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Molecular differences between younger versus older
ER-positive and HER2-negative breast cancers
Tao Qing1,6, Thomas Karn 2,6, Mariya Rozenblit1, Julia Foldi 1, Michal Marczyk 1,3, Naing Lin Shan 1, Kim Blenman 1,
Uwe Holtrich2, Kevin Kalinsky 4, Funda Meric-Bernstam5 and Lajos Pusztai 1✉

The RxPONDER and TAILORx trials demonstrated benefit from adjuvant chemotherapy in patients age ≤ 50 with node-positive
breast cancer and Recurrence Score (RS) 0–26, and in node-negative disease with RS 16–25, respectively, but no benefit in older
women with the same clinical features. We analyzed transcriptomic and genomic data of ER+/HER2− breast cancers with in silico
RS < 26 from TCGA (n= 530), two microarray cohorts (A: n= 865; B: n= 609), the METABRIC (n= 867), and the SCAN-B (n= 1636)
datasets. There was no difference in proliferation-related gene expression between age groups. Older patients had higher mutation
burden and more frequent ESR1 copy number gain, but lower frequency of GATA3 mutations. Younger patients had higher rate of
ESR1 copy number loss. In all datasets, younger patients had significantly lower mRNA expression of ESR1 and ER-associated genes,
and higher expression of immune-related genes. The ER- and immune-related gene signatures showed negative correlation and
defined three subpopulations in younger women: immune-high/ER-low, immune-intermediate/ER-intermediate, and immune-low/
ER-intermediate. We hypothesize that in immune-high cancers, the cytotoxic effect of chemotherapy may drive the benefit,
whereas in immune-low/ER-intermediate cancers chemotherapy induced ovarian suppression may play important role.
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INTRODUCTION
Most breast cancers are diagnosed in women older than 501. Age
is not only a risk factor for cancer, but it also interacts with
adjuvant chemotherapy benefit in hormone receptor positive/
human epidermal growth factor receptor-2 negative
(HR+/HER2−) breast cancers2. Three randomized trials demon-
strated greater chemotherapy benefit in younger compared to
older women3. The TAILORx trial showed improved invasive
disease-free survival (IDFS) with chemotherapy in addition to
adjuvant endocrine therapy in patients younger than 50 with
lymph-node negative breast cancer and OncotypeDx 21-gene
Recurrence Scores (RS) between 16 and 25, no benefit was seen in
women older than 504. The RxPONDER trial randomized patients
with 1–3 positive lymph nodes and RS 0–25 to either adjuvant
endocrine therapy or endocrine therapy plus chemotherapy5. It
also demonstrated improved IDFS with chemotherapy in pre-
menopausal patients, or in patients 50 or younger, but no benefit
was seen in older women5. In the MINDACT trial, a subset of HR
+/HER2− patients with high clinical risk and low genomic risk (by
the MammaPrint assay) were randomly assigned to receive
adjuvant chemotherapy or not6. An exploratory analysis showed
improved distant metastasis-free survival (DMFS) with chemother-
apy compared to endocrine therapy alone in women younger
than 50, but not in women older than 506. In all three trials, the
most frequently used endocrine therapy for premenopausal
women was tamoxifen.
It is unclear what explains the interaction between age and

adjuvant chemotherapy benefit. Age is difficult to separate from
its association with menopausal status. The mean age of onset of
menopause is 51 years in Western countries and by age 55
approximately 85% of women have undergone menopause7,8.

Adjuvant chemotherapy in pre-menopausal women can induce
menopause in an age-dependent manner9,10. The NSABP B-47
clinical trial showed that chemotherapy induced amenorrhea in
pre-menopausal women is common but it is often discordant with
hormone level measurements. In this study, 85% of patients were
amenorrhoeic at 12 months after starting adjuvant chemotherapy
but only 28 and 22% had postmenopausal estradiol levels at 12
and 24 months11. The SOFT and TEXT trials demonstrated that in
premenopausal HR+ patients ovarian suppression plus an
aromatase inhibitor is more effective than tamoxifen alone to
improve recurrence-free survival12,13. Chemotherapy-induced
menopause can therefore contribute to adjuvant chemotherapy
benefit. However, younger patients also have more chemotherapy
sensitive cancers. A pooled analysis of 9000 patients enrolled in
neoadjuvant chemotherapy trials showed that the pathologic
complete response (pCR) rate is significantly higher in the younger
HR+/HER2− patients14.
In the past 20 years, three types of molecular features emerged

