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SUMMARY

Varying levels of numerical cognition have been found in several animal species. Bees, in particular,

have been argued to be able to count up to four items and solve complex numerical tasks. Here we

present an exceedingly simple neural circuit that, when provided with the actual visual input that

the bee is receiving while carrying out the task, can make reliable estimates on the number of items

in the display. Thus we suggest that the elegance of numerical problem solving in bees might not

lie in the formation of numerical concepts (such as ‘‘more,’’ ‘‘less,’’ or ‘‘zero’’), but in the use of

specific flight movements to scan targets, which streamlines the visual input and so renders the

task of counting computationally inexpensive. Careful examination of the actual inspection strategies

used by animals might reveal that animals often employ active scanning behaviors as shortcuts to

simplify complex visual pattern discrimination tasks.

INTRODUCTION

Numerical cognition is traditionally considered a higher cognitive ability, perhaps because of its associationwith

themost advanced human intellectual achievements. The symbolic, language-basedmathematics we use, how-

ever, appears to be rooted in a predisposition to use quantitative information without symbolic representation,

which exists in pre-verbal infants and in cultures that do not use symbols for counting (Dehaene, 2001; Feigen-

son et al., 2004). A growing body of experiments demonstrates that a wide range of animals possess a similar

‘‘number sense.’’ Not only birds (Nieder, 2018; Pepperberg, 2006; Rugani, 2018) and mammals (Matsuzawa,

2009; Nieder, 2018) or other large-brained animals but also fish, frogs/toads, and even insects with miniature

brains were shown to be able to make decisions based on numerosity (reviewed in Agrillo and Bisazza, 2014,

2018; Pahl et al., 2013; Rose, 2018; Skorupski et al., 2018). Bees, in particular, exhibit counting-like abilities

and can be trained to search for food after a given number of landmarks (Chittka and Geiger, 1995; Dacke

and Srinivasan, 2008; Menzel et al., 2010) or on the stimulus with a given number of items (Skorupski et al.,

2018), and can use the number of items as the decision criteria in a match-to-sample task (Gross et al., 2009).

Recently, honeybees have been argued to even understand numerical concepts of ‘‘less than,’’ ‘‘greater

than,’’ and ‘‘zero’’ as a number (Howard et al., 2018).

However, how complex is numerical cognition in neurocomputational terms? Computer vision algorithms,

often based on convolutional neural networks, are abundantly used for counting objects in images and

offer a good starting point for addressing this question (e.g., Dijkstra et al., 2018 and references therein).

Most of these algorithms rely on object detection and then count the detected instances, but because such

methods explicitly make use of symbolic mathematics, they are not accessible for animal brains. However,

computer vision has also proved that it is possible to reliably estimate object count without detecting and

localizing individual object instances, using, for example, image density (Lempitsky and Zisserman, 2010;

Rahnemoonfar and Sheppard, 2017). As for the size of the neural network necessary, Dehaene and

Changeux (1993) proposed a formal model of only 480 neural units (plus 50 input units) to account for

the elementary numerical abilities of infants and animals. This model is able to extract approximate numer-

osity from images, up to five items. It seems likely that the perception of numerosity is a basic attribute of

visual systems (Burr and Ross, 2008) and emerges spontaneously when neural networks are trained to

encode statistical properties of images (Stoianov and Zorzi, 2012).

Here we explore how serial processing reduces the size of the neural hardware required for basic counting.

It seems likely that bees cannot extract complex visual pattern properties ‘‘at a glance’’ (Nityananda et al.,

2014); they inspect pattern elements from up close (Guiraud et al., 2018; Ings et al., 2012) and one by one
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Figure 1. Simple Neural Model for Counting

The phasic ‘‘brightness’’ neuron extracts the change in brightness from the visual input. The working memory neurons in

the second layer are recurrent and thus maintain exponentially decaying memory traces. The ‘‘brightness working

memory’’ neuron receives strong input from the ‘‘brightness’’ neuron, and signals recent changes in brightness. The

