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The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is
known that the reduced supply of oxygen (O,) induced by acute or chronic increases in altitude stimulates the body to adapt to new
metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these
changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review
of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep
in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving
increased Interleukin-1beta (IL-183), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-«) production from several tissues
and cells, such as leukocytes and cells from skeletal muscle and brain.

1. Background

In recent years, the interest in activities carried out at high
altitudes has grown. Millions of people travel to regions of
high altitudes (i.e., above 2500 m) for tourism, sport, work,
or permanent residence. However, living in high altitudes can
lead to hypoxia. The effects of exposure to hypobaric hypoxia,
which is present at high altitude, are dependent on the length
of time spent at high altitude and the altitude reached.rt
Because O, is required for the maintenance of vital functions,
blood oxygenation can affect several physiological functions.
Exposure to hypobaric hypoxia can result in extreme condi-
tions, such as acute mountain sickness (AMS), high altitude
pulmonary edema (HAPE), and high altitude cerebral edema
(HACE), as well as other conditions, such as headache,
nausea, vomiting, and gastrointestinal alterations [1-5].

Alterations in cardiovascular and respiratory functions
promoted by altitude have been previously described. More
recently, attention has focused on neurobiological functions,
including sleep, cognition, and humor [6, 7]. Thus, this review
discusses the effects of hypoxia stimulated by high altitude
on sleep, with an emphasis on neuroimmunoendocrine inter-
actions.

2. Methods

For this study, we conducted a systematic and integrative
review of the literature, using source articles indexed by the
ISI database, PubMED and MEDLINE by searching for books
that addressed specific aspects related to altitude/hypoxia,
cytokines, and sleep during the period from 1987 to 2012.
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The keywords searched were “cytokines and hypoxia,”
“cytokines and altitude,” “inflammation and hypoxia,” “in-
flammation and altitude,” “sleep and hypoxia,” “sleep and alti-
tude,” “sleep and cytokines,” and “sleep and inflammation?”
These descriptors were used in a Boolean-specific basis to
obtain various arrangements thought to maximize both the
coverage and quality of the search. No restrictions were made
regarding age or gender.
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3. Altitude

The principal characteristic of exposure to high altitudes is
the fact that there is an inverse correlation between altitude
and the partial pressure of O,. Therefore, at high altitudes, the
body tries to adapt by generating many responses, including
changes in skeletal muscle and in the endocrine and nervous
systems [8].

Although the barometric pressure decreases with increas-
ing altitude, the gas composition does not change until above
the 1200 m level. Although the percentage of ambient oxygen
is maintained at 20.93%, the increase in altitude decreases
the O, partial pressure in expired air. This decrease promotes
a partial impairment in the support of O,, resulting in less
oxygen transported by hemoglobin and consequently less
O, available for tissues. In fact, all tissues that need O, for
energy production are affected by hypoxia, and each tis-
sue response depends on several factors, including the O,
demand by the tissue, the time of exposure, and the individ-
ual’s characteristics [9].

The classical response induced by high altitude includes
respiratory and cardiovascular changes that are initiated
within minutes after the person reaches the altitude [10].
In fact, there is an inverse correlation between increases in
altitude and hemoglobin saturation. In addition, the number
of hemoglobin molecules begins to increase, even at altitudes
as low as 500 m. At the same time, alterations in hyperven-
tilation occur at rest and during acute physical exercise. The
heart rate increases in a manner similar to the increase seen
in cardiac output, which attempts to compensate by decreas-
ing the partial pressure of carbon dioxide in the arterial blood
(PaCO,); however, these alterations are not sufficient to affect
the oxygen consumption (VO,) decrease and aerobic energy
production. As a result, remaining at high altitudes might
result in fatigue and a significant decrease in the capacity
to work and physically perform, especially aerobic and endu-
rance exercise. In addition, it is possible to have an increase
in blood pressure due to an increase of norepinephrine levels
because of the impact of stimulated activities of rest and
exercise [11, 12].