that predict endocrine and chemotherapy sensitivities in early
stage-breast HR+/HER2− cancer; (i) expression of estrogen
receptor (ER) regulated genes is a measure of endocrine sensitivity
and is associated with better prognosis15, (ii) proliferation, and (iii)
immune infiltration related markers are independently associated
with greater chemotherapy sensitivity in neoadjuvant chemother-
apy trials16–18.
The goal of the current analysis was to compare differences in

estrogen receptor (ER)-, proliferation-, and immune-related gene
expressions, and somatic mutation patterns and mutation burden
between younger (≤50 years of age) and older (≥55 years) patients
with HR+/HER2− breast cancer that could explain the chemother-
apy benefit in younger women. These age cohorts were selected
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because the ≤50 group is highly enriched in pre-menopausal
women and represents the group where all the chemotherapy
benefit accrues, whereas the ≥55 group is almost entirely
composed of post-menopausal women8. We further restricted
our analysis to the subset of patients who were in the lower 80%
range of in silico RS distribution to mimic the RxPONDER and
TAILORX populations that excluded women with RS > 25.

RESULTS
Patient characteristics
Patient and tumor characteristics, including molecular subtype
distribution, and available treatment information are presented in
Table 1. The median ages of the younger and older patients
ranged between 45–46 and 66–69 years across the datasets.

Differences in ER signaling, cell proliferation, and immune
infiltration
ESR1 mRNA expression was significantly lower in younger women
in all cohorts (P < 0.001; Fig. 1a, c, e, Supplementary Fig. 1). Lower
mRNA expression in bulk RNA analysis could be due to either
fewer ER-positive cancer cells, that could be reflected by lower ER
percent positivity by immunohistochemistry (IHC), or to lower ER
mRNA expression within ER-positive cells. To distinguish between
these two possibilities, we plotted age distribution in ten IHC
percent positivity brackets from 1 to 10% to >90% in increments
of 10 in the TCGA data where this information was available
(n= 338). We observed no statistically significant correlation
between age and increasing ER IHC percent positivity (τ= 0.036,
P < 0.19, Supplementary Fig. 2a). Overall, ESR1 mRNA expression
increased as IHC percent positivity increased (τ= 0.27, P < 0.0001),
reaching a plateau after > 40% (Supplementary Fig. 2b). ESR1
mRNA expression showed positive association with age at
diagnosis (Spearman coefficient= 0.41, P < 0.0001) (Supplemen-
tary Fig. 2c). A regression model of ESR1 mRNA expression using
age and IHC positivity showed contribution of both parameters
but a larger effect size of age (standardized beta 0.365) than
percentage of IHC positivity (standardized beta 0.215). This
suggests that the overall lower ESR1 mRNA expression in younger
patients is primarily driven by lower ESR1 mRNA levels in ER
positive cancer cells.
Next, we assessed the expression of four gene signatures that

are positively associated with endocrine therapy sensitivity
including a 4-gene ERS19, a 7-gene ERS-Lum19, a 106-gene ERS-
Pos signature15, and a 59-gene ERS-Neg signature15 which is
negatively associated with ER expression and endocrine sensitiv-
ity15. Both in the TCGA and in the Metabric cohort, the ERS, ERS-
Lum, and ERS-Pos signatures were all significantly lower (FDR <
0.03) while the ERS-Neg signature was higher (FDR < 0.001) in
younger patients (Table 2). Similarly, in both microarray cohorts,
and in the SCAN-B-cohort, the ERS-Pos signature was lower and
the ERS Neg signature was higher in the younger age group
(FDR < 0.002; Table 2). The two smaller signatures, ERS and ERS-
Lum, showed nominally lower expressions in younger patients in
cohort-A without reaching statistical significance. In cohort-B, ERS
showed lower expression in young patients whereas ERS-Lum was
similar between age groups (Table 2). Overall, these results
indicate not only downregulation of ESR1 mRNA expression but
also lower ER-associated gene expression in ER positive cancers of
younger compared to older patients.
mRNA expression of the MKI67 gene, that codes for the Ki67