‘‘counting working memory’’ neuron receives weak input from the ‘‘brightness’’ neuron, and so accumulates information

about the changes in brightness over a longer period. Finally, the ‘‘evaluation’’ neuron subtracts the ‘‘counting working

memory’’ from the ‘‘brightness working memory.’’ Its response is inversely proportional to the number of brightness

changes, and, with the right visual input, it provides an online evaluation of the numerosity of the stimulus.
(Skorupski et al., 2018). If such an inspection strategy is indeed universal, it has profound implications for

the complexity of visual tasks. We present a simple abstract model of only four neural units that, when

provided with the responses that known low-level visual neurons would produce during such a sequential

scan, is able to match the bees’ performance in a complex numerical ordering task (Howard et al., 2018;

Skorupski et al., 2018). The output of this network is sufficient to distinguish between numerosities up to

4–6, produces an appropriate response to an empty set (‘‘zero’’), and reproduces Weber’s law of number

discriminability.
RESULTS

Our simple model (Figure 1) employs just four independent neural units (which we will refer to as neurons

for simplicity). It is able to mimic the counting abilities of bees—provided that it receives sequential visual

input of the countable items. The first neuron is a wide-field (60� visual angle) neuron that sums up the re-

sponses of a collection of phasic on-off narrow-field cells of the medulla (Arenz et al., 2017). Neurons with

similar response properties have been found in the second and third visual ganglia (medulla and lobula) of

insects (Douglass and Strausfeld, 2003; Hertel, 1980; Paulk et al., 2009a; Yang and Maddess, 1997). This

phasic ‘‘brightness’’ neuron responds to changes in brightness within its receptive field. The model is

not limited to this specific type of input but will provide comparable results when using input from a global

brightness detector or an edge detector (Figure S1). The ‘‘brightness working memory’’ neuron receives

strong excitatory input from the ‘‘brightness’’ neuron and feeds back to itself; thus its response will be close

to maximum when the bee encounters a change in light intensity. The ‘‘counting working memory’’ neuron

also feeds back to itself, but it is only weakly stimulated by the ‘‘brightness’’ neuron; thus its response will be

proportional to the number of times the bee has moved between dark and bright areas. Note that numbers

are not registered as integers, but accumulated as magnitudes (as in the approximate number system

described in humans for estimating numerosities higher than 4; Feigenson et al., 2004). Finally, the ‘‘eval-

uation’’ neuron is excited by the ‘‘brightness working memory’’ neuron and inhibited by the ‘‘counting

working memory’’ neuron. The ‘‘evaluation’’ neuron thus accumulates information about the stimulus while

the bee is inspecting it, and so this neuron provides a continuously updating evaluation of the numerosity

of the stimulus (Figure 1).

The flight path of the bee, and the resulting visual input sequence, is crucial for generating a correct eval-

uation. A recent experiment (Skorupski et al., 2018) analyzed the bees’ flight trajectories when choosing
86 iScience 11, 85–92, January 25, 2019
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Figure 2. Estimating Numerosity in a Counting Task

Using realistic visual input and following simple rules for interpreting the evaluation provided by the neural network, the

model can provide enough information to reproduce the decisions the bee made in the counting task from Skorupski

et al. (2018).

(A) The flight path of a bee trained to choose two items and not four items. The bee inspects each item one by one, flying

over them at a distance of 1–2 cm. During training, the bee was rewarded with sugar solution hidden in a hole in the

middle of the correct stimulus (indicated by a small circle). When a stimulus is chosen, the bee hovers in front of the hole,

trying to feed from it; when rejected, she leaves the stimulus without trying to feed. Reproduced from Skorupski et al.

(2018).

(B) Example set of visual input to the model during scanning. From a short distance, with limited field of view, the visual

input is akin to moving a spotlight across the image.

(C) The responses of the ‘‘brightness’’ neuron (gray line), ‘‘brightness working memory’’ neuron (dotted line), the

‘‘counting working memory’’ neuron (dashed line), and the ‘‘evaluation’’ neuron (black line) for the flight path shown in (A).

Decisions to land on a stimulus (light gray arrow) are made when the scan is finished (there are no more items in sight) and

the response of the ‘‘evaluation’’ neuron is high (above approximately 0.8 here). Decisions to leave the stimulus (black

arrows) are triggered when the ‘‘evaluation’’ falls below a threshold (approximately 0.8 here). When the bee decides to

leave a stimulus, the network is reset, and it is reactivated once the bee has left the stimulus.
between patterns with different number of elements and concluded that bees inspect pattern elements

sequentially, flying over each item once. Moreover, bees keep very close to the pattern during scanning

(Guiraud et al., 2018; Ings et al., 2012). We assumed a 1–2 cm viewing distance; from this distance, our

wide-field neuron’s receptive field of 60� only covers 1.2–2.3 cm in diameter of the stimulus. Thus its input

is akin to a moving spotlight across the pattern (Figure 2).

