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Abstract
Human immunodeficiency virus (HIV) carries abundant human cell proteins,
particularly human leukocyte antigen (HLA) molecules when the virus leaves
host cells. Immunization in macaques with HLAs protects the animals from
simian immunodeficiency virus infection. This finding offers an alternative
approach to the development of HLA molecule-based HIV vaccines. Decades
of studies have enhanced a great deal of our understanding of the mechanisms
of allo-immune response-mediated anti-HIV immunity. These include
cell-mediated immunity, innate immunity, and antibody response. These
studies provided a rationale for the future design of effective HIV vaccines.
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Introduction
Vaccination is the most efficient and cost-effective way to  
prevent infectious diseases, which has been proven in diseases 
such as smallpox, polio, and yellow fever. However, despite  
decades of research, development of an effective human immu-
nodeficiency virus (HIV) vaccine has not been successful.  
Currently, there are an estimated 37 million HIV-infected people 
worldwide, and only half of them are receiving anti-retroviral 
therapy (ART). It is unlikely that ART alone will stop all HIV  
infections and end the epidemic, and an HIV vaccine is essential  
for ending the HIV/AIDS pandemic1.

The concept of an allo-immunization vaccine strategy was  
conceived decades ago2–4. In 1991, James Stott and colleagues 
first demonstrated that macaques immunized with human  
T-cell lines alone exhibited sterilizing immunity to intravenous  
challenge with simian immunodeficiency virus (SIV) grown in the  
same T-cell lines5. Subsequent studies identified that human  
leukocyte antigen (HLA) molecules expressed on the T-cell lines 
play an important role in eliciting protection6. These findings  
raised the possibility that HLAs in humans (allo-immune reac-
tions) can be used in HIV vaccines, as HLA genes are highly  
polymorphic in the human population and induce potent cellular 
and humoral immune responses. This idea of potentially using  
HLA as constituents in HIV vaccines has been advocated by a 
group led by Thomas Lehner in over a decade’s research, which  
gained further insight into the mechanisms of allo-immunity- 
mediated protection3,4. These include antibodies, cell immu-
nity, and innate immunity. The use of purified recombinant HLA  
class I and II alleles combined with viral antigens has demon-
strated the significant role of HLA molecules and viral antigens  
in eliciting protection in macaques7. Similar studies were carried 
out in allo-immunization in macaques by using recombinant 
Mamu major histocompatibility complex (MHC) molecules  
combined with SIV antigens8.

On its surface, HIV displays envelope (Env) glycoproteins  
(termed spikes) that are composed of two subunits: three  
molecules of gp120 linked non-covalently to three molecules 
of gp41. Between the viral envelope proteins, the viral lipid  
membrane contains abundant host cell-derived HLAs as well as 
some other host-cell proteins which are selectively incorporated 
into the envelope of the virions. One study estimated that more 
HLA proteins than gp140 molecules are incorporated into the 
membrane of virions9. HLA molecules have both well-defined 
and stable polymorphisms, making them an attractive alternative  
target for HIV vaccine design.

This review will summarize previous studies on HLA-based HIV 
vaccines and some recent new findings. It will also discuss the 
future designs of HLA allo-antigen-based HIV vaccines.

HLA polymorphism
HLA class I molecules (A, B, and C) have over 12,000 differ-
ent alleles and class II molecules have over 4,000 alleles among  
populations. HLA class I and II molecules are heterodimeric and 
have variable extracellular and relatively constant transmembrane 
and intracytoplasmic domains. The class I molecule consists  
of a 45 kDa heavy chain and a light chain (β-2 microglobulin),  

and the MHC class II molecule is composed of two 30 kDa  
membrane-spanning proteins. HLA genes contain eight exons. 
Exons 2 and 3 encode the α-1 and α-2 domains for class I and the 
α-1 and β-1 for class II, which both bind and present the peptide 
to T cells. The great majority of the polymorphism found in the  
class I and II genes occurs in the α-1 and α-2 (class I) and the α-1 
and β-1 (class II) domains10.