High altitude (above 3000 m) is a powerful stressor. Being
at these altitudes can modify metabolic and physiological
functions, and the body then tries to reestablish the home-
ostasis that was altered by hypoxia [13]. Several studies have
shown that acute or chronic exposure to altitudes between
2500 and 5000 m results in sympathoadrenal responses that
are exacerbated by metabolic alterations to other systems [13],
including the immune system [12, 14].
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Under these conditions, it is possible to produce a rapid
adrenaline hormonal response and a transient increase in
plasma cortisol concentrations [15, 16].

Altitude-induced hypoxia can also stimulate the release of
other hormones involved in the recovery of homeostasis. One
of those hormones is erythropoietin (EPO). Humans exhibit
increased EPO concentrations two hours after exposure to
high altitudes [17]. EPO is fundamentally important to the
organization of the physiological response to altitude and
can modulate the expression of many proteins. Increases in
EPO and hemoglobin are essential for acclimatization and the
maintenance of the O, supply to tissues.

It has been demonstrated that acute exposure to elevated
altitudes can result in changes to several immunological para-
meters [12, 18]. Hypoxia for even a few hours is sufficient
to induce significant changes in neutrophil and lymphocyte
numbers, which are mainly characterized by reductions in
cluster of differentiation (CD), cell numbers, and cellular pro-
liferation [19]. Several studies have shown that acute hypoxia
results in an increase in natural killer cells (NK cells) numbers
and activity [20].

Studies have shown that lymphocytes and phagocytes
present some signs of adaptation if the hypobaric stimulus
is chronic, due to alterations in the production and release
of substances such as cytokines and antibodies [21]. Other
studies have shown that immunity mediated by T lympho-
cytes can be stopped by exposure to elevated altitudes [12, 22].
Facco et al. [21] confirmed that exposure to elevated altitudes
can alter the number and cellular function and suggested that
new studies be carried out to evaluate the expression of cyto-
kines by T lymphocytes, particularly to determine the main-
tenance of the T helper cells (Th1/Th2) response.

It was suggested that remaining at an altitude of 4000 m
above sea level was associated with increased plasma con-
centrations of IL-6 and Interleukin-1 receptor antagonist (IL-
Ira). Furthermore, C-reactive protein (CRP) increases are
associated with the development of pulmonary edema [23].
Numerous stressful events are associated with increases in
cytokine release and disturbances in the pro/anti-inflam-
matory cytokine ratio [24]. Hypoxia alone seems to have a
decisive role; however, the mechanisms responsible for the
induction of cytokines under hypoxic conditions are not
clear. Exposure to elevated attitudes can cause cellular dam-
age due to increased oxidative stress and altered cytokine re-
lease; in turn, these cytokines participate in the recovery from
cellular damage [25, 26].

4. Altitude and Inflammation

The exposure to hypoxia promotes several transcription fac-
tors, including nuclear factor-xB (NF-xB), which plays a cen-
tral role in stimulating the proinflammatory cytokines TNF-
« and IL-6 [27]. Similarly, several studies with rodents and
humans have shown that effects-induced hypoxia can cause
inflammation, including increase in transvascular leakage
and oxidative stress with increased NF-«xB expression in
lungs followed by significant increase in proinflammatory
cytokines IL-1, IL-6, and TNF-« [28-30].
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A decrease in plasma cytokine concentration or the treat-
ment with appropriate antagonists promotes partial reversion
of the symptoms and illnesses, including cardiovascular
disease, obesity, insulin resistance, and depression [31, 32].
Therefore, we suggest that sleep disturbances due to high
altitudes could also be caused by increases in proinflam-
matory cytokines from several cells, such as skeletal muscle
and immune cells, in association with the capillary leakage
or repeated wakening aspects of AMS, which usually occur
concurrently with the hyperopic phase of periodic breathing.

Hojman et al. [33] observed that augments the acute
inflammatory effect in humans. In this study, the authors
demonstrated that when EPO was given prior to a bolus
injection of endotoxin, the levels of TNF-« and IL-6 were
enhanced by 5- and 40-fold, respectively, whereas the endo-
toxin-induced increase in Interleukin-10 (IL-10) was not
influenced by EPO. This interaction between EPO and in-
flammation may corroborate with sleep disruptions found at
high altitudes.

