57 kD. Tf carries
iron into cells expressing Tf receptor (TfR). Tf is biodegradable,
nontoxic and non-immunogenic and can achieve site-specific
targeting via TfR expressed on cell surface73. As a result, Tf is
usually used as a targeting ligand in drug delivery systems. Many
Tf/TfR-mediated drug delivery systems to target tumors have been
explored due to the overexpression of transferrin receptors on
malignant tumor cells.
2.2.2. Transferrin drug conjugates
Chemical conjugation has been a frequent approach for transferrin
to delivery drugs. Gong et al.74 synthesized two kinds of trans-
ferrin conjugates: Tf conjugates with monomeric artemisinin
(ART) and an ART dimer, respectively. Both the ART–Tf and
dimer–Tf conjugates maintained the hydrophobic ART in solution
and showed better targeting efficacy against cancer cells compared
to commonly used chemotherapeutic anticancer drugs. Szwed et
al.75 developed a doxorubicin–transferrin (DOX–TRF) conjugate
and investigated its toxicity in human leukemia cells. The DOX–
TRF conjugate exhibits higher toxicity in comparison to free drugs
and induces significant changes in the GSH antioxidant system in
human leukemia cell lines. In addition, Tf–cisplatin, Tf–chloram-
bucil, Tf–mitomycin C, Tf–daunorubicin, and Tf–gemcitabine
have also been developed, all of which displayed enhanced
cytotoxicity to tumor cells and reduced toxicity to normal tissues
compared to the free drugs76,77. However, it has been reported that
the half-life of the internalized Tf is only ~8 min and Tf is rapidly
cycled back to the cell surface and released78. If the chemical bond
between Tf and drug molecules is not cleaved in the intracellular
environment during this 8 min, the loaded drugs will be exported
along with Tf, leading to low intracellular free drug concentration
and reduced cytotoxicity.
2.2.3. Transferrin drug adducts
An alternative way for transferrin to function as a drug carrier is to
form Tf/drug adducts. Tf/drug adducts can be fabricated by simply
adding the drug solution to Tf solution followed by vortexing and
co-incubation.

Yang et al.79 developed ART, dihydroartesunate (DHA) and
artesunate (ATS) adducts with Tf, and the resulting ART–Tf,
DHA–Tf and ATS–Tf adducts showed significant anticancer
effects on human liver hepatocellular carcinoma (HepG2) and
lung adenocarcinoma (A549) cells with minimal side effects on
normal human liver cells (HL-7702).



Table 1 Summary of albumin-based drug carriers in clinical studies.

Mode of drug delivery Drug name Active pharmaceutical ingredient
(API)

Indication Clinical status Notes

Albumin–drug conjugates MTX–HSA Methotrexate Metastatic renal carcinoma Phase II No further clinical assessment
CJC-1134-PC Exendin-4 Type II diabetes Phase II A third phase II terminated

Albumin-binding drugs/ DOXO-EMCH Doxorubicin Small cell lung cancer Phase II Renamed as INNO-206
prodrugs Victoza GLP-1 (7-37) Type II diabetes Approved 2009 in Europe and 2010 in the

USA
CJC-1008 Dynorphin A (1-13) peptide Postherapetic neuralgia Phase II No further clinical assessment
CJC-1131 GLP-1 (7-36) Type II diabetes Phase I/II

bumin-based nanoparticles Abraxane Paclitaxel Metastatic breast cancer; Locally advanced or
metastatic NSCLC;

Approved

Metastatic pancreatic adenocarcinoma
Fusion proteins and
peptides

AlbiglutideTM GLP-1 (7-36) Type II diabetes Approved Marketed as Tanzeum (USA)
and Eperzan (Europe)

Balugrastim G-CSF Chemotherapy-induced neutropenia MAA submitted (Europe) Formerly known as
albugraninTM and
NeugraninTM

rIX-FP Factor IX Haemophilia B Phase III
MM-111 Anti-HER2 scFv and anti-HER3 scFv Gastric and breast cancer Phase II
Albuferon IFN-α-2b Chronic hypertitis C BLA and MAA withdrawn
AlbuBChE Butyrylcholinesterase Cocaine addiction Phase II
rFVIIa-FP Factor VIIa Haemophilia A and Haemophilia B Phase I
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2.2.4. Tf/TfR mediated carriers for drug and gene delivery
Since TfR is overexpressed in a variety of tumor cells and brain
capillary endothelial cells, Tf/TfR-mediated cellular events have
been exploited in carrier systems that deliver therapeutic drugs and
genes into malignant cells and brains80. A Tf-conjugated liposome
complex carrying a BCL-2-specific anti-sense ODN showed
improved targeting and internalization into K562 cancer cells
in vitro and in vivo, extending the survival time, and improving
tumor growth inhibition compared to the antisense ODN
alone81,82. Wagner et al.83 conjugated Tf to protamine or poly-
lysine via disulfide bridges for the delivery of a plasmid DNA
containing the luciferase gene to eukaryotic cells, and achieved
high-level expression of luciferase. This delivery system was
termed as “transferrinfection”. Studies carried out by Liu et al.84

also suggested that Tf-modified nanoparticles loaded with doxor-
ubicin is a promising cytotoxic agent in glioma therapy.

