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ABSTRACT

The mechanism by which sequence non-specific
DNA-binding proteins enhance DNA flexibility is
studied by examining complexes of double-
stranded DNA with the high mobility group type B
proteins HMGB2 (Box A) and HMGB1 (Box A+B)
using atomic force microscopy. DNA end-to-end
distances and local DNA bend angle distributions
are analyzed for protein complexes deposited on a
mica surface. For HMGB2 (Box A) binding we find
a mean induced DNA bend angle of 788, with a stan-
dard error of 1.38 and a SD of 238, while HMGB1
(Box A+B) binding gives a mean bend angle of 678,
with a standard error of 1.38 and a SD of 218. These
results are consistent with analysis of the observed
global persistence length changes derived from
end-to-end distance measurements, and with
results of DNA-stretching experiments. The moder-
ately broad distributions of bend angles induced
by both proteins are inconsistent with either a
static kink model, or a purely flexible hinge model
for DNA distortion by protein binding. Therefore,
the mechanism by which HMGB proteins enhance
the flexibility of DNA must differ from that of the
Escherichia coli HU protein, which in previous stu-
dies showed a flat angle distribution consistent with
a flexible hinge model.

INTRODUCTION

It is important to understand the effects of protein binding
on DNA conformation in the context of DNA transcrip-
tion and replication. The role of sequence non-specific
DNA-binding proteins such as HMGB in these processes

(1–4) and more generally in gene expression (4) is under
intense investigation. Like Escherichia coli HU proteins,
HMGB proteins have been shown to create bends and
promote looping in DNA (5,6), which may facilitate tran-
scription or repression. Double-stranded (ds) DNA is
compacted when HMGB proteins are present, indicative
of a reduced persistence length, p, and enhanced polymer
flexibility (1). Two very different biophysical mechanisms
have been proposed to account for protein-enhanced
DNA flexibility. In the static kink model (5,6), transient
protein-binding events produce fixed-angle bends in the
DNA at the binding sites. In the flexible hinge model,
protein binding is thought to enhance the flexibility of
DNA in one plane, with no preferential angle at the bind-
ing site (7).
A static kink model is suggested by X-ray crystallogra-

phy studies of sequence non-specific HMGB proteins,
where estimates for the induced bending angle are 111.18
for single box HMGB protein binding (as measured for
the Drosophila melanogaster HMG-D protein, which may
differ from the HMGB proteins studied here) (8) and
101.58� 9.18 for HMGB (Box A+B) protein binding
(9). The effect of HMGB binding on the flexibility of
dsDNA was also previously studied in optical tweezers
experiments (1,10). It was found that dsDNA force–
extension curves were strongly altered by the presence of
HMGB proteins. In the presence of several different
HMGB proteins, the shape of the force–extension curves
at low force indicated that the DNA persistence length
was significantly reduced relative to that observed in the
absence of protein. The change in persistence length as a
function of protein concentration was used to determine
protein equilibrium association constants and the average
protein-induced DNA bending angle. The model used to
determine the average bending angle assumed that the
bound protein induced a random, flexible hinge (1,10).
However, no direct information about the flexibility of
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the protein-bound site or distribution of angles could be
obtained. For HU protein–DNA complexes, analysis of
X-ray co-crystal structures indicated a fixed bend angle
for a given structure, with a relatively narrow range of
different angles observed in different structures. In con-
trast, atomic force microscopy (11–13) (AFM) studies of
HU DNA-binding sites found a nearly flat distribution of
bend angles, which provided strong evidence that protein
binding formed a flexible hinge in that case (7).
In order to determine whether or not a flexible hinge

mechanism for protein-enhanced DNA flexibility is
broadly applicable, we now examine the distribution of
bend angles for one and two box HMGB proteins.
AFM allows us to directly observe protein-bound DNA
structures (14–17), providing a complement to indirect
measurement of DNA flexibility using optical or magnetic
tweezers (1,7,18). A disadvantage of AFM is that 3D
protein–DNA complexes must be deposited onto a 2D
substrate, typically mica. However, with proper prepara-
tion, substrate effects on properties such as persistence
length have been successfully modeled and minimized.
When depositing dsDNA or protein–DNA complexes
onto a mica surface, the result of the deposition depends
on the nature and the strength of the molecule–surface
interactions. Bustamante et al. (14) and Rivetti et al.
(19) proposed that there exist two extremes in this process:
equilibration and kinetic trapping. Equilibration occurs if
the molecules can approach the substrate and establish an
equilibrium conformation on the mica surface during the
deposition process. On the other hand, if kinetic trapping
occurs, parts of the dsDNA or protein–DNA complex
adhere to the mica surface on contact, thereby becoming
trapped at these sites.
If 2D equilibration occurs, it has been found that