Allogeneic non-self-antigens are responsible for inducing  
allo-immune reaction. HLAs are the major allo-antigens. These  
highly polymorphic antigens, which are expressed on all nucle-
ated cells, are capable of eliciting unusually large polyclonal  
T-cell responses and antibodies. Two forms of allo-recognition 
of foreign HLA molecules exist. The first involves recogni-
tion by T cells of intact non-self-MHC molecules complexed to  
endogenous peptides (“direct” allo-recognition). The second 
pathway involves the recognition of allogeneic MHC mole-
cules as peptides presented by self-MHC molecules (“indirect”  
allo-recognition). Allo-recognition is characterized by uniquely 
high frequencies of responding T cells. The mechanism of allo-
recognition is believed to be part of the self-restricted T-cell  
repertoire established by “positive selection”. Direct alloreac-
tivity is the result of cross-reactivity of T-cell receptors (TCRs) 
that bind self-HLA-restricted peptides. However, recognition of  
MHC allo-antigens by allo-specific B cells is quite different from 
T cells. Allo-antigen polymorphic determinants are readily bound 
by B-cell receptors (surface immunoglobulins), which can be  
internalized and present as HLA-peptide antigen to T cells. This 
represents an important route of amplifying immune response  
and also producing anti-HLA antibodies11.

Cell-mediated anti-HIV allo-immunity
T-cell response to allogeneic HLA molecules represents a  
powerful natural immune response. Development of allogeneic  
responses seems to be not uncommon among the human  
population, and this has been described in heterosexual and  
homosexual monogamous partners practicing unprotected sex,  
which showed allogeneic CD4+ and CD8+ T-cell prolifera-
tive responses to the partners’ unmatched cells12,13. CD4+ T cells 
from these allogeneic responders (recipients) also showed resist-
ance to HIV infection in vitro, suggesting that cell-mediated  
allogeneic response may play an important role in the preven-
tion of HIV infection12. Genetic, epidemiological, and experi-
mental evidence showed that the HLA molecules are critical in  
controlling HIV infection14. Sharing HLA class I molecules,  
particularly HLA-B alleles, is associated with an increased risk 
of HIV-1 transmission in discordant couples and HIV verti-
cal transmission between mother and child15–17. These findings  
suggest that allogeneic immune responses elicited by HLA-B  
may play an important role in the protection against HIV transmis-
sion. Early studies demonstrated that both systemic allo-immu-
nization in humans and mucosal allo-immunization in macaques  
significantly upregulated the concentrations of CD8 cell- 
derived soluble anti-HIV factors, such as HIV suppressor factor, 
CCL2, 3, and 5, which also downregulated the proportion of 
cells expressing CCR5 and CXCR4, the co-receptors for HIV  
infection. These in vivo allogeneic stimulated CD4+ T cells 
also showed a dose-dependent decrease in HIV/SIV infectiv-
ity in vitro18,19. In addition to producing anti-HIV soluble factors,  
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allogeneic CD8+ T-cell responses were reported to be able to  
kill incoming infected CD4+ cells which may carry viral anti-
gen-associated HLA class I molecules and therefore may play a  
complementary role in reducing cell-associated transmission20. 
It is interesting to note that only HLA-B-mediated allogeneic  
cytotoxic T lymphocyte (CTL) responses can lead to significant 
cell killing20. The reason for this is not clear; it may be because 
of higher precursor frequency against HLA-B alleles than  
HLA-A alleles observed in the human population21,22.

Innate immunity
Innate immunity is an early response system, largely inde-
pendent of prior encounter with a pathogen. Innate immunity 
can be classified into cellular, extracellular, and intracellular  
components. The human immune system has developed a number 
of innate mechanisms that can interrupt HIV infection at vari-
ous stages: (i) inhibition of HIV-1 by downmodulation or block-
ing of the CCR5 co-receptor induced by an increase in the CC  
chemokines CCL3, CCL4, and CCL5 and (ii) inhibition of HIV-
1 which may have escaped the CCR5-mediated mechanism  
by upregulation of intracellular host-encoded HIV-1 restriction 
factors by interfering with viral RNA reverse transcription and  
post-integration restriction and adherence. In recent years, a  
number of restriction factors of HIV replication have been  
described, such as APOBEC3G (A3G, apolipoprotein B mRNA 
editing enzyme, catalytic polypeptide-like 3G) or F protein,  
TRIM5-α, Tetherin, SAMHD, and MX223.

Stimulation of human CD4+ T cells with allogeneic cells or 
recombinant HLA-A construct in vitro upregulated A3G mRNA, 
which is correlated with the allogeneic T-cell proliferative  
responses24,25. The mechanism of upregulation of A3G mRNA 
involves interaction between HLA on dendritic cells (DCs) and 
TCR of CD4+ T cells, which is ZAP70 and downstream ERK  
phosphokinase signaling dependent and induces CD40L and 
A3G mRNA expression in CD4+ T cells25. Allo-immune 
response-induced A3G was found to be significantly increased 
in CD4+CD45RA+ naive, CCR5+ and CD45RA-CCR7− effector 
memory T cells25. In vivo studies of women allo-immunized with 
their partners’ peripheral blood mononuclear cells also showed 
a significant increase in A3G protein in CD45RO+ memory 
and CCR7− effector memory T cells. The functional effect of  
allo-stimulation upregulating A3G was demonstrated by a  
significant decrease in in vitro infectivity25.