A previous study of our group demonstrated that using a Tf-
conjugated polyethyleneglycol-modified polyamidoamine dendri-
mer could realize efficient, noninvasive and brain-targeting gene
delivery85.

Nam et al.86 designed a lauric acid-O-carboxymethyl chitosan-
Tf micellar system for hydrophobic drug delivery and site-specific
targeted delivery. The results show that this drug carrier exhibits
low cytotoxicity, high cellular uptake, sustained release and site-
specific targeting properties.

2.3. Lipoproteins

2.3.1. Properties of lipoproteins
Lipoproteins are particles formed by the aggregation of lipids such
as triglycerides, phospholipids and cholesterol esters. As endo-
genous nanoparticles that transport cholesterol and other lipids
through the blood to various cell types, lipoproteins are immune-
free, not absorbed by the reticuloendothelial system (RES) and are
regarded as excellent candidates for the targeted delivery of
therapeutic drugs, imaging agents and nucleic acids to various
tissues87.

There are five classes of lipoproteins with different struct-
ure and function, including chylomicron (75–1200 nm), very
low density lipoprotein (VLDL, 30–80 nm), intermediate den-
sity lipoprotein (IDL, 25–35 nm), low density lipoprotein (LDL,
18–25 nm) and high density lipoprotein (HDL, 8–12 nm), among
which LDL and HDL are the most widely studied lipoproteins as
carriers88.

Three strategies have been developed to utilize lipoproteins as
carriers for drug or imaging agents, including surface loading
through noncovalent interaction on the phospholipid shell, cova-
lent modification of the phospholipid or protein, and encapsulation
in the nanoparticle core through reconstitution techniques. Exam-
ples of each strategy will be illustrated below.

2.3.2. Low density lipoprotein-based carriers for drug delivery
LDL is a spherical BNP with a particle size of 18–25 nm and is
composed of a hydrophobic core consisting of esterified choles-
terol and triacylglycerol and surface coat of phospholipids
surrounded by a single apoB-100 protein. ApoB-100 accounts
for over 95% of the LDL apoprotein and is exposed at the surface,
allowing for receptor recognition with nine amino acids at residues
3359–3367 serving as the binding domain for the LDL receptors
(LDLRs)89. It was reported that LDLRs are overexpressed on
various tumor cells because large quantities of cholesterol and
fatty acids are required for supporting rapid proliferation of tumor
cells90. Therefore, LDL could also target tumor cells as carriers.

In the past few decades, LDL has been investigated for its
ability to deliver drugs to cells expressing the receptors. Crich et
al.91 developed a gadolinium (Gd)–AAZTAC17/LDL adduct using
surface loading strategy and found that Gd–AAZTAC17/LDL
adduct is an efficient probe in the magnetic resonance visualization
of subcutaneous tumors in B16 melanoma-bearing adult C57BL/6
mice. The method is easy to manufacture but prone to probe/drug
leakage because the surface probe will transfer to the outer
phospholipid layer of cell membrane to maintain thermodynamic
stability. Zheng et al.92 used core loading strategy to bind PDT
agents in the lipid core of LDL in the reassembling process. In
addition, cholesterol conjugates mimicking the native cholesterol
esters can be loaded into LDL by core loading. Pietzsch et al.93

attached 18F-containing ligands to the lysine-ε-amino groups on
apoB-100 for imaging and Sobal et al.94 attempted radio-iodina-
tion of tyrosine side chains for SPECT detection but leads to a
change in LDL's transport properties. Therefore, although chemi-
cal modification is more stable, it may influence the LDL's
intrinsic functions.
2.3.3. High density lipoprotein-based carriers for drug delivery
HDL is the smallest of the lipoproteins with a diameter of 8–12 nm.
It is well known as the “good” cholesterol because it not only
removes excess cholesterol from atherosclerotic plaques but also
plays an important role in anti-inflammatory and anti-oxidative
activities to protect the cardiovascular system. As an endogenous
nanocarrier, circulating HDL transports endogenous proteins, vita-
mins, hormones, and microRNA to various organs. Compared with
other synthetic nanocarriers (e.g., liposomes, micelles, inorganic and
polymeric nanoparticles), natural-origin HDL has unique features
that allow it to deliver cargo to specific targets more efficiently.
Many types of cancer cells have been reported to overexpress SR-BI
that mediates cholesterol delivery by HDL95.

Lou and co-workers96 reported a delivery system composed of
recombinant complex of HDL and aclacinomycin (rHDL–ACM).
The rHDL–ACM complex has the same basic physical and
biological binding properties of native HDL and showed a
preferential cytotoxicity for SMMC-7721 hepatoma to normal
l02 hepatocytes.