Our network outputs an estimate of the numerosity that can be used to solve a number of different

types of quantification tasks (counting, equals to, less than, or more than) depending on how the

‘‘evaluation’’ neuron’s response is interpreted in decision making. For the ‘‘choose two not four’’ task

from Skorupski et al. (2018), we employed the rule that the bee is prompted to leave the stimulus if

the ‘‘evaluation’’ neuron’s response falls below a critical level (approximately 0.8 here). This can happen

if the bee has passed over more items than she is looking for (>3 items here) and when she has been

searching for the sugar reward without success long enough for the working memory to degrade. We

also assume that the bee would land on the stimulus should she complete a scan without being
iScience 11, 85–92, January 25, 2019 87



Figure 3. Estimating Numerosity in a Numerical Ordering Task

The model reproduces the choices of the bee in a complex numerical ordering task from Howard et al. (2018), including

the preference for the empty stimulus (‘‘zero’’) and an increasing success of discrimination with increasing numerical

distance

(A) The evaluation given by the model for the stimuli used in Howard et al. (2018) shows a decreasing response with

increasing numerosity. Each stimulus contains a varying number (0–6) of differently shaped (circle, triangle, or square)

items. 1, 3, 15, or 21 individual patterns per number were used. The dots represent the ‘‘evaluation’’ responses to each

pattern, the black lines indicate their means, and the gray areas depict the standard deviations. We assumed the bee

scans each pattern by flying over each item once, as described in Skorupski et al. (2018).

(B) If the bee chooses patterns to scan randomly and lands with a likelihood directly proportional to the state of the

‘‘evaluation neuron’’ at the end of the scan, the distribution of landings on zero versus other numerosities followsWeber’s

law of number discriminability (as found in Howard et al., 2018). Note that this decision rule does not involve comparing

two stimuli.

See also Figure S1 and Table S1.
prompted to abandon it. In either event, the decision to leave or find the sugar reward will reset the

network by inhibiting both the ‘‘brightness working memory’’ and the ‘‘counting working memory’’ neu-

rons. Using these assumptions, we find that the model reliably predicts the rejections and landings

shown in Skorupski et al. (2018) based on the visual input during its flight path (Figure 2). The same

model outputs can be used for selecting ‘‘higher number’’ or ‘‘greater’’ by inverting the decision rule,

i.e., the bee should leave the stimulus after finishing the scan but lands on it once the evaluation falls

below the threshold. Moreover, the same method can be used to address landmark counting (Chittka

and Geiger, 1995; Dacke and Srinivasan, 2008). Here, the bee is viewing large landmarks from a dis-

tance, instead of small items from close up; the behavioral rule is to interrupt flight and land when

the ‘‘evaluation’’ neuron’s response falls below a threshold.

We then turned our attention to a recent study in which bees succeeded in numerical ordering tasks

(including an adequate response to zero), which was interpreted by the authors as indicating that bees

form concepts of ‘‘less than,’’ ‘‘greater than,’’ and ‘‘zero’’ (Howard et al., 2018). The flight paths were

not recorded in this article, compelling us instead to assume an idealized flight path based on the

scanning rules described in Skorupski et al. (2018), one that passes over each item once, at a hovering

distance of 2 cm. The decision to land on the feeder is determined by the value of the ‘‘evaluation’’

neuron after completing the scan. For the ‘‘less than’’ task, the decision to land would be guided by a

high value, whereas the ‘‘more than’’ task would be guided by a lower value. Note that the network

does not compare two sets of stimuli; instead, a decision is made concerning each stimulus indepen-

dently based on its overall score. We simulated the input to the neural network that could result from

flying a scanning path and calculated the output from the ‘‘evaluation’’ neuron to predict the proba-

bility of choosing a pattern. For the stimuli used in Howard et al. (2018), the model’s numerosity es-

timations match the performance of the bees (Figure 3 and Table S1—‘‘less than’’ task; for the ‘‘more

than’’ task, see Table S1). The model’s accuracy when choosing from two stimuli follows Weber’s law,