proliferation marker, was similar between age groups in TCGA and
microarray cohort-A, but was slightly but statistically significantly
higher in the younger patients in microarray cohort-B (Fig. 1b, d, f
and Supplementary Fig. 1). The expression of a 12-gene mitotic
kinase gene signature (MKS), that has been associated with worse
prognosis in HR positive breast cancers and higher sensitivity to

neoadjuvant chemotherapy14, did not differ statistically signifi-
cantly between the age groups in all cohorts (Table 2). However,
the most highly proliferative tumors with the highest 20% of in
silico RS were not included in this analysis by design.
Next, we assessed 4 different immune cell signatures20 and a

tumor inflammation signature21 that were previously shown to
predict response to chemotherapy and immune checkpoint
inhibitor therapy (Table 2). In the TCGA, B-cell, T-cell, Mast-cell,
and TIS signatures were significantly higher, the dendritic
signature only showed nominally increased expression (FDR=
0.22). In the microarray Cohort-A, B cells and mast cells were
significantly higher, the T cell and TIS signatures showed a trend
for higher expression. In Cohort-B, T cells, B cells, TIS, and dendritic
cells signatures were significantly higher in younger patients
(Table 2). We also evaluated these gene signatures in the
METABRIC and SCAN-B data sets and found similar associations
(Table 2). We also performed an immune cell composition analysis
in the TCGA data using the ConsensusTME method22. Consistent
with the gene signature results, younger patients had higher
levels B cells, Cytotoxic cells, Endothelial, Fibroblasts, Plasma cells,
CD4 T cell, CD8 T cells, and T regulatory cell markers
(Supplementary Fig. 3).
Next, we assessed correlation between the ESR1, MKI67

expression, and the 10 gene signatures in Table 2. The MKI67
expression and MKS signature, and ESR1 expression and the ERS-
Pos gene signature were each highly correlated. The correlation
between ESR1 and the other ER-related gene signatures was less
strong. Among the immune signatures, the T cell, B cell, and TIS
signatures showed the highest co-expression. The ER-related and
immune signatures showed moderate negative correlation in all 3
data sets (Pearson correlation coefficients −0.24, −0.31, −0.25)
suggesting independent predictive functions (Supplementary
Fig. 4). The distributions of the B cell and ERS-Pos signatures in
the TCGA cohort are shown on Fig. 1g, h and illustrate that in the
age ≤50 group, three patient populations are intermixed including
those with immune-intermediate/ER-intermediate (largest subset),
immune-low/ER-intermediate, and immune-high/ER-low (smallest
subset) cancers, while in the older age group the immune-low/ER-
high cancers are predominant.

Differentially expressed genes and pathways between age
groups
In the TCGA, we identified 713 up- and 77 downregulated genes in
younger patients (Fig. 2a and Supplementary Table 1). In
microarray cohorts A and B, we found 122 and 95 upregulated
and 15 and 14 downregulated genes, respectively (Fig. 2b, c,
Supplementary Tables 2 & 3, and Supplementary Fig. 5). Thirty-one
upregulated genes in younger patients were shared in all three
analyses (Fig. 2d, e). Twenty-five and 11 of the 31 overlapped
DEGs were also upregulated in young patients in SCAN-B and
METABRIC cohort, respectively (Supplementary Table 4). ESR1 and
CRABP2 were down-regulated in both SCAN-B and METABRIC
cohorts (Supplementary Table 4). In gene set enrichment analysis,
22 biological pathways showed differential expression by age in
TCGA; 7 were immune and inflammation related, the others
represented estrogen, K-ras, and hedgehog signaling, epithelial
mesenchymal transition, angiogenesis, and apical junction/apical
surface pathways (Supplementary Table 5).