Recent studies have shown that HDL is a promising delivery
system for siRNA, as HDL could overcome the barriers mentioned
above with mechanisms of action distinct from those of other
conventional nanocarriers. Notably, endogenous HDL has been
reported to be involved in the transport of microRNA in vivo,
suggesting the potential of using HDL as a natural delivery carrier
for nucleic acids95. Modification of siRNA with lipophilic groups,
such as cholesterol, offers a convenient method of loading siRNA in
HDL. Soutschek et al.97 conjugated cholesterol to ApoB siRNA that
was chemically stabilized with a phosphorothioate backbone at the
3ʹ end of the sense and antisense strands and two 2ʹ-O-methyl
nucleotides at the 3ʹ end of the antisense strand. ApoB siRNA
conjugated with cholesterol (Cho–ApoB–siRNA) displayed
increased stability and better gene silence effect in human serum
than the unconjugated form. Except for tumor cells, HDL was also
used to deliver cholesterol-conjugated siRNA for organic anion
transporter 3 (Chol–siOAT3) into brain capillary endothelial cells
(BCECs)98. The results showed that HDL–Chol–siOAT3 signifi-
cantly decreased OAT3 mRNA levels in BCECs after intravenous
injection, while free Chol–siOAT3 failed to achieve this.
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2.4. Silk fibroin

2.4.1. Properties of silk fibroin
Silk fibroin (SF) is an insoluble protein with bulky hydrophobic
domains secreted by silkworms and spiders or other insects, and
can be easily purified as sericin-free silk-based biomaterials99. Silk
fibroin has been used as an exemplary scaffolding material because
of its highly adaptable material properties, excellent biocompat-
ibility and mild foreign body response in vivo. Moreover, silk
fibroin can self-assemble into mechanically robust material struc-
tures that are also biodegradable and non-cytotoxic, indicating
utility for gene delivery100.

2.4.2. Silk Fibroin as a drug carrier
In the past decades, SF has been widely investigated in biomedical
and pharmaceutical fields because of its remarkable mechanical
properties, good biocompatibility, controllable biodegradability and
low immunogenicity. Silk fibroin modified chitosan nanoparticle
(SF–CSNP), a biocompatible material, has been widely used as a
potential drug delivery system. Yang et al.101 developed such a SF–
CSNP for treatment of hepatic cancer and achieved improved cell
responses. Numata et al.102 synthesized silk-based block copolymers
that were bioengineered with poly(L-lysine) domains for plasmid
DNA (pDNA) delivery to human embryonic kidney (HEK) cells.

Wang et al.103 designed new silk fibroin nanoparticles (SFNPs)
coated with four different cationic polymers, GCS, TMC, PEI and
PEG–PEI. The cationic polymer coatings significantly enhanced
the colloidal stability of SFNPs in biological media. Furthermore,
doxorubicin-loaded SFNP@GCS and SFNP@(PEG–PEI) showed
higher cytotoxicity against HeLa cells.

2.4.3. Silk fibroin as scaffolds for tissue engineering
Stable, spherical, negatively charged and low toxic silk nanopar-
ticles (150–170 nm) have been prepared from silk fibroin solutions
of domesticated Bombyx mori and tropical tasar silkworm Anther-
aea mylitta104. Recently Bombyx mori silk fibroin (BSF) has been
widely applied as a tissue engineering scaffold for the generation
of blood vessels, skin, bone, ligaments and nerves105. Antheraea
mylitta silk fibroin (ASF) is structurally different from BSF. ASF
contains fewer glycine residues and more alanine, aspartic acid and
arginine residues and contains Arg–Gly–Asp (RGD) sequences106.
Since the RGD sequence binds to integrin receptors on cell
surface, utilizing ASF could achieve targeting and benefit cell
attachment. Ma et al.104 utilized ASF in conjugation with PEI to
create a gene carrier. The ASF/PEI/pDNA complex has signifi-
cantly increased transfection efficiency and reduced cytotoxicity to
mouse fibroblast cells (L929).

Farokhi et al.107 constructed a bio-hybrid silk fibroin/calcium
phosphate/PLFA nanocomposite scaffold as vascular endothelial
growth factor (VEGF) delivery system with sustained release
profile by using freeze-drying and electrospinning. The histology
analysis showed that after ten weeks of implantation, new bone
tissue formation happened in the defected site, suggesting that SF
could be considered as an effective scaffold for bone tissue
engineering applications.

2.5. Collagen

2.5.1. Properties of collagen
Collagen, the major structural protein component of extracellular
matrix, accounts for ~30% of the total proteins of mammals and
provides support to connective tissues such as skin, tendons,
bones, cartilage, blood vessels, and ligaments108. Collagen is
responsible for signal transduction in the regulation of cell
adsorption, migration, proliferation, differentiation and survival109.
There are 27 types of collagens identified to date, among which
collagen I is the most abundant and the most investigated for
biomedical applications. Collagen is biocompatible, biodegrad-
able, non-immunogenic110 and can be reconstituted into fibrous
structures simulating the native extracellular matrix in tissues.
Collagen has been used in a variety of applications, including but
not limited to sponges for wound healing, mini-pellets, hydrogels,
patches and nanoparticles for drug delivery and tissue engineering.
2.5.2. Collagen as a drug carrier
Several studies have already been carried out using collagen as a
carrier in drug delivery systems in earlier years. Wahlig et al.111

reported on sustained-release preparations for antibiotics such as
gentamycin using collagen as a carrier. Fujioka et al.112 developed
a minipellet using collagen as a carrier for protein delivery. The
model protein drug interferon was constantly released from the
minipellet and sustained serum TNF concentrations were
observed. Bettini et al.113 prepared a porous collagen-based
hydrogel scaffold in the presence of iron oxide nanoparticles to
retain water-soluble molecules and then activate their release under
an external magnetic field. Controlled release of the loaded
fluorescein from the NPs-collagen gel was realized by means of
a very simple, economic and safe application of an external and
weak static magnetic field. Helary et al.114 evaluated highly dense
collagen matrices (CM) as novel medicated wound dressings for
the treatment of chronic wounds. The CM40 loading 200 mg/mL
ampicillin showed an effective release of payloads over 3 days and
the antibacterial effect was continued over four days, whereas
collagen sponges demonstrate full antibiotic release within 16 h.
Furthermore, the collagen matrices showed almost no cytotoxicity
to fibroblasts.
2.5.3. Collagen scaffolds for tissue engineering
Collagen-based scaffolds can be considered as ideal biomaterials
for tissue engineering applications due to the good properties of
collagen discussed above.