Systemic immunization of rhesus macaques with recombinant 
HLA constructs, linked with HIV/SIV antigens and heat shock  
protein 70 (HSP70) to dextran, showed significant upregulation 
of A3G in CD27+ memory B cells and CD4+ effector memory  
T cells26. Interestingly, activation-induced cytidine deaminase 
(AID), a member of the deaminase family, is also upregulated. 
AID is important for antibody somatic hypermutation and class  
switch recombination, and upregulation of AID in B cells is  
directly correlated with A3G in B and T cells, and both AID 
and A3G upregulation was correlated with protection against 
SHIV (simian/human immunodeficiency virus) challenge in 
macaques26. There was also an increase in interleukin-15 (IL-15) 
in DCs and CD40L in CD4+ T cells. IL-15 binds the IL-15 receptor  
complex in CD4+ T and B cells and upregulates A3G, which can  
be further enhanced by CD40L–CD40 interaction.

The role of antibodies
The role of anti-cell antibodies, particularly anti-HLA antibodies, 
in protection against SIV/HIV infection has been studied exten-
sively. Numerous studies have demonstrated that antibodies to 
HLA molecules can effectively neutralize HIV-1 in a comple-
ment-dependent manner5,6,27–29. These studies also shed some light 
on the mechanisms of anti-HLA antibodies produced in macaques  
(xeno) and in humans (allo) in protection against SIV/HIV  
infection and the importance of adequate antibody titers and  
adjuvant used.

In xeno-immunization of macaques with human T-cell lines, the 
induction of anti-HLA antibodies plays an important role in pro-
tection5–7. Recent studies using recombinant HLA class I and 
II and HIV/SIV antigens demonstrated that anti-HLA antibody 
alone is not sufficient in eliciting protective immunity against  
heterologous SHIV challenge in rhesus macaques. The protec-
tion was achieved in combination with viral antigens and was 
able to be passively transferred by serum7. There is evidence 
that allo-antibodies can also protect against HIV/SIV infection8.  
Immunization of macaques with recombinant Mamu MHC 
constructs and HIV gp120 elicits plasma and mucosal IgG 
and IgA antibodies to the antigens and protects against rectal  
challenge with SHIV. In humans, induction of allo-antibodies 
has been demonstrated in women receiving whole-cell  
allo-immunization in the form of leukocyte immunotherapy for  
recurrent spontaneous abortion10. The role of anti-HLA anti-
bodies in protection against HIV infection in vivo is not clear; 
in vitro studies suggest that the antibodies can neutralize  
HIV-1 infection in cell-based assay27. Both anti-HLA antibod-
ies induced in macaques (xeno) and humans (allo) neutralize  
SIV/HIV grown in the donor CD4+ T cells in a complement- 
dependent manner7,27–29.

The binding epitopes of polyclonal anti-HLA antibodies induced 
in macaques (xeno) and in humans (allo) are significantly  
different. It has been shown using HLA bead arrays that  
macaque anti-HLA antibodies were directed against whole HLA 
structure (polymorphisms and non-polymorphism determinants) 
and bound to almost all HLA alleles irrespective of the HLA  
alleles used for immunization, and this was demonstrated in  
cell line-immunized29 and purified HLA molecule-immunized 
macaques7. In contrast, polyclonal allo-antibodies produced in 
humans, such as transplant patients30 and multiparous women31, 
are usually directed against HLA polymorphism. Furthermore,  
allo-antibodies induced in allo-immunized women are demon-
strated to be specific to HLA molecules present in the donor 
haplotype but not recipient haplotypes28. This difference 
may explain the different efficacy between xeno- and allo- 
immunization in protection against SIV/HIV infection.

Other antibodies
Allo-immunization with unmatched leukocytes from partners 
of women with recurrent spontaneous abortion elicits specific  
antibodies to the CCR5, the co-receptor for R5 HIV. These  
antibodies were also found in the sera of multiparous women 
who were naturally immunized by semi-allogeneic fetal  
antigens. Antibodies to CCR5 have been isolated from healthy 
donors, in CCR5-lacking subjects (Delta32 mutation) who were  
sensitized with CCR5+ cells, in HIV-infected patients, and from 
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HIV-exposed, seronegative (ESN) subjects32. Antibodies to 
CCR5 were also found in rhesus macaques immunized with SIV  
grown in human CD4+ T cells33 and allo-immunized women34. 
CCR5 antibodies were also demonstrated in macaques immu-
nized with various domains of CCR5 molecules and significantly  
protect macaques from SIV infection35,36. Recent studies found 
that administration of antibodies to the integrin α4β7, the hom-
ing receptor, leads to significant protection from transmission37.  
Whereas antibodies to CCR5 can inhibit R5 HIV entry by  
blocking CCR5 on the cell surface, the antibodies against α4β7 
incorporated into the envelope of HIV-1 virions38 may play an  
important role in protection.