which states that accuracy is expected to improve with numerical distance. Finally, the model reliably

rates ‘‘zero’’ (an empty sheet) over other numbers in the ‘‘less than’’ task. Our counting network
88 iScience 11, 85–92, January 25, 2019



actually outperformed the behavior of real bees; they failed at choosing zero over two in the original

experiment.
DISCUSSION

The model rests on the assumption that during counting bees scan pattern elements sequentially and visit

each element once (proposed in Skorupski et al., 2018). There is evidence to show that this scanning

behavior might be required to extract visual pattern information. The time bees require to solve a visual

discrimination task increases with task complexity (Ings et al., 2012; Nityananda et al., 2014), indicating

that they use some sort of sequential scanning behavior. As bees observe pattern elements from a distance

of only a few centimeters (Guiraud et al., 2018; Ings et al., 2012), the larger part of the pattern will be out of

the bees’ field of view at any given time, suggesting a one-by-one inspection strategy. How bees know

which pattern element they have already visited is not yet fully understood; however, as they can clearly

avoid revisits to previously emptied feeders (Lihoreau et al., 2012) and previously emptied nectaries within

one flower based on their position (Bar-Shai et al., 2011), we expect them to be able to use their working

memory to avoid revisits to pattern elements as well. The visual inspection strategies that other non-human

animals use during counting remain unexplored; there is, however, evidence for animals following a set

visual path during object recognition tasks (in chickens; Dawkins and Woodington, 2000). Overall, the

sequential scanning behavior described in Skorupski et al. (2018) might be a version of a more universal

strategy, co-opted and tailored to the task of counting.

The model offers a non-countable magnitude estimation similar to the core system 1 humans employ for

approximating large numbers, and not the core system 2 we use to discriminate a small number of items ‘‘at

a glance’’ (subitizing) (Feigenson et al., 2004; but see Gallistel and Gelman, 2000 for the argument that both

systems use magnitude estimation). As the success of discrimination is expected to be ratio dependent

only in the first case, and this has been argued for bees in recent experiments (Howard et al., 2018), there

is some support for this kind of implementation, but more experiments will be needed. Consider, however,

that there are other known examples of approximate magnitude estimation circuits in insect brains. Ants,

for example, measure distance by integrating step count (Wittlinger et al., 2006, 2007), whereas bees keep

track of the total amount of image motion in the lateral regions of their visual field (Srinivasan et al., 1997;

Stone et al., 2017). The ‘‘item counter’’ might use the same neural architecture as these distance meters, or

even recruit the visual distance circuit directly.

The crucial element in our neural architecture is the implementation of this ‘‘item counter’’ as a recurrent

working memory circuit. Similar configurations have been found in insect brains (Douglass and Strausfeld,

2003; Eichler et al., 2017; Grünewald, 1999; Haag and Borst, 2001), and recurrent microcircuits have been

suggested to serve the role of memory units encoding the distance traveled during path integration (Stone

et al., 2017). In our model, recurrence creates an exponentially decayingmemory trace that can bemodified

by further inputs. Behavioral experiments using a delayed-matching-to-sample paradigm have established

that the bees’ working memory (early short-term memory) indeed degrades in an exponential fashion and

disappears in less than 10 s (Raine and Chittka, 2011; Zhang et al., 2005). In our model, we used one neuron

(as theorized in Loewenstein and Sompolinsky, 2003). However, working memory is more likely to be imple-

mented by a group of recurrently wired neurons. The memory capacity of such recurrent neural networks,

called echo-state networks, depends on their size and on the level of noise (Jaeger, 2002); a small network,

receiving the inevitably noisy visual input, is in line with the limited counting abilities of bees and of many

other species.