Bayrak and co-workers110 utilized porcine and bovine collagen
type I and elastin for tissue engineering scaffolds and validated the
absence of immune responses with xenogeneic collagen and
elastin, suggesting that they are suitable constituents of tissue
engineered matrices. Inzana et al.115 designed 3D printing of
composite calcium phosphate and collagen scaffolds with high
resolution for bone regeneration for the first time and hypothesized
that collagen–CaP composites will improve the scaffold's mechan-
ical strength, cytocompatibility and bone regeneration. Lopez-
Noriega et al.116 designed a collagen-based scaffold modified with
thermoresponsive liposomes carrying PTHrP 107–111 peptide that
has pro-osteogenic and anticatabolic effects on bone cells, this
novel system can be regarded as a platform with high promising
application in the field of tissue engineering as it can deliver
various therapeutic drugs.

Except for tissue engineering, collagen is also used as a
controlled proliferation technology for mass production of ther-
apeutic proteins. Wong HL developed a 3D collagen microsphere
culture system that encapsulates GDNF (glial-derived neurotrophic
factor)-secreting HEK293 cells117. This system provides a phy-
siologically relevant 3D environment for cell proliferation and the
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production rate of GDNF was significantly enhanced in the 3D
system compared to monolayer culture.

2.6. Keratin

2.6.1. Properties of keratin
Keratins are the major structural fibrous proteins providing outer
covering such as hair, wool, feathers, nails, and horns. Keratins are
cysteine-rich proteins and have a large number of inter- and intra-
molecular disulfide bonds since the cysteine residues are easily
oxidized, which are relevant to many of the mechanical, thermal,
and chemical properties of wool fibers118. The amino acid
sequence of various human hair keratins reveals that many of
the keratin proteins contain a cell adhesion motif leucine–aspartic
acid–valine (LDV) which is recognized by the integrin family of
protein α4β1

119. Therefore human keratin might be suitable for
tissue-engineering scaffolds.

2.6.2. Keratin as scaffolds for tissue engineering
The biomedical application of keratins is based on chemical
reductive degradation of the interlinked disulfide bonds of
keratinous materials via oxidative or reductive extraction. Xu
et al.120 constructed keratin scaffolds for skin wound repair and
regeneration by freeze-drying reductive solutions with varying
keratin concentration. These well-interconnected scaffolds are
hydrophilic and have good cytocompatibility. Keratin scaffolds
achieved earlier vascularization and better skin repair compa-
red with the self-healing process of full-thickness wounds.
Park et al.121 prepared keratin-based hydrogels that were sho-
wn to augment the process of excision wound healing by
increasing collagen synthesis during the wound healing process
in vivo. Scaffolds of human hair proteins were fabricated by
Verma et al.122 and studies show that these scaffolds have the
capability to enhance cell–cell contacts with LDV-mediated cell-
matrix contacts and support long-term cell culture. Apel et al.123

used a keratin-based hydrogel for peripheral nerve recovery and
regeneration in a mouse tibial nerve model. Results show that
keratin hydrogels significantly improve electrophysiological recov-
ery compared with empty conduits and sensory nerve autografts at
an early time point of regenerations and keratin hydrogels also
produce long-term functional and histological outcomes.
3. Polysaccharides as carriers for drug delivery and tissue
engineering

3.1. Chitosan

3.1.1. Properties of chitosan
Chitosan, composed of glucosamine and N-acetyl-glucosamine, is
a type of natural-origin polysaccharides produced by deacetylation
of chitin. The amine groups in the glucosidic residue make
chitosan a positively charged material with reactive sites for
conjugation. Chitosan is insoluble in water at neutral pH while it
becomes a water-soluble cationic polyelectrolyte in relatively
acidic condition when the amino groups are protonated. Chitosan
can self-assemble into nanostructures through electrostatic inter-
actions, hydrophobic interactions, hydrogen bonds and van der
Waals forces together124. Moreover, the physical chemical proper-
ties such as solubility and viscosity of chitosan depend on the
degree of deacetylation and molecular weight125,126. A lower
degree of deacetylation can increase the solubility and viscosity
and a higher molecular weight can decrease the solubility and
increase the viscosity of chitosan. In addition, chitosan has a
unique feature of adhering to mucosal surfaces and penetrating to
tight junctions between endothelial cells. With non-toxic, biode-
gradable and biocompatible properties, chitosan has already been
approved by FDA for use in wound dressings127. Chitosan-based
drug delivery systems have aroused great interest since the early
1990s. A variety of work has been reported on chitosan and its
potential application in biomedical fields including wound dres-
sing, tissue engineering and therapeutic drug delivery.
3.1.2. Chitosan-drug conjugates
The concept of polymer–drug conjugates was first proposed in
1975128. Since then several polymer–drug conjugates have entered
clinical trial stages because of their unique therapeutic properties
including improved pharmacokinetics, reduced side effects and
enhanced therapeutic efficacy129. Natural-origin chitosan has
obvious advantages over synthetic polymers including good
biocompatibility, biodegradability and non-immunogenicity. Chit-
osan–drug conjugates have been widely developed owing to its
abundant availability and reactive amino groups which can be
directly or indirectly linked to drug molecules.