The prospect of an HLA molecule-based vaccine
Most research in developing HIV vaccines has been focused 
on the induction of protective immune responses against HIV- 
encoded proteins. It is well known that HIV uses several  
strategies to evade the host immune system. A high degree of  
glycosylation in combination with an error-prone reverse 
transcriptase leads to conformational masking of conserved  
epitopes. High mutation rates not only make it difficult for the 
immune system to generate broadly neutralizing antibodies  
against HIV-1 Env but also enable the virus to escape the  
CD8+ T-cell-mediated CTL response. The abundant host  
membrane proteins, particularly HLA molecules that can elicit  
protective immunity in macaques, present an alternative approach 
to developing effective HIV vaccines2–4,39,40.

There are a number of obstacles to be overcome in design-
ing HLA molecule-based vaccines. It is evident that an HLA 
molecule as a xeno-antigen is more effective in macaques to  
protect against SIV or SHIV infection. Emerging evidence shows 
that immune response to HLA non-polymorphic regions may play 
an important role in eliciting protection, as was demonstrated in 
xeno-immunized macaques7,29. In contrast, in allo-immunized 
humans, immune response is largely directed against HLA mol-
ecule polymorphism28–31. The importance of immune responses 
to non-polymorphic epitopes in protection against HIV infection 
can also be envisaged, given that HIV carries a donor’s HLA 
only in the initial exposure to the virus when the recipient’s  
allo-immune response may have the best opportunity to prevent 
infection. Once the virus has established infection in the  
individual host, the viral envelope will carry recipient HLA  
molecules and the allogeneic-based immune response directed to 
the polymorphism may diminish its effect to eliminate the virus. 
To induce immune response to HLA non-polymorphic epitopes, 
which are effectively auto-antigens, one needs to break down 
immune tolerance. This can be achieved by using a different  
immunization regime or by inducing cross-reactions to HLA 
non-polymorphic determinants through the modification of  

antigens. However, if one induced immune response to HLA 
non-polymorphism, the risk for the host is not clear, as some  
antibodies against T-cell surface molecules can cause severe  
adverse effects41. An effective HLA antigen-based vaccine also 
needs to be able to elicit high titers of antibodies, which were 
demonstrated to be correlated with HIV-neutralizing activity  
in vitro and the viral load in the infected macaques in vivo7. In 
order to achieve a high titer of antibodies, particularly in humans  
of allo-immunization, one needs to consider using more potent 
adjuvants, such as TLR agonist HSP707.

A vaccine including only HLA molecules may not be sufficient 
to elicit protection7. Other antigen components, such as viral 
antigens, may be required in order to achieve protection7. The 
reason for this is not clear. Studies have shown that antiviral 
activity of anti-HLA allo-antibodies can be greatly enhanced in  
combination with anti-HIV protein antibodies28. Heteroliga-
tion of HIV gp140 and non-HIV antigens greatly increases the 
binding affinity of antibodies, and many conventional anti-HIV- 
neutralizing antibodies cross-react with cell-associated antigens, 
which may contribute to the neutralizing effect42. Furthermore, 
multiple components likely increase vaccine immunogenicity to 
elicit humoral, cellular, and innate immune responses.

Conclusions
Since it was discovered that xeno-immunization response 
induced by human T-cell lines can protect macaques from SIV  
infection, a great deal of research has been carried out on the  
possibility of using human cell antigens, in particular HLA  
molecules, as allo-antigen-based HIV vaccines. The polymor-
phic nature of HLA molecules and the potency of allogeneic  
immune reaction have been demonstrated to elicit anti-HLA  
antibodies, T-cell-mediated anti-HIV immunity, and innate  
anti-HIV immunity that can neutralize HIV, inhibit HIV infection 
by blocking viral entry or post-entry transcription, or eliminate  
virus-infected cells. Studies also show that immune response 
to HLA non-polymorphic determinants may be important in  
protection against HIV infection. Harnessing this potent force 
of allogeneic immune responses could benefit our design of  
HLA molecule-based HIV vaccines which can play an important 
role in combating the HIV pandemic.
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