imaged molecules display persistence lengths quite close
to those found in three dimensions in solution (19,20),
suggesting that molecular flexibility and local bend
angles are negligibly affected by substrate effects.
Whether equilibration occurs is determined by the charac-
teristic time t, required by the molecules to equilibrate on
the wet mica surface relative to the deposition time before
drying of the solvent. The characteristic time can be writ-
ten as:

t ¼
t0

1� fb 1� exp � �Gbind

kbT

� �h i 1

Here fb is fraction of the monomers of the dsDNA poly-
mers interacting with positively charged ion-binding sites
on the mica surface; iGbind is the binding energy of the
molecule to each surface site; kB is the Boltzmann con-
stant, T is the deposition temperature, and t0 is the char-
acteristic time for the dsDNA polymer to access its
equilibrium configurations with free diffusion on the 2D
surface. Bustamante and Rivetti, (19,20) also pointed out
that typically, for 5994 base-pair (bp) dsDNA fragments,
the characteristic time, t, is about 5min and for shorter
dsDNA fragments, as little as 1min is required to attain
equilibrium. For the pBR322 dsDNA fragments (4361 bp)
studied here, the characteristic time t should be well under

5min, much less than the deposition time used in sample
preparation. Therefore, the results presented in this study
reflect the characteristics of equilibrium protein–DNA
structures. Our studies of equilibrium DNA–protein com-
plexes show for the first time that the behavior of HMGB
proteins is intermediate between that expected for a flex-
ible hinge or static kink interaction mechanism.

MATERIALS AND METHODS

Freshly cleaved mica is used as the substrate to deposit
dsDNA and protein–DNA complexes. Because freshly
cleaved mica is negatively charged (20,21), Mg2+, a diva-
lent cation, was used in the deposition buffer to promote
the adhesion of negatively charged DNA to the mica sur-
face and prevent (18) binding of HMGB proteins (21,22).
Isolated plasmid pBR322 (Fermentas) was linearized by
digestion with PvuII (Fermentas) followed by phenol
extraction. The DNA was diluted with 10mM Tris–HCl
(pH 8.0), 5mM MgCl2 to 0.11 nM to avoid aggregation
(23). Sample deposition involved the following steps:
(i) muscovite mica (Ted Pella Inc.) was cleaved and
washed with buffer containing 10mM Tris–HCl pH 8.0,
5mM MgCl2. (ii) The sample was air dried, rinsed with
5ml distilled water and air dried again. (iii) To collect
images of bare DNA, a volume of 7 ml of the DNA solu-
tion (0.11 nM) was deposited on the mica surface for
10min. (iv) The surface was rinsed with 5ml distilled
water and then air dried for 10–15min, after which
excess water was removed by careful blotting. Attempts
at drying with an air stream produced elongated, non-
equilibrated DNA, likely due to hydrodynamic forces.
Samples were then imaged within 48 h.

To collect images of protein bound to DNA, HMGB2
(Box A) and HMGB1 (Box A+B) proteins were purified
as described elsewhere (1) and were incubated with
dsDNA before deposition. Optimal samples for imaging
and analysis required moderate concentrations of both
protein and dsDNA. A volume of 1.3 ml protein solution
[20 nM HMGB2 (Box A) or HMGB1 (Box A+B)] and
7 ml of 0.11 nM DNA were combined.. Thus the sample
consists of 0.09 nM DNA and 3.1 nM of either HMGB2
(Box A) or HMGB1 (Box A+B). The binding sizes for
HMGB2 (Box A) and HMGB1 (Box A+B) proteins may
be estimated to be 7 bp and �18 bp, from previous studies
(8,9,24). Therefore, the ratio of binding sites on the
dsDNA to protein molecules is 18:1 and 7:1 respectively
(nearly 1 protein for every 120 bp). This low protein/DNA
concentration ratio allows enough dsDNA-binding sites
while minimizing protein self-aggregation.