Son et al.130 first synthesized a glycol-chitosan–doxorubicin
conjugate (GC–DOX) which could self-assemble into nanoaggre-
gates with sizes of 250–300 nm and passively accumulate to tumor
tissue due to the EPR effect. They used cis-aconityl spacers with
pH-sensitive properties which could facilitate controlled drug
release in the slightly acidic endosomes/lysosomes. Subsequently
Lee et al.131 based a similar CS–PTX conjugate using a biode-
gradable succinate linker that remains intact in gastric acid while
being cleaved in the physiological environment. Lee et al.132 also
constructed a low molecular weight chitosan (6 kD) conjugated
insulin delivery system with a disulfide linkage which is respon-
sible for the intracellular GSH at high concentration resulting in
improved bioavailability of insulin. Yang et al.133,134 synthesized a
chitosan-O-isopropyl-5ʹ-O-d4T monophosphate conjugate through
phosphoramidate linkage for the treatment of HIV infection. The
mild sustained release of the chitosan–d4T conjugate and its
nanoparticle form resulted in enhanced anti-HIV selectivity
compared to free d4T.
3.1.3. Chitosan-based nanocarriers
Chitosan self-assembled nanomaterials also have good compat-
ibility, biodegradability and low toxicity like chitosan124. They
have emerged as potential nanocarriers for therapeutics and tissue
engineering.

Since chitosan is positively charged under acidic conditions, it
could complex with negatively charged nucleic acids, including
DNA, mRNA and siRNA through electrostatic interaction and
form nanostructures. There is a commercially available chitosan-
based transfection reagent named Novafect135. However, the
complex nanostructures may be not stable in neutral or alkaline
conditions because the amine groups of chitosan will be less
protonated. Recently, Sadreddini et al.136 designed carboxylmethyl
dextran chitosan nanoparticles (CMD–ChNPs) to encapsulate snail
siRNA and anti-cancer drug doxorubicin. The co-delivery system
exhibited significant changes of epithelial mesenchymal transition
(EMT)-releated gene expression including down regulation of
MMP-9 and vimentin and up regulation of E-cadherin in human
colorectal cancer (HCT-116) cells.



Figure 3 Schematic illustration of HA-modified nanoparticles or micelles targeting CD44-overexpressing cancer cells.
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Ionically crosslinked chitosan nanoparticles could also conju-
gate fluorescent probes for imaging. Bor et al.137 developed
BODIPY-conjugated chitosan nanoparticles with a diameter of
70.25 7 11.99 nm in spherical shape. The BODIPY-conjugated
chitosan nanoparticles show significantly reduced cytotoxicity to
human lung adenocarcinoma (A549) cells and normal human
bronchial epithelial (BEAS 2B) cells. Therefore, this fluorescent-
conjugated chitosan nanoparticle might be a promising platform
for bio-imaging application.

Significant efforts have been made to explore an ideal scaffold
for tissue engineering for years. In addition to the protein-based
scaffolds in the previous introduction, chitosan has also been
studied as a useful biomaterial in diverse tissue engineering
applications due to its hydrophilic surface that promotes cell
adhesion, proliferation and differentiation, good biocompatibility
and biodegradability138.

Since chitosan is fragile and has poor mechanical properties,
Saber-Samandari et al.139 synthesized a copolymer grafted chit-
osan scaffold for bone tissue engineering with drug delivery
capacity. Poly(acrylic acid-co-acrylamide) was used as the grafted
copolymer, hydroxyapatite was investigated as bone substitute and
celecoxib was selected as a model drug in this scaffold carrier.
This chitosan-based scaffold demonstrated good compatibility
without any cytotoxicity and the drug release from the scaffold
displayed a biphasic pattern with a low initial burst and a sustained
release of up to 14 days. The results suggest that this nanocompo-
site scaffolds might be efficient drug carriers in bone tissue
engineering.
3.2. Cyclodextrin

3.2.1. Properties of cyclodextrin
Cyclodextrins (CDs) are cone-shaped α-1,4-linked macrocyclic
oligosaccharides with a hydrophilic exterior and a hydrophobic
cavity that allow the formation of inclusion complexes with
hydrophobic compounds140. CDs are natural products formed
during the digestion of cellulose by bacteria. The most common
CDs are α-CD, β-CD, and γ-CD that composed of six, seven and
eight D-glucopyranose units (Fig. 1), respectively.