Comparison of somatic mutations and copy number variations
(CNV) in younger versus older patients in TCGA
The somatic mutation burden was significantly higher in older
patients (P < 0.0001; Fig. 3a), consistent with age-related accumu-
lation of mutations23. At gene level, 13 genes had mutation
frequencies ≥ 5% and only GATA3 showed a significantly higher
mutation frequency in younger patients (26% versus 12%,
P < 0.0001; Fig. 3b). In multivariate logistic regression analysis,
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luminal B tumors were associated with the enrichment of GATA3
mutations (P= 0.011, odds ratio= 2.18), younger patients also had
higher rate of GATA3 mutations (P < 0.0001, odds ratio= 3.15).
These results are consistent with an earlier report that showed
GATA3 mutation enrichment in luminal B cancers from young
women24.
We also compared the CNV gain and loss of 705 Catalog Of

Somatic Mutations In Cancer (COSMIC) genes25. We identified high
rate of CNV gain of ESR1, LATS1, ARID1B, SGK1, and MYB genes
(odds ratio > 8.5, FDR < 0.05) in old patients (Supplementary Table
6). Young patients have a higher rate of CNV loss of ESR1 gene
(odds ratio = 0.45, FDR= 0.03, Supplementary Table 6). In
addition to ESR1, we identified 19 and 29 genes have higher rate
of CNV loss in young and old patients, respectively (Supplemen-
tary Table 6).

DISCUSSION
In independent data sets including n= 4507 ER+/HER2− breast
cancers, we found that cancers in patients 50 or younger have
lower expression of ESR1 and ER-related genes and higher
expression of immune related genes. Increasing ER expression
with older age has been described in earlier studies that analyzed
all breast cancer subtypes together26. A significant linear relation-
ship between increasing age and ESR1 mRNA expression was also
seen in luminal-A and -B breast cancers27. The biological reasons
behind this phenomenon are unclear. In normal breast epithelium
in premenopausal women, the ER expression fluctuates during the
menstrual cycle, and ER expression is highest during the follicular
phase28,29. Based on this observation, one would expect higher
average ER expression in premenopausal women, however, we
found the opposite. We hypothesize that ER expression in breast
epithelial cells, and in cancers that arise from them, may increase
as estrogen levels decrease with aging due to a feedback loop.
Indeed, several studies showed increased ER expression in normal
breast epithelium with increasing age30,31.
The clinical relevance of lower ESR1 and ER related gene

expression in cancers of younger women is uncertain. However,
ER-associated genes are components of all clinically validated
multi-gene prognostic signatures32, and higher expression levels
are associated with better prognosis with adjuvant endocrine
therapy33. Higher ER-associated gene expression is also associated
with longer PFS and OS in metastatic breast cancer treated with
endocrine therapy34. These results suggest that lower ESR1 and
ER-related gene expression in younger women may indicate lower
endocrine sensitivity. Intensifying endocrine therapy could max-
imize benefit, which is consistent with clinical trial results that
demonstrated ovarian suppression plus tamoxifen, or exemestane,
is more effective than tamoxifen alone to improve recurrence-free
survival in premenopausal women.
The higher immune gene expression in younger HR+/HER2−

breast cancer patients compared to older patients has not
previously been reported. The cause of the higher immune
infiltration is unknown. Somatic mutation burden that could
increase neoantigen load was lower in younger patients. The gene
expression data suggests an important role for CXCL13 that was
the most highly and consistently overexpressed chemokine in
cancers from younger women. CXCL13 is secreted by dendritic and
endothelial cells, and is a powerful B cell attractant, that can also
activate helper T cells35. High expression of CXCL13 is predictive of
better survival in HR+/HER2− breast cancer patients treated with
adjuvant chemotherapy36, and is associated with higher patholo-
gic complete response rate after neoadjuvant chemotherapy in HR
+ breast cancers17. These observations suggest that HR+/HER2−
breast cancer in younger patients may have higher chemotherapy
sensitivity due to greater immune infiltration in the tumor
microenvironment than cancers in older women, even if
proliferation related predictive markers are similar. When weTa
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Table 2. Estrogen receptor and immune and proliferation-related signatures in younger and older breast cancer patients.