A Pico-Plus scanning probe microscope (SPM; Agilent
Technology) was employed. The SPM was operated in
tapping or intermittent contact mode in air. Tapping
mode has been used widely for imaging soft biological
samples. In this mode, the cantilever is driven at a fixed
frequency (near its resonance frequency) as it scans the
sample. The tip is allowed to make transient contact
with the sample surface at the bottom of the oscillation,
which reduces its oscillation amplitude. The amplitude is
used as a height feedback control parameter. The height,
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controlled by a piezo-crystal voltage, is extracted during
scanning to form topography images. In addition, the
phase of the oscillations is also used to form images.
The resolution in tapping mode can be nearly as high as
in contact mode, which is much more damaging to soft
samples. Background cantilever thermal noise is inversely
proportional to the resonance frequency (25), and a can-
tilever with higher resonance frequency allows for a faster
scanning rate. Polymer surfaces become stiffer at higher
frequencies, further reducing sample damage when using a
high resonant frequency cantilever. Thus, cantilevers with
the highest resonant frequency are preferable. Budget
Sensors 300Al reflex silicon AFM tips were employed
(resonance frequency �300 kHz; spring constant
�40N/m). Tips typically have �10 nm radius of curva-
ture, limiting lateral imaging resolution to �15 nm under
the best conditions. The scan range was either 2 mm� 2 mm
or 1 mm� 1 mm at 512� 512 pixels. The scan rate was typ-
ically 2Hz. Both topography and phase images were ana-
lyzed. DNA contours were traced semi-automatically
using ImageJ software (26) from NIH with the NeuronJ
plug-in (27). The tracing step size varied from 1 to 10
pixels. The DNA bend angle was measured at the
protein-binding site using National Instruments Vision
Assistant 7.0 software.

RESULTS

Bare linearized dsDNA from plasmid pBR322 (4361 bp)
was initially imaged (Figure 1). The distribution of con-
tour lengths obtained from 40 molecules by image tracing
(Figure 2a) had a mean of 1.48mm, and SD s=0.11mm,
giving 0.34� 0.03 nm per bp, which agrees very well with
the theoretical value of 0.34 nm per bp in B-form dsDNA
(28). The local DNA bend angle is defined as the angle
between the pair of adjacent line segments formed with
three neighboring points along the contour, as shown in
Figure 1b. Bend angles were measured for points at 10 nm
intervals on the bare DNA molecules. The distribution of
local bend angles was Gaussian-like (29), with a mean of
08 and s �228 (Figure 2b). However, resolution effects
give an apparent width of DNA strands of approximately
15 nm, which causes measurement error in the angle data,
particularly for small segment sizes. The image tracing

algorithm affects this error somewhat, hence the error
was estimated from the angle variance in visually straight
sections of DNA. We estimated the angle error to be
s0 � 88 for 10 nm segments. Therefore, the intrinsic
DNA bend angle distribution should have width:
s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s02
p

�20.58. For smaller segment sizes the
angle error increases, as will be shown in the analysis of
persistence length discussed below.
In order to estimate the DNA persistence length, the

mean-squared end-to-end distance, R2, was measured for
individual dsDNA strands. Because dsDNA is a semi-
flexible polymer (30,31) the Worm-Like Chain (WLC)
model (32,33) can be used. With the assumption of equili-
bration, we used the 2D WLC model to determine the
persistence length (19):

R2
� �
¼ 4pL 1�

2p

L
1� e�L=2p
� �� 	

2

where <R2> is the mean-squared end-to-end distance, and
p and L are the polymer persistence length and contour
length, respectively. The mean-squared end-to-end dis-
tance <R2> was found to be 0.32� 0.3 mm2. Using
Equation (2), we find the persistence length is 57� 6 nm
(168� 18 bp). This agrees very well with Rivetti’s result
(19), which gives 56 nm using the WLC model at this con-
tour length, and is consistent with values found in
solution.
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Figure 2. (a) The distribution of bare dsDNA contour lengths and its
Gaussian fit. (b) The local bend angle distribution for bare dsDNA
(segment step size 10 nm) and Gaussian fit.