CDs are biocompatible, biodegradable and non-toxic materials
and the central empty cavity of CDs (host) is capable of loading
hydrophobic molecules (guest) through van der Waals force and
hydrogen bonds141. Because of this unique structure, the physico-
chemical properties of the guest, such as poor solubility, instability
and undesired side effects can be masked142,143. Moreover, the
hydroxyl groups of CDs are chemically reactive to modify
functional molecules. Therefore, multifarious CD-based supramo-
lecules and nanoparticles have been explored for drug delivery and
medical imaging.
3.2.2. Cyclodextrin-based delivery systems
CDs are usually served as carriers in the form of conjugates,
supramolecules or nanoparticulate systems. Since α-CD has a
relatively small cavity which can only entrap small molecules and
γ-CD has a high production cost, β-CD with moderate cavity and
low production cost is the most widely applied CD in pharma-
ceutical research.

Mizusako et al.144 developed a CD-based novel carrier-drug
conjugate with active drug targeting function by folate modifica-
tion and controlled drug release property by using a pH-cleavable
spacer. Recently cationic β-cyclodextrin–chitosan conjugates as
potential carrier for gene delivery has been reported by Eslamine-
jad et al.145. In the study pmCherry-C1 gene is successfully
delivered to glioma cells with high transfection efficiency.

Monteil et al.146 developed a kind of cyclodextrins–bispho-
sphonate complexes (CD/BP). A series of characterizations
including NMR spectroscopy, UV–vis and ITC analysis indicated
cyclodextrins and bisphosphonates successfully formed 1:1
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inclusion complexes and only the side chain of bisphosphonate
was involved in the inclusion phenomenon. However, the in vivo
stability of the host-guest supramolecule remains to be established.

Nafee et al.147 synthesized amphiphilic MMA–tBA β-CD star
copolymers that are capable of forming nanoparticles (CD-NPs)
smaller than 200 nm in diameter and CD-NPs loaded with antic-
ancer idarubicin show sustained release over 48 h. Yuan et al.148

explored a nanocarrier system formed by chitosan grafted with
β-cyclodextrin (CD-g-CS) for poorly water-soluble drugs. The
CD-g-CS nanoparticles were prepared by an ionic gelatin method
with the controlled size of 202.0–589.0 nm and zeta potential of
þ23.0 to þ43.0 mV. Moreover, the CD-g-CS carrier realized
controlled release of the payloads.

3.3. Hyaluronic acid

3.3.1. Properties of hyaluronic acid
Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan (GAG)
in the extracellular matrix (ECM) of many soft connective tissues,
composed of alternating units of D-glucuronic acid and N-acetyl-D-
glucosamine that linked together via alternating β-1,4 and β-1,3
glycosidic bonds149. Due to its abundant negative charges, HA
exhibits excellent swelling property. In the ECM of most tissues,
the high molecular weight HA, along with other structural
macromolecules, contributes to the mechanical integrity of the
network. Many researchers have reported that HA has targeting
ability to specific cells by binding with cell surface receptors such
as CD44 and RHAMM and can be utilized for tumor-targeted drug
delivery150–152. Since HA is biocompatible, biodegradable, bioac-
tive, non-immunogenic and non-thrombogenic with complex
biological functions ranging from matrix organization, cell adhe-
sion and migration, angiogenesis and morphogenesis, wound
healing and inflammatory responses to cancer metastasis153,154, it
can also be regarded as an attractive carrier for tissue engineering.

3.3.2. HA-based carriers for drug delivery and tissue
engineering
Similarly to chitosan and cyclodextrin, HA was chemically
modified with the 5β-cholanic acid to form self-assembled
nanoparticles (200–400 nm) that combine both passive tumor
targeting based on the EPR effect and a more specific or active
targeting exploiting the affinity of HA towards CD44155.

HA-based or functionalized nanoparticles have received tre-
mendous attention for CD44 targeted drug and protein delivery in
recent years (Fig. 3). Liang et al.156 designed a multifunctional
nanoparticle based on activatable HA conjugating two near-
infrared (NIR) dyes of Cy5.5 and IR825 as a targeted theranostic
agent for enhanced fluorescence/CT/photoacoustic imaging guided
photothermal therapy. Han et al.157 engineered a bioreducible
core-crosslinked polymeric micelle based hyaluronic acid (CC-
HAM) by simple method using D,L-DTT in aqueous conditions.
The CC-HAM exhibited enhanced structural stability under diluted
conditions with PBS containing FBS or sodium dodecyl sulfate.
DOX was encapsulated in the micelle core with high drug loading
efficiency (480%) and robust drug release of DOX from CC-
HAMs was observed in the presence of glutathione. Overall,
bioreducible CC-HAM can be applied as a potent doxorubicin
delivery carrier with improved stability for targeted cancer therapy.
Lee et al.158 developed hollow particles using a silica core and
catechol-modified hyaluronic acid (HA–CA) shell for an antic-
ancer drug carrier. The DOX-loaded HA–CA particles demonstrate
pH-triggered release behavior and dramatic in vitro anti-tumor-
effect, suggesting that they are promising novel drug carrier.
Zhong group159 has done many studies on HA-based carriers for
targeted cancer therapy and they have recently reported a HA
coated PLGA nanoparticulate docetaxel (DTX–HPLGA) formula-
tion which showed efficient targeting ability to CD44þ A549 cells
through CD44-mediated pathway and achieved effective tumor
inhibition. To realize controlled drug release, they introduced a
reductively cleavable surfactant into the nanostructure to form the
reduction-responsive HA-coated PLGA nanoparticle160. In another
study from this group, a GSH-sensitive HA–SS–mertansine
prodrug with high drug loading capacity was synthesized for
targeted breast cancer therapy161. Moreover, HA engineered
nanomicelles loading with 3,4-difluorobenzylidene curcumin were
explored for targeted killing of CD44þ stem-like pancreatic cancer
cells162 and HA-shelled pH-sensitive paclitaxel prodrug micelles
were developed for targeted therapy of CD44-overexpressing
breast cancer163. HA-based nanogels were developed for targeted
imaging and cancer therapy as well164–166.