Signature log2 fold change Mean in younger Mean in older P value FDR

TCGA Estrogen receptor ERS Neg Symmans 0.52 0.26 −0.26 <0.001 <0.001

ERS Pos Symmans −0.21 0.09 0.30 <0.001 <0.001

ERS luminal −0.17 0.14 0.31 <0.001 <0.001

ERS −0.14 0.20 0.34 0.004 0.005

Immune B cell 0.34 0.25 −0.09 <0.001 <0.001

T cell 0.35 0.19 −0.16 <0.001 <0.001

Mast cell 0.25 0.29 0.04 0.003 0.004

TIS 0.26 0.09 −0.18 0.002 0.003

Dendritic cell 0.15 −0.04 −0.19 0.13 0.22

Proliferation MKS 0.07 −0.31 −0.37 0.46 0.46

Cohort-A Estrogen receptor ERS Neg Symmans 0.33 0.22 −0.11 <0.001 <0.001

ERS Pos Symmans −0.31 −0.21 0.10 <0.001 <0.001

ERS luminal −0.13 −0.09 0.04 0.08 0.14

ERS −0.07 −0.05 0.02 0.21 0.31

Immune B cell 0.20 0.13 −0.06 0.001 0.004

Mast cell 0.16 0.11 −0.05 0.002 0.004

T cell 0.13 0.09 −0.04 0.08 0.14

TIS 0.04 0.02 −0.01 0.61 0.66

Dendritic cell −0.03 −0.02 0.01 0.59 0.66

Proliferation MKS 0.03 0.02 −0.01 0.71 0.71

Cohort-B Estrogen receptor ERS Neg Symmans 0.27 0.20 −0.07 <0.001 0.002

ERS Pos Symmans −0.22 −0.16 0.06 0.002 0.005

ERS Luminal 0.01 0.01 0.00 0.95 0.95

ERS −0.10 −0.07 0.03 0.18 0.25

Immune B cell 0.51 0.38 −0.14 <0.001 <0.001

T cell 0.41 0.30 −0.11 <0.001 <0.001

TIS 0.20 0.15 −0.05 0.02 0.03

Dendritic cell 0.14 0.10 −0.04 0.02 0.04

Mast cell 0.01 0.01 0.00 0.73 0.88

Proliferation MKS −0.01 0.00 0.00 0.88 0.95

METABRIC Estrogen receptor ERS Neg Symmans 0.63 0.51 −0.11 <0.001 <0.001

ERS Pos Symmans −0.29 −0.24 0.05 <0.001 0.001

ERS luminal −0.21 −0.18 0.04 0.02 0.03

ERS −0.44 −0.36 0.08 <0.001 <0.001

Immune B cell 0.22 0.18 −0.04 <0.001 <0.001

T cell 0.20 0.17 −0.04 0.004 0.009

TIS 0.09 0.08 −0.02 0.28 0.28

Dendritic cell 0.06 0.05 −0.01 0.19 0.22

Mast cell 0.21 0.18 −0.04 0.01 0.01

Proliferation MKS −0.11 −0.09 0.02 0.20 0.22

SCAN-B Estrogen receptor ERS Neg Symmans 0.33 0.27 −0.06 <0.001 <0.001

ERS Pos Symmans −0.09 −0.07 0.02 0.06 0.10

ERS luminal −0.01 −0.01 0.00 0.69 0.69

ERS −0.09 −0.08 0.02 0.06 0.10

Immune B cell 0.31 0.25 −0.06 <0.001 <0.001

T cell 0.25 0.20 −0.05 <0.001 <0.001

TIS 0.13 0.11 −0.02 0.16 0.25

Dendritic cell −0.22 −0.18 0.04 <0.001 0.002

Mast cell 0.09 0.07 −0.02 0.25 0.33

Proliferation MKS 0.08 0.07 −0.01 0.32 0.38
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examined immune and ER related gene expression distributions
jointly, we found 3 distinct sub-populations among younger
women; (i) immune-high/ER-low, (ii) immune-intermediate/ER-
intermediate, and (iii) immune-low/ER-intermediate cancers. The
impact of adjuvant chemotherapy is likely different in these