However, Hojman et al. [34] used animal experiments
to show that when EPO was expressed at supraphysiological
levels, there were substantial metabolic effects, including pro-
tection against diet-induced obesity and normalization of
glucose sensitivity, associated with a shift towards increased
fat metabolism in the muscles.

Unfortunately, only limited information from well-
controlled laboratory and field studies is available on this
topic. Relatively, little is known about the influence of altitude
on the interaction of cytokines and sleep. The significant
effects (pro- and anti-inflammatory) of EPO in acute and
chronic high altitudes should be investigated further. Thus,
the sleep complains due to high altitudes could also be caused
by increases in proinflammatory cytokines from several cells,
such as skeletal muscle and immune cells, in association with
the capillary leakage or repeated wakening aspects of AMS,
which usually occur concurrently with the hyperopic phase
of periodic breathing. This interaction between EPO and
inflammation may corroborate with sleep disruptions found
at high altitudes.

5. Cytokines

Cytokines are proteins produced and released by different
cells, for example: leukocytes, muscle cells, and neurons.
These proteins can act in a pleiotropic way or in synergy with
other substances and can modulate the production of other
cytokines [35]. Cytokines function in the regulation of meta-
bolism by influencing hormone secretion, regulating the
THI1/TH2 immune responses, and inducing inflammatory
responses; in the nervous system, they influence com-
plex neuronal actions and modulate thermoregulation, food
intake, and neurobiological patterns [35, 36] during sleep.
Interleukin-1 (IL-1) increased in plasma concentration
may cause fever, sickness behavior, increased heart rate,
increased blood flow in many vascular beds, and increased
sympathetic tone; changes in carbohydrate, fat, and protein
metabolism also occur [24, 35]. The effects of IL-1 can be
reversed by treatment with IL-1ra, an antagonist of IL-1,

which functions to prevent IL-1 binding to its specific recep-
tors [35].

The TNF-« is mainly produced by macrophages and
neutrophils, but other cells, such as lymphocytes, NK cells,
endothelial cells and neural cells, might also have the capacity
to produce it [24]. TNF-« production occurs in response to a
wide variety of stimuli, including infections and stimulation
by other cytokines or mitogens [37]. TNF-« is a potent
pleiotropic cytokine due to its ability to activate multiple sig-
nal transduction pathways and induce or suppress the expres-
sion of a number of genes. In addition, it has potent endo-
genous pyrogenic properties and may promote changes in
the body’s physiological temperature [38]. Moreover, tissues
that present marked cachexia show high TNF-« activity, as
observed in catabolic conditions, such as cancer and systemic
inflammatory diseases [24].

The Interleukin-6 (IL-6) plays a significant role in regu-
lating the pro-inflammatory response [24]. However, due to
its capacity to stimulate the hypothalamus-pituitary-adrenal
axis to produce cortisol and anti-inflammatory cytokines,
such as interleukin-4 (IL-4) and it also has anti-inflammatory
properties [24].

The Interleukin-10 (IL-10) has multiple biological activi-
ties and affects many different cell types. These include mono-
cytes/macrophages, T cells, B cells, NK cells, neutrophils,
endothelial cells, and peripheral blood mononuclear cells
(PBMC:s). IL-10 also acts in the regulation of inflammation
because it is produced by adipose and muscle tissues, which
are important to the pro/anti-inflammatory ratio in condi-
tions such as physical exercise, obesity, and inflammatory
diseases [39, 40].

Cytokines can penetrate the blood-brain barrier (BBB)
and act indirectly on the brain by stimulating the production
of chemical second messengers that carry information to
targets such as NF-«B and adenosine [41, 42] as shown in
Figure 1. The hypothesis that cytokines could influence the
functions of the nervous system (NS) is based on observa-
tions that treatment with cytokines, such as Interferon-y
(INF-y), promotes neuroendocrine alterations, and other
studies show that there are receptors for these cytokines in
many areas of the brain [38, 43, 44]. Additional studies have
shown that an increase in proinflammatory cytokine concen-
trations promotes a decrease in the transendothelial electrical
resistance and an increase in the permeability of the BBB
[45]. Finally, it is possible that cytokines can be produced
within the brain itself in response to neuronal activity
[35].