The location of visual working memory in the bee brain is unknown. For olfactory learning, the antennal lobes

have been identified as most likely sites for working memory/early short-termmemory (Erber et al., 1980; Men-

zel, 1999); the most likely analog sites in the visual pathway would be in the medulla or lobula. In the medulla,

recurrently wired neuronsmight exist in the serpentine layer (Douglass and Strausfeld, 2003); in the lobula, in the

inner layers (Haag and Borst, 2001). There is evidence that in flies some short-termmemory traces are stored in

the central complex (Liu et al., 2006); for bees, Stone et al. (2017) put forward an argument for a recurrent micro-

circuit serving as thememory unit in the path integrator in the central complex. The linear neurons we used here

are capable of less computation than amore complex spiking neuron, and even if we need to scale up the num-

ber of working memory neurons an order of magnitude to counterbalance neural noise, the necessary tens of

neurons would still fit easily in the optic lobes or the central complex. Two simple workingmemory circuits, each

of which receives the same input only weighted differently, may be easily co-opted for counting by neurons in
iScience 11, 85–92, January 25, 2019 89



the mushroom body (Eichler et al., 2017; Grünewald, 1999; represented in our model as one ‘‘evaluation’’

neuron). To summarize, neurons of the types that are required for our simple theoretical model do exist in

the insect brain. Although it is likely that more than four neurons are involved in real counting tasks (perhaps

with multiple similar circuits operating in parallel), such circuitry would still not be prohibitively expensive to

be accommodated in an insect brain.

The advantage of explicitly outlining a possible neural architecture is that such a model yields testable predic-

tions.Ourmodelmakes the followingpredictions (amongothers). (1) The counting circuit weproposed relies on

inputs from the color blind motion pathway, and so expected to use only long-wavelength-sensitive receptor

inputs and be color blind as well (Paulk et al., 2008, 2009b). (2) The signal of the working memory circuit that

acts as an ‘‘item counter’’ degrades exponentially with time; thus introducing delays during a scan is expected

to cause the bee to underestimate numerosity. (3) We propose that the bee tailors her scan to the stimulus, in a

way that keeps input noise to the minimum; forcing the bee to an altered scan route (e.g., viewing the stimulus

froma larger distance than ideal) should degrade the performance. (4) Themodelmakes the decision to landon

a stimulus based on its numerosity, without directly comparing two stimuli. With appropriate tuning, this deci-

sion rule is enough to reliably choose the smaller or the larger numerosity but cannot be used to choose the

middle number from three numbers; thus bees should fail at his task.

Fifty years ago, the ability to learn concepts was considered uniquely human and a sign of the highest form

of intelligence. We now know from behavioral experiments that bees can solve the delayed-match-to-sam-

ple (Gross et al., 2009), sameness/difference (Giurfa et al., 2001), and above/below tasks (Avarguès-Weber

et al., 2011), and can count and extrapolate to zero (Howard et al., 2018), but the behavioral strategies by

which they do so and whether these indeed require the formation of concepts is a separate question. Our

artificial neural network of a few nodes, when given appropriately structured visual input, can solve a variety

of tasks without requiring any form of concept or ‘‘understanding.’’ The model demonstrates this principle

applied to counting and numerical ordering; however, counting is not the only learning task whose compu-

tational complexity has been called into question recently. After viewing an image, bees are able to distin-

guish between the same and a novel image, and can be trained to choose either the same or the different

one, a task that appears to require the concepts of sameness and difference (Giurfa et al., 2001); modeling

work, however, suggested a simple but neurobiologically plausible circuit that matches the bees’ perfor-

mances, and which does not involve any top-down processing (Cope et al., 2018). In the ‘‘above-and-

below’’ spatial conceptual task, bees are required to decide if any object is above or below a referent

(Avarguès-Weber et al., 2011). A recent behavioral study that examined the bees’ flight paths during this

task (Guiraud et al., 2018) proposed that bees could turn the spatial relation task into a simple discrimina-

tion task by only inspecting the bottom part of any pattern andmaking a decision based on whether it is the

referent (above which the item in question is found, thus the answer is ‘‘above’’) or anything else (thus the

answer is ‘‘below’’). Honeybees have been shown to selectively opt out frommaking a choice when they are

uncertain, an indication of metacognition; however, the authors argue that the same neural circuit that im-

plements simple associative learning could govern the behavior (Perry and Barron, 2013). Although it is

often argued that cognitive ability correlates with brain size (see, e.g., Kotrschal et al., 2013 for an example

on numerical abilities in guppies), our results and these studies show that seemingly advanced cognitive

performance can be achieved with extremely small circuits. If this is so, a careful re-examination of the po-

tential evolutionary advantage of bigger brains is in order (Chittka and Niven, 2009).