different subgroups. We hypothesize that in immune-high/
intermediate and ER-low/intermediate cancers the cytotoxic effect
drives the benefit, whereas in immune-low/ER-intermediate
cancers chemotherapy-induced ovarian suppression plays a more
important role. These observations add to the already existing
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literature that described general molecular differences between
breast cancers in younger and older women including elevated
integrin/laminin and EGFR and TGFβ signaling and numerous age-
associated genes37–39. To increase our ability to identify differ-
ences between pre- and post-menopausal ER+ breast cancers our
analysis focused on cancers from woman < 50 and >55 years of
age groups and excluded the perimenopausal age group 50 to 55.
We further restricted our analysis by excluding cases with the
highest 20% of in silico RS. This is an important feature of our
analysis that has impacted the findings, unlike all previous studies
that find higher prevalence of luminal B cancers in younger
women, our comparison cohorts were balanced for luminal A and
B subtypes. This indicates that the higher chemotherapy benefit is
not due to higher proportion of Luminal B cancers among
premenopausal women with Recurrence Score <26. Finally, our
purpose was to examine differences, if they exist, in carefully
selected clinically validated biologic features that predict for
chemotherapy and endocrine therapy sensitivity so that we could
generate a hypothesis of why younger patients benefit more from
chemotherapy.
This study has limitations. We were unable to assess the

interaction between adjuvant treatments, molecular features and
survival in the young women due to lack of patient specific
treatment information in our datasets and lack of randomization.
However, we describe a testable hypothesis that could be
examined in future clinical trials prospectively, or retrospectively,
when gene expression data becomes available from samples of
the TAILORx or RxPONDER trials. We describe biological features
that are highly reproducible across independent datasets and
across different mRNA quantification platforms which implies that
these robust gene expression features could be captured by
standardized assays in the future.
Overall, our analysis suggests that both the cytotoxic and

endocrine effects of adjuvant chemotherapy could contribute to
the overall survival benefit seen in younger patients but the
relative contributions of these effects may vary by the immune cell
composition and ER expression of these cancers.

METHODS
TCGA breast cancer cohort
mRNA expression, somatic mutation, and clinical data of 1085
primary breast cancer patients were obtained from TCGA (https://
gdc.cancer.gov/about-data/publications/pancanatlas). The RNA-
seq expression matrix of Fragments per Kilobase of transcript
per Million mapped reads (FPKM) was upper quantile normalized
and subsequently log2 transformed. Percent ER positivity assessed
by routine clinical immunohistochemistry (IHC) was available for
1037 cases40. We excluded the ER-negative (n= 238) and HER2
amplified (n= 100) cases, and cases without ER information
(n= 48). We assigned HER2 status based on HER2 mRNA
expression that follows a bimodal expression pattern41. We used
the Bayesian information criterion to find the number of
components in the Gaussian mixture model and used GaMRed
(http://cellab.polsl.pl/index.php/software?id=28)42 to select the
optimal threshold value (normalized FPKM equal to 15.17) to
define HER2 gene overexpression. To mimick the TAILORx and
RxPONDER populations we also excluded case with the top 20% in
silico calculated RS score (n= 74). For final analysis, we grouped
ER+/HER2− cancers (n= 530) into ≤ 50 (n= 159) or ≥ 55 years of
age (n= 371) at diagnosis (Supplementary Fig. 6).

Microarray cohorts
From publicly available Affymetrix microarray datasets we
identified 2007 unique, previously untreated breast cancer
samples that were (i) annotated with age, (ii) had raw MAS5 data
deposited, and (iii) were ER+/HER2−43 (Supplementary Fig. 6). We

assembled 27 Affymetrix U133A datasets from GEO (https://
www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://
www.ebi.ac.uk/arrayexpress/) (E-TABM-158, GSE11121, GSE12276,
GSE16391, GSE17907, GSE18864, GSE19615, GSE20194, GSE2034,
GSE2109, GSE21653, GSE22035, GSE22513, GSE2603, GSE26971,
GSE2990, GSE3494, GSE4611, GSE46184, GSE4922, GSE5327,
GSE6532, GSE6532, GSE6596, GSE7390, GSE9195, MDA133) with
no overlap to the RNA-Seq sample cohort from TCGA. We included
only datasets with MAS5 data available (i.e., Individual sample
level normalized expression data) without cohort-based normal-
ization steps (e.g., RMA). A total of 3292 unique samples were
annotated with age and had raw MAS5 data deposited. From
these, we selected 2007 ER+/HER2− samples based on gene
expression data as previously described43 (Supplementary Fig. 6).
Supplementary Table 7 lists details for each sample including
clinical information and a link to the corresponding
expression data.
For the most accurate identification of differentially expressed