More recently, several studies have shown the existence
of an afferent neural pathway by which inflammation in the
peritoneal cavity might influence the brain [46]. Subdia-
phragmatic transection of the vagus produces reduction of
fever, poor sleep, nocturnal excretion of norepinephrine, and
hypothalamic production of IL-1 induced by lipopolysaccha-
rides (LPS) in the peritoneal cavity [47], thereby validating
this hypothesis. These alterations are not due to a reduction in
the circulating levels of cytokines or to the attenuation of the
inflammatory response induced by lipopolysaccharide (LPS)
but rather to a defective translation of cytokines in the brain
(48].
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High altitudes are potent stressors known to alter physio-
logical and metabolic functions in the search for mechanisms
to try to restore homeostasis by hypoxia disbalance. The acute
or chronic exposure to altitudes between 2500 and 5000 m
stimulates in a response sympathoadrenal leading to numer-
ous other metabolic changes that, in turn, could affect several
physiological systems including the production of cytokines
and worsen the quality of sleep [49-51].

Currently, a strong relationship between sleep and im-
mune process has been shown. The proinflammatory cyto-
kines, including IL-1, IL-6, and TNF-a, are known as sleep-
regulatory cytokines. However, sleep-promoting properties
are also possessed by several other immune and proinflam-
matory cellular classes. Many studies reporting these relation-
ships are focused on the perspective of low-grade inflamma-
tion associated with significant sleep alterations and on the
perspective of immune dysregulation associated with several
primary sleep disorders [52].

6. Altitude and Sleep

Sleep is a functional state that includes a complex combina-
tion of physiological and behavioral processes. It has some
characteristic manifestations, such as a cyclic pattern, relative
immobility, and an increase in the response threshold to
external stimuli [53]. Sleep is very important, as it is evident
from studies of acute or chronic sleep deprivation and sleep
disorders; these impairments promote several alterations,
including a marked increase in the production of stress hor-
mones, including catecholamines and cortisol, a reduction in
cognitive capacity, and a reduction in the state of alertness,
among others [54].

Sleep can be divided into two phases: the nonrapid eye
movement (nREM) phase, in which the electroencephalo-
gram (EEG) records a synchronized tracing, and the rapid
eye movement (REM) sleep phase, in which the electroence-
phalogram records signals similar to those in the wake
period that are associated with the rapid eye movements
(55, 56].
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Two hypotheses attempt to explain the mechanisms in-
volved in sleep regulation, and it is possible that these hypo-
theses are not mutually exclusive and could happen simul-
taneously. One hypothesis describes the role of circadian
rhythms, while the other is related to the homeostatic effects
of sleep [55].

The biochemical mechanisms that control sleep are very
complex because sleep modulation is dependent on several
factors, including carbon dioxide (CO,) concentrations, as
well as potassium, free radical, nitric oxide, hormone, and
adenosine levels [57]. Proinflammatory cytokines play an im-
portant role in sleep regulation [58]. Some cytokines have an
antisomnogenic action by decreasing prosomnogenic cyto-
kine production, while others cytokines have the opposite
effect [59].

Most of the existing studies on sleep and altitude were
carried out in the field. There have also been studies carried
out in normobaric hypoxic rooms that simulate conditions
of high altitude [60]. High altitude has frequently been asso-
ciated with sensations of suffocation when awakening from
sleep. In fact, several studies showed that hypoxia directly
acts on the architecture and quality of sleep in humans and
rodents; these effects include increases in Stage I, decreases
in REM sleep, lesions in cerebral regions that control sleep,
and increases in the sensations of sleep deprivation and sleep
fragmentation [61-63].

In fact, around 60% of persons subjected to altitudes of
3500 m or higher experience various sleep complaints. Recur-
ring wakefulness is the most common characteristic due to
the decreased O, saturation, which leads to sleep fragmen-
tation [45, 64, 65]. In addition, hypoxia can cause poor
sleep quality due to slight reductions in delta sleep, relative
reductions in REM sleep, and agitation during the night [63];
however, overall total sleep time (TST) is not reduced. There-
fore, the reduced subjective sleep quality is due to a higher
arousal frequency. Despite previous studies suggesting that
the impairment of sleep persists even after a season of accli-
matization [64, 65], partial recovery of the damage during
sleep can occur after spending some days at high altitude
[26]. This finding has been shown in animal studies in which
several days were spent in hypoxic conditions but not after a
sudden ascent.