Figure 1. (a) 1mm � 1.2 mm image of bare pBR322 dsDNA (contour
length 1.5 mm). (b) 3D view of a single dsDNA molecule from (a).
(c) Diagram showing local DNA bend angle calculation based on the
angle between two adjacent line segments drawn between three adjacent
points (step size l0 nm) along the contour.
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We used a second method to estimate the persistence
length of the bare dsDNA, which involved measuring the
local DNA angle distribution. This method was first pro-
posed by Landau and Lifshitz in 1958 (34). More recently,
Rivetti et al. (19) and Abels et al. (35) deduced persistence
length using a similar approach. By tracing the dsDNA
contours, we calculated the local bend angle, �, of two
consecutive segments at different step size l. Using the
probability distribution function for the WLC model in
two dimensions it can be shown that:

cosð�Þ
� �

¼ e�l=2p 3

Equation (3) can be transformed to Equation (4) by taking
the natural logarithm on both sides:

� lnð< cos � >Þ ¼
l

2p
4

From a linear fit of this equation to the data, the slope
1/2p, is extracted. The equation should only be valid up to
l� p, and angle measurement errors are significant at
small l, thus a good linear fit is expected only for interme-
diate values (19,36). Step sizes of 24 nm < l< 66 nm were
found to be optimal for determining p (Figure 3). The
persistence length obtained by this method was
p=49.5� 3.5 nm, which agrees, within error, with the
value found by the end-to-end distance method, and
with 45–50 nm expected from solution studies (37). This
illustrates the near equivalence of locally measured and
globally measured polymer properties. In fact, the locally
measured value should be more reliable than the end-to-
end distance method because the choice of a limited step
size range avoids excluded volume effects that can occur
for longer polymers (19,36).
Surface effects must also be considered when analyzing

protein-induced DNA bend angles. Bustamante et al.
and Rivetti et al. (19,20) pointed out that the analysis
is reliable only if the deposition process itself does
not affect the conformation of the protein-induced
DNA complexes. Under equilibration conditions, the

protein–DNA-binding free energies are typically 15–30
times larger than the DNA-surface-binding energies
(which are of order of kBT). Therefore, DNA should
attain equilibrium surface conformations via thermal
energy without altering the protein-induced DNA bend
angles. Alternatively, for kinetic trapping conditions, as
discussed above, the surface binding may be strong
enough to alter the protein-induced DNA complex con-
formation, including protein-induced DNA bend angles.
Thus, bend angle analysis is only meaningful when condi-
tions are favorable for equilibration, as was the case for
the samples studied here.

Figure 4 shows images of DNA with bound HMGB
proteins. As can be seen in the height profile
(Figure 4b), the protein–DNA complexes project higher

Figure 4. (a) Images for three individual HMGB protein–DNA com-
plexes. (b) Height information is provided for the two lines shown on
the image: slice 1 crosses the only the bare dsDNA. The peak height is
no more than 0.1 nm. Slice 2 crosses two bound HMGB proteins and
the peak heights are more than 0.55 nm. (c) 3D view of the single DNA
molecule selected from (a) showing bound proteins as spikes.
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Figure 3. Local DNA bend angle versus segment step size. A linear fit
is shown for the intermediate range of step sizes (from 24 to 66 nm).
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from the mica surface than bare DNA, typically by
�0.5 nm. These bound proteins thus appear as light col-
ored spots in the images. Figure 4c provides a 3D image
rendering, clearly showing the bound proteins as rela-
tively higher spikes. Thus, bound HMGB proteins were
identified visually by this significant height difference.
Protein-induced DNA bend angles could then be mea-
sured at the protein-binding sites, with a measurement
error of �58, and the distribution of these angles was
determined (Figure 5). The distribution shows an average
induced DNA bend angle of 788 with a SD of 238 for
HMGB (Box A) protein and for HMGB (Box A+B) an
average DNA bend angle of 678 with a SD of 218 was
found. The error in the average bend angle measurement
was �1.38.