genes, we aimed to assemble the most homogenous combined
dataset with respect to technical bias and platform hetero-
geneity. To accomplish this, we used our previously described
pipeline44 and designated this dataset as “Cohort A”. We
calculated a technical comparability metric “C” which is the
sum of squared normalized differences between dataset means
and global means for all genes and considered datasets highly
comparable if normalized C < 0.05. This resulted in 13 data sets
including n= 1170 samples assigned into Cohort-A. For a
second independent validation, we also combined all remaining
datasets into Cohort B including n= 837 samples that corre-
spond to data with grater technical heterogeneity (Supplemen-
tary Fig. 6).
From each cohort, we then excluded cases in the top 20% of

highest in silico Recurrence score values to mimic a clinical cohort
similar to that of TAILORx that included only patients with RS < 26.
This resulted in n= 936 cases in Cohort A and n= 669 cases in
Cohort B. For final analysis, we grouped ER+/HER2− cancers into
≤ 50 (n= 281 in cohort-A, n= 162 in cohort-B) versus ≥ 55
(n= 584 in cohort-A, n= 447 in cohort-B) years of age (Supple-
mentary Fig. 6).

METABRIC datasets
Normalized tumor mRNA expression data and the clinical
metadata of 1908 breast cancer patients45 were download from
www.cbioportal.org. We excluded 723 ER-negative or HER2
amplified cases, 61 cases without ER or HER2 status, and 240
cases with the top 20% RS score. For final analysis, we grouped ER
+/HER2− cancers (n= 867) into ≤ 50 (n= 157) or ≥ 55 years of
age (n= 710) at diagnosis (Supplementary Fig. 6).

SCAN-B datasets
Normalized tumor mRNA expression data and the clinical
metadata of 2969 breast cancer patients were downloaded from
the Gene Expression Omnibus (GEO) database (GSE96058)46

(Supplementary Fig. 6). ER status assessed by immunohistochem-
istry was available for 2,783 patients, and HER2 status reported by
situ hybridization was available for 2868 patients. We excluded the
ER-negative (n= 224) and HER2 amplified (n= 378) cases, cases
without ER (n= 199) or HER2 (101) status, and cases with top 20%
RS score (n= 409). For final analysis, we grouped ER+/HER2−
cancers (n= 1636) into ≤ 50 (n= 305) or ≥ 55 years of age
(n= 1331) at diagnosis (Supplementary Fig. 6).

Calculation of in silico recurrence score
We calculated an in silico recurrence score for each sample using
the oncotypedx function of the genefu R library47. These scores
approximate the clinical OncotypeDX RS but are not equivalent
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due to different dynamic ranges of the measurements. In clinical
studies, 15–20% of cases submitted for OncotypeDx testing have
RS > 2548,49. In the screening phase of TAILORx, 17% of patients
had RS > 25. To approximate this distribution, we excluded
patients with the top 20% of the highest continuous in silico
recurrence scores.

Molecular subtyping
Molecular subtype assignments of TCGA samples were obtained
from Peng et al.50. To assign molecular subtypes to samples from
the microarray cohorts we used the R package AIMS under R
version 3.3.051.

Gene-expression signatures
To assess ER and Ki67 expression in the microarray data, we used
the ESR1 probe set 205225_at, and the average of four MKI67
probe sets as previously described43. Ten mRNA expression
signatures were obtained from literature including four
estrogen-related signatures (e.g., ERS, ERS Luminal19, ERS Pos
Symmans15, and ERS Neg Symmans15), four immune cell
signatures (e.g., T Cell, B Cell, Mast Cell, Dendritic Cell20, and
Tumor inflammation signature [TIS]21), and one proliferation
signature (Mitosis Kinase Score, MKS19) (Supplementary Table 8).
For each signature, we calculated the average normalized
expression of the member genes and transformed to z-score
across all cases in each cohort.