7. Altitude, Sleep, and Cytokines

To date, the effects of altitude on the architecture and quality
of sleep are not well known [66]. Studies in rodents and
humans suggest that prolonged exposure to hypoxia can alter
circadian rhythms by reducing the amplitude of circadian
oscillations and by possibly leading to changes in several
variables, such as activity, hunger, metabolic rate, and the
dark and light cycle [60, 67, 68]. The modification of mela-
tonin and neurotransmitter release, metabolism in peripheral
tissues, and modulation of several hormones and cytokines
that participate in sleep regulation and gene expression
responsible for the functions of the biological clock are also
affected [69-71]. In part, this alteration on the sleep leads
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to upregulation of proinflammatory cytokines in response at
high altitude.

The relationship between sleep and cytokines was first
established through observations that sleep deprivation
increases INF-y production. To date, the roles of several
growth factors, including epidermal growth factor, fibro-
blast growth factor, nerve growth factor, brain-derived neuro-
trophic factor, granulocyte-macrophage colony-stimulating
factor and insulin-like growth factor-1 (IGF-1), have also been
investigated for their roles in sleep modulation [59]. How-
ever, this review focuses on the pro- and anti-inflammatory
cytokines IL-13, IL-6, IL-10, and TNF-«.

8. Hypoxia, Physical Exercise,
Cytokines and Sleep

In relation to physical exercise in hypoxia, few and contra-
dictory studies evaluated the effect of exercise on condition
of hypoxia on the production of cytokines [72]. The exercise
performed under hypoxic conditions/high altitude represents
an additional stress condition in relation to the exercise per-
formed at sea level [73]. Even when the exercise intensity is
relative, that is, taking into account that the maximum VO,
and performance decreases as the altitude increases [73, 74].
So many factors should be taken into account when dis-
cussing the interaction hypoxia and cytokines. The increase
in altitude or the extent of hypoxia is a primary factor that
influences the level of variation in physiological and bio-
chemical parameters which can modulate the immune res-
ponse mediated by exercise [12]. Collectively, analyzing the
results of the previously published works, one can speculate
that there is a threshold elevation that should be followed to
achieve the benefits associated with living or training at alti-
tude with the least possible damage [12].

The concentration of cytokines, notably IL-6 and inflam-
matory markers such as the acute phase proteins CRP has
its increased concentrations in response to a session with
moderate exercise intensity of 50% VO,,,,, at an altitude of
4300 m over the same exercise at sea level [75]. However,
in this study, the authors evaluated the effects of varying
intensities of exercise in normoxic and hypoxic environ-
ments at equivalently 3100m on immune regulation and
metabolic responses and showed that during prolonged
physical exercise at 40 and 60% of VO, this doesnot seem
to dramatically alter the response of the selected immune
system including IL-1 or TNF-« and metabolic markers.
Exercise training that uses acute hypoxic environments does
not adversely affect immune regulation system status and
may be beneficial for those individuals looking to increase
endurance performance [76].

One way to partially reverse the effects of hypoxia on sleep
patterns can be by performing moderate exercise, taking into
account that in normoxic condition physical exercise beside
improving sleep also modulates the memory, attention, and
mood state [77].

Physical exercise has been considered as the best strategy
to prevent and treat chronic inflammatory diseases of low
grade [78, 79], such as those generated by sleep disorders.

Regular physical training is able to increase the production of
anti-inflammatory cytokines and decrease the concentrations
of circulating proinflammatory cytokines and can improve
the quality of sleep.

9. Conclusions

The relationships among inflammation, hypoxia, and sleep
are discussed in the present study; we conclude that hypoxia
induced by elevated altitudes in the adaptation period results
in a disturbance in the balance of homeostasis and affects sev-
eral physiological systems. Consequently, severe changes in
sleep architecture and sleep quality may occur. These changes
might be mediated by increases in plasma concentrations of
IL-1, IL-6, and TNF-« and possibly through the stimulation
of EPO.
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