A second method, based on the global average flexibil-
ity, was also used to obtain the average local bend angle.
Since the structure of a protein–DNA complex is hetero-
geneous, the WLC model (Equation 3) (13) for a homo-
geneous structure is no longer valid. We may quantify the
relationship between the persistence length, p, of the bare
DNA, the end-to-end distance of the protein-induced

DNA complexes,<R2>, and the protein-induced bending
angle, �, by using a model based on the WLC model but
with intrinsic bends, as developed by Rivetti et al. (38) for
the 3D case. In that model, the distribution of local pro-
tein-induced bend angles and the persistence length, p, for
bare DNA are known inputs. The average R2 is then cal-
culated. We have adapted this approach and derived a
relation for two dimensions. Using the average induced
protein-site bend angle, �, the average number of bound
proteins, N, and the bare DNA persistence length, p, the
average R2 can be found (see Supplementary Data for
derivation):

R2
�

D E
� 4pL 1�

2pN

L
1� < cos� >ð Þ


 �
5

We counted the number of proteins bound to each indi-
vidual dsDNA molecule. The distributions of N for
the two proteins are shown in Figure 6. The average num-
ber of proteins bound per DNA molecule under these
binding conditions is three for HMGB2 (Box A) and
four for HMGB1 (Box A+B). A Gaussian fit gave
s �1 for both cases. It is then possible to apply the
measured <R2> and Equation (5) to calculate the
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Figure 6. Distribution of the number of binding proteins per dsDNA
molecule for (a) HMGB2 (Box A) and (b) HMGB1 (Box A+B).
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Figure 5. Distribution of protein-site bend angles for (a) HMGB
(Box A) and (b) HMGB (Box A+B). The distribution shows an aver-
age induced DNA bend angle of 788 with a SD of 238 for HMGB
(Box A) protein. HMGB (Box A+B) induces an average DNA bend
angle of 678 with a SD of 218.
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average bend angle. For the HMGB2 (Box A) protein–
DNA complexes, R2=0.27� 0.04 mm2 and for the
HMGB1 (Box A+B) protein–DNA complexes,
R2=0.26� 0.05 mm2. By this method the mean protein-
site DNA bend angle, <�>, was found to be 82� 88 and
74� 168 for HMGB2 (Box A) and HMGB1 (Box A+B),
respectively.

DISCUSSION

In this study, bare DNA was imaged using AFM. DNA
flexibility was then characterized through analysis of the
DNA persistence length using two methods, one based on
end-to-end distances and the other on locally measured
bend-angles. Both methods used the 2D WLC model.
The agreement between persistence lengths determined
from the two methods (and also with bulk solution-
based measurements) validated the approach and its
assumptions. These results show that the molecules
under study were well-equilibrated on the mica substrate
and that substrate effects on local bend angles were weak.
For HMGB proteins bound to DNA, induced DNA

bend angles were measured at the protein-binding site
directly from the scanned images. Bend angles had mod-
erately broad distributions that were much narrower than
those found for HU binding (7). The mean bend angles
obtained by this method were 788� 1.38 for HMGB2
(Box A) and 678� 1.38 for HMGB1 (Box A+B). We
also used a variation of the WLC model to infer the
mean protein-induced bend angle from measurement of
a global property: end-to-end distances. This approach
gave 82� 88 for HMGB2 (Box A) and 74� 168 for
HMGB1 (Box A+B), consistent with the locally-
measured mean angles. The distributions of the protein-
induced locally measured bend angles were found to be
moderately tight, with SDs of 238 and 218, respectively.
These distributions are not consistent with a purely flex-
ible-hinge model, in which there is no preferred bending
angle, nor with a purely static kink model, in which each
protein induces an identical fixed DNA bend angle. If
bend angles varied significantly with local DNA sequence,
this could broaden the distribution even if individual sites
were static kinks of fixed angle (39). However, HMGB
proteins are believed to bind sequence non-specifically,
although it is possible that there may be a weak preference
for certain AT-rich regions due to intrinsic DNA curva-
ture (40,41). In any case, sequence neutral mechanisms for
non-specific binding in HMG proteins suggest that bend
angles are determined by the structure of the protein,
which changes little on binding to DNA (8).
It is interesting to compare these results with those