Sheu et al.167 fabricated an injectable oxidized hyaluronic acid/
resveratrol (Oxi-HA/Res) hydrogel for future application in
cartilage tissue engineering. It was investigated that Oxi-HA/Res
hydrogel was able to maintain chondrocyte phenotype and allow
for ECM synthesis. Additionally, the Oxi-HA/Res hydrogel has no
toxicity to chondrocyte cells and allows the promotion of gene
expression of aggrecan and type II collagen, which are major ECM
components of chondrocytes.

A biological hydrogel of recombinant human fibroblast growth
factor type 2 in a hyaluronic acid carrier (rhEGF-2/HA) has
entered clinical trial in periodontal intrabony defects. Patients
treated with rhFGF/HA exhibited significantly more probe depth
reduction, probing attachment level and probing bone level gains
than the control group168. The clinical parameters of periodontal
wound healing were greatly improved one year after treatment.

3.4. Heparin

3.4.1. Unique properties of Heparin
Heparin is a water-soluble and negatively-charged polysaccharide
with important biological functions including anticoagulant activ-
ity, strong binding to growth factors such as VEGF, basic FGF and
bone morphogenetic protein-2 (BMP-2)169,170. Therefore heparin
has been widely studied as an anticoagulant drug as well as
antitumor drug delivery carriers due to its multi-targeting cap-
ability and anti-angiogenesis activity171.

3.4.2. Heparin–drug conjugates
Heparin–drug conjugates are currently investigated as excellent
candidates for drug delivery vehicles and combination therapy.
She et al.172 reported a dendronized heparin–DOX conjugate with
pH-sensitive property by combination of the features of dendrimer
and heparin. The dendronized heparin–DOX conjugate self-
assembled into compact nanoparticles with negatively charged
surface and showed high antitumor efficacy both in vitro and
in vivo. A heparin–indomethacin conjugate with an ester linkage
for sustained and esterase-sensitive drug release was synthesized
by Li et al.173. The conjugate could self-assemble into spherical
nanoparticles with a diameter o200 nm in aqueous solution due to
its amphiphilic property.

Choi et al.174 reported a conjugate of low molecular weight
heparin (LMWH) and four bis-deoxycholates named LHbisD4 as a
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potent anti-angiogenic drug that can be administrated orally with less
toxicity for anti-lymphangiogenic therapy. Further studies revealed
that LHbisD4 could also suppress the formation of new lymphatic
vessels and inhibit metastasis by blocking VEGF-C pathway.
3.4.3. Heparin-based nanocarriers for drug delivery and tissue
engineering
When conjugated to hydrophobic molecules, heparin has the
potential to assemble into nanoparticles. Zhang et al.175 designed
an amphiphilic conjugate of low molecular weight heparin
(LMWH) and all-trans retinoic acid (ATRA) that can self-
assemble into nanoparticles and encapsulate the anticancer drug
DOX. The DOX–LMWH–ATRA nanoparticles demonstrate good
compatibility and accumulation in tumors via the EPR effect and
LMWH-based endocytosis. Co-delivery of the three components
in one nanoparticle system has achieved an enhanced antitumor
effect compared to monotherapy. A novel nanocarrier of heparin
modified grapheme oxide (GO) was synthesized by using a pH-
sensitive linker (adipic dihydrazide, ADH) to deliver DOX and
facilitate controlled release for anticancer therapy176. The GO–
ADH–Hep/DOX nanosystem displayed effective cytotoxicity to
human breast cancer cells (MCF-7) and human hepatocellular
carcinoma cells (HepG2) with reduced cardiotoxicity and pulmon-
ary toxicity compared to free DOX and unmodified GO.

Lee et al.177 designed a heparin-conjugated fibrin (HCF) carrier
system to deliver recombinant human BMP-2 (rhBMP-2) for bone
tissue engineering. Previous studies showed that HCF carriers
exhibited a slower and more controlled release of rhBMP-2
compared to fibrin and traditional carrier absorbable collagen
sponge (ACS). The HCF carrier system loaded with rhBMP-2
shows reduced adipose tissue formation and enhanced mineralized
tissue formation, but the lack of space-maintaining properties
remains an obstacle with this carrier system.

Subsequently, a heparin-based polyelectrolyte (PEC) carrier for
the delivery of BMP-2 was also developed by Wang et al.178 to
enhance the posterolateral fusion in porcine model. The radiolo-
gical fusion score of PEC groups is higher and the newly formed
bone integrated better into the native bone compared to ACS.
3.5. Pectin

3.5.1. Properties of pectin
Pectin is a natural polymer existing in the fruits, roots, stems and
leaves as a component of the cell walls of most plants. Pectin acts
as an accompaniment of fibrin and both of them are constituents of
the intermediate joint of the adjacent cells and make the plant
tissues cells tightly bound together179.