Immune-cell composition analysis
Immune cell composition was estimated using the Consen-
susTME22 method that estimates the contribution of 18 immune
cell types to the tissue microenvironment. We used normalized
TCGA mRNA expression data as input and select ssGSEA method
for immune cell signature analysis with the ConsensusTME R
package22.

Differentially expressed genes
To identify differentially expressed genes (DEGs) in TCGA RNAseq
data (representing 20,282 human genes), we calculated fold
change and t-test p-value for each gene between younger and
older cases. DEGs were defined as fold change ≥ 1.50 (i.e.,
upregulated) or ≤ 0.67 (i.e., downregulated) with Benjamini
Hochberg corrected false discovery rate (FDR) < 0.05. To identify
DEGs from Affymetrix microarray data, we applied the limma R
package52. To avoid batch effects, we included the original
Affymetrix source dataset as covariate. Identical fold change filters
were used as for TCGA data.

Gene set enrichment analysis
Log2 transformed fold changes of all 20,282 genes of TCGA
samples were used as gene rank values to perform gene set
enrichment analysis using the fgsea53 package in R using the
hallmark gene set (n= 50) of the Molecular Signatures Database
(MSigDB)54.

Somatic mutation analysis
Somatic mutations which were available for 427 older and 183
younger TCGA breast cancer cases were obtained from the Multi-
Center Mutation Calling in Multiple Cancers (MC3) dataset55.
Somatic mutation burden was calculated as the total number of
somatic mutations across all genes in each cancer. For comparison
of gene level somatic mutation frequencies between age groups
we only considered the nonsynonymous mutations, including
missense, non-sense, frameshifting, in-frame shifting, or splice-site
altering single-nucleotide changes or indels and statistical
significance was assessed with Fisher’s exact test. A multivariate

logistic regression model was used to evaluate the association of
Luminal B subtype and age group with the mutation status of
GATA3:

GATA3 status � Age groupþ Luminal B statusþ Age group � Luminal B status

Association of ER status and age at diagnosis. We estimated the
statistical significance of the trend of the ER IHC percentage
categories with ESR1 mRNA expression and age at diagnosis using
Jonckheere Terpstra (JT) trend analysis56. P-values were calculated
using the “JonckheereTerpstraTest” function of “DescTools” R
package57. Kendall’s tau (τ) coefficient was estimated to measure
the increasing (positive value) or decreasing (negative value) trend
for each trend analysis. We estimated the correlation between
ESR1 mRNA expression and age of diagnosis using Spearman’s
rank correlation analysis.

Copy number variation analysis
We obtained gene-level somatic CNV data of TCGA patients from
the PanCanAtlas Aneuploidy study (https://gdc.cancer.gov/about-
data/publications/pancanatlas)58. The CNVs of 25,128 genes of 513
ER+/HER2− patients were available. We focus on the 703 genes
that overlapped with the COSMIC cancer gene list. The gene-level
events indicate that the copy number gain/loss effect an entire
chromosome arm or a specific genomic region that encodes gene.
CNV was assessed with Affymetrix SNP 6.0 arrays58 and gene-level
CNV values were generated by GISTIC59. A GISTIC call of +1 or +2
was considered a gain and −1 or −2 was considered a loss, and 0
as wild-type for association analysis in our study. The association
of CNV gain or loss with the age group was assessed with Fisher’s
exact test. Odds ratio larger than one were consider as CNVs
enriched in old patients, and less than one means enriched in
young patients.

Statistical analysis
The Chi-squared test was used to compare categorical variables of
patient characteristics. Wilcoxon rank-sum test was used to
compare the expression signatures, and somatic mutation burden.
P-values were adjusted for multiple comparisons using
Benjamini–Hochberg method. A regression model of ESR1 mRNA
using age, ER IHC percentage categories, and their interaction was
used to assess the contribution of both parameters. All analyses
were performed in R version 3.6.151.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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