found in single-molecule DNA stretching experiments
(1,10) where force–distance curves were measured versus
protein concentration. Persistence lengths were derived
from fits to a 3D WLC model. The protein-induced
bend angle was then inferred from the persistence length
in the fully saturated limit. The DNA bend angle estimates
were 998 � 98 for HMGB2 (Box A) and 778� 78 for
HMGB1 (Box A+B). These values are quite close
(given the assumptions made) but slightly larger than the

values found here (Table 1). Significantly, in both measure-
ments and the estimates from crystallography, the
single box protein produces a larger bend angle. This is
attributed to out-of-phase bending by the double-box pro-
tein. One difference between the optical tweezers analysis
and the present experiments may arise from saturation
effects on the local bend angle. With the AFM, we
cannot easily measure local bend angles at high-protein
concentration because of depletion and aggregation effects.

It is somewhat surprising that the present AFM results
do not support the flexible hinge model, in contrast to
results reported recently for the E. coli HU protein. HU
is also a non-specific DNA binding protein that is believed
to play a role in E. coli analogous to that of the HMGB
proteins in eukaryotic systems. However, it should be
noted that AFM imaging of HU was performed under
kinetic trapping conditions (7), which may have resulted
in an altered distribution of bend angles. Bustamante et al.
have argued (14) that structural information obtained
from AFM will only be reliable for equilibrated samples.
On the other hand, it is not obvious how kinetic trapping
conditions would result in such a broad distribution of
binding angles. One mechanism for broadening the distri-
bution relative to that present in solutionwould be the pres-
ence of strong non-uniform surface–DNA or surface–
protein interactions. However, if the protein stays bound
to the DNA under these conditions, then there must be
significant flexibility to the protein–DNA interaction.
Such a mechanism could also apply to our HMGB data,
but is less likely for a surface coated with magnesium than
one coated with cations of higher valence, such as the poly-
lysine used in the HU study. The authors of the HU study
also did a control experiment with another protein and
showed a narrower distribution of angles in that case.
It is also important to note that the structure and DNA
bending mechanism of HU is entirely different from the
HMGB family of proteins (9,42), and HU appears to
have multiple DNA-binding modes (43). Based on these
considerations, it is possible that the prokaryotic HU pro-
teins interact with DNA through a different mechanism
than eukaryotic HMGB proteins.

While the mechanism for enhancing DNA flexibility
may differ for HU and HMGB proteins, they both achieve
the same result—a significant enhancement of overall

Table 1. Average DNA bend angles induced by HMGB proteins based

on different experimental methods

Method HMGB2 (Box A) HMGB1 (Box A+B)

X ray crystallography �1118 (8)a 101.5 � 9.18 (9)b

Optical tweezers 99� 98 (1) 77� 78 (1)
AFM <R2> 82� 88c 74� 168c

AFM local angle 78� 1.38 (s=238)d 67� 1.38 (s=218)d

aCrystallography data is from the Drosophila melanogaster
single box HMGB protein HMG-D (protein databank entry 1QRV).
bTo obtain the crystal structure of a two box protein, the authors
replaced HMGB1 box A with the transcription factor SRY (protein
databank entry 2GZK).
c<R2> is end-to-end distance method analyzed with Equation (5).
dAverage angle data and the distribution width (s) from Figure 5.
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apparent DNA flexibility. The result is interesting in light
of recent single molecule studies, which detected a signif-
icant increase in flexibility for single DNA molecules, but
which also showed that HMGB proteins failed to
dissociate from DNA under certain solution conditions
(10). Rapid dissociation and reassociation from DNA is
required for a static kink model to effectively alter DNA
flexibility on average. Therefore, HMGB proteins appear
to enhance DNA flexibility by mechanisms that combine
the static kink model, in which proteins bind to DNA
transiently, inducing equal bends at random locations on
the molecule, and by introducing some local DNA flexi-
bility at the binding site. Our results also show that two-
box HMGB1 (Box A+B) proteins are not more effective
at bending DNA or increasing DNA flexibility. This is
consistent with the suggestion made by McCauley et al.
(1), in which an ensemble of double HMGB box proteins
at fixed concentration would be more effective at increas-
ing DNA flexibility due to the higher equilibrium DNA-
binding affinity of double versus single box proteins,
rather than due to a greater induced DNA bending angle.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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