As an ionic branched macromolecule with high molecular
weight, pectin can be converted into hydrogels, intended as
flexible network of polymer chains that can swell but do not
dissolve in water180. In addition to good biocompatibility, biode-
gradability and non-toxicity, pectin is a natural hydrocolloid and is
suitable for drug delivery and tissue engineering.
3.5.2. Pectin as carriers for drug delivery and tissue
engineering
Among natural polymers, pectin has unique features for drug
delivery, such as muco-adhesiveness and ease of dissolution in
basic environments and the ability to form gels in acidic
environments.
Given the negatively charged property, pectin was found to be
suitable for coating b-PEI polyplexes and showed decreased
transfection with a concomitant lower cytotoxicity and higher
stability181.

With a different approach, Katav et al.182 suggested a chemical
modification to pectin to make the anionic polymer applicable for
DNA delivery: the pectin structure was modified with amine
groups, and the modified compound formed complexes with
plasmid DNA while exhibiting high drug stability. Other studies
have investigated the formation of pectin nanoparticles with
different cations to entrap the DNA for transfection.

Coimbra et al.183 prepared porous scaffolds obtained from the
freeze-drying of pectin/chitosan polyelectrolyte complexes. The
study found that cells adhered to this pectin/chitosan complex
scaffold and proliferated and the scaffold is nontoxic to human
osteoblast cells. The pectin/chitosan couples may act as potential
scaffold for bone tissue engineering. Tummalapalli et al.184

developed a novel oxidized pectin-gelatin-nanosliver (OP-Gel-
NS) flower like nanohydrocolloids and ciprofloxacin hydrochlor-
ide incorporated into the OP-Gel to generate OP-Gel-Cipro
dressings. The histological examination demonstrated that OP-
Gel-NS and OP-Gel-Cipro dressings exhibit good hydrophilicity
and sustained antimicrobial nature, promote cell growth and
proliferation, and lead to rapid wound healing effect.

Glucans are polysaccharides of glucose monomers linked by
glycosidic bonds and β-glucan particles are most widely studied
glucan-based drug carriers. Since the glucan particles are often
used for oral drug delivery and would be included in other
reviews, herein we would not give detailed examples and discus-
sion about it.
4. Conclusions and perspectives

Natural biological carriers including proteins and polysaccharides
have the advantage of good compatibility, biodegradability, long
blood circulation time, non-toxicity and non-immunogenicity.
Thus they are regarded as ideal carriers for the delivery of
therapeutic drug, protein, gene and imaging probe as well as
tissue engineering. Researchers have been developing versatile and
multifunctional biological carriers for decades by using different
strategies including covalent linkage and physical encapsulation,
and some have achieved encouraging progress. There is an
increasing interest in combined application of two or more kinds
of biomacromolecules or combined use of biomacromolecules and
synthetic polymers or inorganic nanoparticles in one carrier system
to realize multiple functions.

Although native biological carriers have versatile advantages,
utilizing them for drug delivery may not preserve the same in vivo
properties. Chemical conjugation may affect the carrier's intrinsic
physiochemical properties and non-covalent interaction of the
carrier and its payloads may be not stable in vivo. For example,
drug conjugation to the 34-Cys of albumin changes its endocytosis
mechanism23. Furthermore, the circulating half-lives of most
biological carrier-based therapeutics are extended as compared to
free drugs, but significantly shorter than the native biomacromo-
lecules. There are still many challenges related to production,
quality control, storage, safety and selectivity of natural protein-
and polysaccharide-based drug carriers. Oral drug delivery of
large-protein based drugs may have poor stability due to proteo-
lysis and poor absorption leading to low bioavailability. Research-
ers have adopted encapsulation methods, cross-linkers and
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protease inhibitors to enhance the stability of protein-based carriers
while using targeting ligands and permeability enhancers to
promote drug absorption. Although there are many preclinical
studies of HA-based carriers in drug delivery and tissue engineer-
ing, very few HA-based drug delivery systems have entered into
clinical trials. In addition, conflicting results have been reported
probably because that the effect of molecular weight (MW) on HA
functions in vivo was rarely evaluated in many studies related to
HA185. It is reported that MW is also related to the immune-
response of HA and HA with low MW seems to be immunogenic
while HA at high MW does not induce immune response185. On
the other hand, it is known that HA containing 10–100 disacchar-
ide units could promote tumor growth, whereas HA containing
more than 100 units might inhibit tumor growth186. And similar to
albumin, chemical modification of HA may also influence the
receptor-mediated uptake by cancer cells151. As a result, the
properties and functions of HA still need to be fully clarified.

Therefore, future research should be aimed at developing
therapies that can utilize the advantages of biological carrier in
full measure to gain best results. Selective tissue distribution, cell
type-specific targeting of the biomacromolecule-based carriers
should be explored and technologies that permit the easy produc-
tion and good quality of the protein- and polysaccharide- carriers
should be developed187.

Up to now, only several biological carrier-based therapeutics
have been approved for clinical use. Thus more effort should be
made to accelerate the translation of research findings from
laboratory to clinic，which requires close cooperation of pharma-
cists，materials scientists and clinical doctors. Biological carrier
systems that can be administrated in multiple routes should be
designed, which is intended to meet the clinical demand and
ensure patient compliance. In summary，there is a promising
future for the clinical application of natural biological drug
carriers.
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