In comparative cognition, there is little value in rating cognitive task difficulty based on how difficult it is

using symbolic human-like thinking. What is worthy of our attention is the repertoire of innate and learnt

behavioral routines that animals employ while completing the task, and the complexity of the task in terms

of neurocomputation. Within this framework we have shown that counting and numerical ordering are

computationally inexpensive, provided the animal employs an active, sequential scanning of pattern ele-

ments. Here we studied the scanning behavior of bees; similarly simple computational solutions may un-

derpin numerical cognition in other animals that employ active scanning (e.g., Chittka and Skorupski,

2017; Dawkins and Woodington, 2000; Gegenfurtner, 2016). Furthermore, we have shown that counting

does not need to rely on the internal representation of concepts. Sequential scanning drastically reduces

the demand for the neural hardware required to solve the task. We conclude that active scanning behavior

could play a major role in even the most complex cognitive tasks. Future studies in comparative cognition

should benefit from shifting the focus from what an animal can do to how it does it and explore the intri-

cacies of the sequential decision-making process (Chittka et al., 2012).
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Limitations of the Study

(1) The model parameters were chosen to demonstrate that the circuit is able to estimate numerosity, but

we do not investigate the learning or other processes that lead to the emergence of the synaptic weight

parameters. (2) We do not test the robustness of the model to variations in input stimuli other than that

inherent in the stimuli used in Skorupski et al. (2018) and Howard et al. (2018). We decided to omit these

tests as a realistic estimate of model robustness would require more information on the scanning behavior

(and thus the visual input) and the neural implementation than available.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, two figures, one table, and one data file and can

be found with this article online at https://doi.org/10.1016/j.isci.2018.12.009.
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Transparent Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Vera Vasas (v.vasas@qmul.ac.uk or vvasas@gmail.com). 

 

METHOD DETAILS 

 

Generating the visual input 

 

The relative amount of light (quantum catch) absorbed by the bee eye was set to 1 for white 

areas, 0 for black areas, and 0.5 for grey background areas. For the yellow and purple shown 

on Figure 2, the quantum catch for each receptor type can be calculated as (Backhaus and 

Menzel, 1987; Chittka and Kevan, 2005) 

( ) ( ) ( )dλλDλSλI=P S
700

300

 

where ( )λI S  is the spectral reflectance function of the stimulus (Figure S2), ( )S  is the spectral 

sensitivity function of the receptors from Peitsch et al. (1992), and ( )D  is the spectrum of 

illumination, assumed to be unit across the visible spectrum but missing UV (matching 

experimental details for Skorupski et al., 2018). We used the response of the long-wavelength-

sensitive receptors as the total quantum catch. (Colour and motion are processed separately in 

the bee brain (Paulk et al., 2008), and the latter only receives input from long-wavelength-

sensitive receptors. Our model assumes input from small field on-off neurons of the motion 

pathway (as in e.g. Arenz et al., 2017). The quantum catch was scaled to yield 1 for white.  

 

To calculate the visual input at each time step, we used a visual angle of 60 degrees and a 

viewing distance of 2 cm. We generated a partial image representing the field of view centred 

on a point on the flight path. The path used was the track specified on Figure 2 for the counting 

task (Skorupski et al., 2018) and idealized tracks (Data S1) for the numerical ordering task 

(Howard et al., 2018). Finally, the ‘brightness’ neuron’s responses at each time step were 

calculated as taking the absolute differences between the quantum catches at the current and 

mailto:v.vasas@qmul.ac.uk
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the previous position pixel-by-pixel, and summing them, mimicking a summation of a 

collection of small field on-off visual neurons. 

 

Neural model 

 

In our minimal model, we used abstract linear transfer neurons, whose responses are bounded 

by 0 and 1. Thus, the output rates of neurons ir  at time t are given by the following piecewise 

linear transfer function: 

if 0<xt

i , 0=r t

i ; 

if  10  t

ix , 
t

i

t

i x=r ; 

if 
t

ix1 1=r t

i ; 

where 
t

ix , the presynaptic input to neuron i at time t is calculated as the linear summation of 

input from presynaptic neurons j: 

1− t

j

j

ji

t

i rw=x  

where jiw is the weight of the synapse from neuron j to i.  

We used the following weight parameters for modelling the counting task from Skorupski et 

al. (2018) and the numerical ordering from Howard et al. (2018) (i – ‘brightness’ input neuron, 

b – ‘brightness working memory’ neuron, c – ‘counting working memory’ neuron, e - 

‘evaluation’ neuron): wib = 1.2; wic = 0.075; wbb = 0.99; wcc = 0.999; wbe = 1; wce = -1.1.  

 

DATA AND SOFTWARE AVAILABILITY  

 

Description: Data S1 

We implemented the calculations in MATLAB (Release 2018A, The MathWorks, Inc., Natick, 

Massachusetts, United States). Data S1 includes the scripts, the example stimuli and the flight 

paths from Howard et al. (2018) and Skorupski et al. (2018). Instructions for using the scripts 

are given as comments within each script.  



KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB The MathWorks, Inc. R2018A 

Custom scripts for modelling the minimal neural 

network, and the associated input files: the stimuli 

and the flight paths from Howard et al. (2018) and 

Skorupski et al. (2018) 

This paper Data S1 

 

  



 

 

Figure S1. The evaluation provided by the model follows the same pattern, that shown in 

Figure 3A, when the input is either a global brightness detector or an edge detector. Related 

to Figure 3. (A) We calculated the global brightness neurons’ response using the total amount 

of quantum catch from its 60-degree visual field, subtracting the value at the previous time step 

from that at the given time step. The result was scaled log-linearly. The global brightness 

detector will thus respond to an increase in brightness with a phasic burst that scales log-

linearly with the extent of the change (Hertel, 1980). We calculated the evaluation given by the 

model for the stimuli from Howard et al. (2018) using the following parameters: wib = 0.8; wic 

= 0.09; wbb = 0.99; wcc = 0.999; wbe = 1; wce = -1.1. (B) We defined the response for the edge 

detector neurons as the fraction of its 60-degree visual field that contains edges (Yang and 

Maddess, 1997). We calculated the evaluation given by the model for the stimuli from 

Skorupski et al. (2018) using the following parameters: wib = 1.5; wic = 0.12; wbb = 0.99; wcc 

= 0.999; wbe = 1; wce = -1.1. The dots represent the response levels from the ‘evaluation’ 

neuron for each pattern; the black lines and the grey areas indicate the means and the standard 

deviations respectively.  



 

Figure S2. The spectral reflectance functions of the colours used in Skorupski et al. (2018). 

Related to Figure 2 and Methods. 

  



A. 

vs. 0 items 1 item 2 items 3 items 4 items 5 items 6 items 

0 item 0.5 0.53 0.58 0.63 0.68 0.74 0.85 

1 item 0.47 0.5 0.55 0.6 0.65 0.72 0.84 

2 items 0.42 0.45 0.5 0.55 0.6 0.67 0.81 

3 items 0.37 0.4 0.45 0.5 0.56 0.63 0.77 

4 items 0.32 0.35 0.4 0.44 0.5 0.58 0.73 

5 items 0.26 0.28 0.33 0.37 0.42 0.5 0.67 

6 items 0.15 0.16 0.19 0.23 0.27 0.33 0.5 

 

B. 

vs. 0 items 1 item 2 items 3 items 4 items 5 items 6 items 

0 item 0.5 0.36 0.24 0.2 0.17 0.15 0.12 

1 item 0.64 0.5 0.37 0.31 0.27 0.24 0.2 

2 items 0.76 0.63 0.5 0.44 0.39 0.35 0.3 

3 items 0.8 0.69 0.56 0.5 0.45 0.4 0.36 

4 items 0.83 0.73 0.61 0.55 0.5 0.46 0.41 

5 items 0.85 0.76 0.65 0.6 0.54 0.5 0.45 

6 items 0.88 0.8 0.7 0.64 0.59 0.55 0.5 

 

Table S1. The same model is capable of selecting ‘less’ or ‘more’ depending on the decision 

rule. Related to Figure 3. The numbers indicate the proportion of landings on the stimulus 

indicated in the rows vs. the stimulus in the columns. Bold letters highlight a preference ≥ 60%. 

(A) If the bee chooses patterns to scan randomly and lands with a likelihood directly 

proportional to the state of the ‘evaluation neuron’ at the end of the scan, then the bee will show 

a measureable preference for the stimulus containing fewer items. (B) If the bee chooses 

patterns to scan randomly, but lands with a likelihood inversely proportional to the state of the 

‘evaluation neuron’ at the end of the scan, then the bee will show a measureable preference for 

the stimulus containing more items.  
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