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Profiling of whole transcriptomes has become a cornerstone of molecular biology and
an invaluable tool for the characterization of clinical phenotypes and the identification
of disease subtypes. Analyses of these data are becoming ever more sophisticated as
we move beyond simple comparisons to consider networks of higher-order interactions
and associations. Gene regulatory networks (GRNs) model the regulatory relationships
of transcription factors and genes and have allowed the identification of differentially
regulated processes in disease systems. In this perspective, we discuss gene targeting
scores, which measure changes in inferred regulatory network interactions, and their use
in identifying disease-relevant processes. In addition, we present an example analysis for
pancreatic ductal adenocarcinoma (PDAC), demonstrating the power of gene targeting
scores to identify differential processes between complex phenotypes, processes that
would have been missed by only performing differential expression analysis. This
example demonstrates that gene targeting scores are an invaluable addition to gene
expression analysis in the characterization of diseases and other complex phenotypes.

Keywords: cancer genomics, network medicine, gene targeting, differential targeting, gene regulatory networks

INTRODUCTION

A core tenet of molecular biology is that phenotypic differences are reflected through patterns of
differential expression of key genes involved in relevant biological processes. Since its inception,
whole-genome transcript profiling has been an invaluable tool for exploring these associations and
has been used in a range of applications, including identification of clinically relevant molecular
subtypes in cancer exhibiting different morbidities and implications for treatment together with
characteristic genes associated with these phenotypes (Rouzier et al., 2005; Collisson et al., 2011;
Moffitt et al., 2015; Bailey et al., 2016; Kwa et al., 2017; Rodriguez-Salas et al., 2017; Rudin
et al., 2019; Sjödahl et al., 2019). Studies have also found that complex patterns of association
between genes represented as networks can provide additional insight and that network metrics
parameterizing these associations can be used to prioritize and identify crucial disease-related genes
(Ramadan et al., 2016; Dimitrakopoulos et al., 2018; Horn et al., 2018; Gumpinger et al., 2020).
However, there is growing evidence that the processes regulating the expression of phenotype-
associated genes can provide a more holistic picture of drivers of disease and other phenotypes.
Gene regulatory networks (GRNs) are often represented as directed bipartite graphs that are used to
depict inferred relationships between transcription factors (TFs) and their target genes. GRNs can
be characterized by calculating “gene targeting scores,” a network topology measure that captures
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the complex relationships that a gene has with other TFs and
genes and represents the extent to which a gene is targeted in a
given system. In this perspective, we will present gene targeting
scores, discuss their meaning, and show how this network-based
measure provides information about disease systems beyond
that found using only differential expression analysis in the
investigation and characterization of human disease.

GENE REGULATORY NETWORKS:
CHARACTERIZATION OF SYSTEMS

Networks are useful tools for representing and analyzing large,
complex datasets because they capture information about the
relationships within a system rather than simply the state of
individual components. This is an important distinction, as can
be illustrated with a small toy example first described in Glass
et al. (2014; Figure 1). In this example, we consider the expression
of four genes in nine healthy individuals and nine individuals
with a disease (Figures 1A,B). Comparing expression levels
between healthy and diseased individuals, we find that none are
differentially expressed (Figures 1C,D). However, when looking
at the co-expression of these genes in each group of individuals,
we see that that the genes are differentially co-expressed between
groups. For example, in healthy individuals, gene G1 is co-
expressed with gene G2 (Figure 1E), whereas in diseased
individuals, gene G1 is co-expressed with gene G3 (Figure 1F).
This illustrates that differential expression analysis alone may
miss important correlations or regulatory relationships that
distinguish biological states such as healthy and disease.

This does not mean that gene expression analysis alone is
not useful. Differential expression analyses have contributed to
many key advances in our understanding of disease. For example,
much of our understanding of the complexities of human cancers
is derived from large-scale expression profiling of cancer, such
as that carried out by The Cancer Genome Atlas (TCGA)1,
where the expression-based subtypes that have been identified
possess distinct clinical characteristics. In pancreatic ductal
adenocarcinoma (PDAC), several studies have used expression
profiling to identify molecular subtypes (Collisson et al., 2011;
Moffitt et al., 2015; Bailey et al., 2016; Rashid et al., 2020; Puleo
et al., 2018; Maurer et al., 2019). However, we suggest that a
more comprehensive molecular characterization of diseases can
be achieved by exploring inferred regulatory network differences
and differential gene targeting.

In 2013, Glass et al. (2013) introduced the PANDA (Passing
Attributes between Networks for Data Assimilation) framework
for GRN construction. This method takes a data integration
approach to GRN construction by using message passing to
combine multiple data sources. PANDA predicts regulatory
relationships between TFs and genes by considering three main
sources of information: (1) a TF–gene network “adjacency
matrix” representing an initial guess of which TFs regulate
which genes based on the presence/absence of TF motif in the
promoter regions of genes, (2) a protein–protein interaction

1https://www.cancer.gov/tcga

network “co-operativity matrix” that recognizes that many TFs
exert their influence through regulatory complexes, and (3) a
gene co-expression matrix representing gene–gene relationships
initially based on correlation in expression patterns across a
set of samples. These three different sources of information are
iteratively updated using a message-passing algorithm, using the
logic that if two genes are co-expressed, they are more likely to
be co-regulated by a similar set of TFs (Figure 2A), and that if
two TFs interact, they are more likely to bind promoter regions
as a complex and co-regulate the expression of their target genes
(Figure 2B). In this process, the TF–gene “edge weights” in the
adjacency matrix are updated to reflect the evidence supporting
a regulatory interaction; the refinement of edge weights through
message passing has been found to improve the prediction
accuracy of GRNs, validated through prediction of chromatin
immunoprecipitation (ChIP)-seq-derived TF binding.

PANDA has been used to investigate gene regulatory
relationships in several disease contexts, including chronic
obstructive pulmonary disease (COPD) (Glass et al., 2014),
asthma (Qiu et al., 2018), ovarian cancer (Glass et al., 2015),
and colorectal cancer (Vargas et al., 2016; Lopes-Ramos et al.,
2018). In addition, single-sample versions of PANDA GRNs,
derived using a method called LIONESS (Linear Interpolation
to Obtain Network Estimates for Single Samples) (Kuijjer et al.,
2019b), have been used to study sex-linked differences in
colon cancer (Lopes-Ramos et al., 2018) as well sex-related
differences in gene regulation (Lopes-Ramos et al., 2020) in
tissues from the Genotype-Tissue Expression (GTEx) project
(Lonsdale et al., 2013).

GENE TARGETING SCORE: IDENTIFYING
INFORMATIVE REGULATORY
PROCESSES

The use of GRNs in the analysis of disease relies on analysis of the
“gene targeting score,” a numerical score representing the extent
to which a gene is targeted by TFs in a given biological context.
The gene targeting score is calculated by summing the weights
of all inbound regulatory edges for a gene (Figure 2C). Because
of the way in which PANDA estimates edge weights, a gene’s
targeting score synthesizes multiple lines of evidence—TF motif
data, TF–TF interactions, and gene expression correlation. Thus,
gene targeting scores are not necessarily correlated with absolute
gene expression levels, and consequently, differential targeting is
not necessarily correlated with differential gene expression.

Sonawane et al. (2017) used PANDA to construct tissue-
specific GRNs for 38 tissues in GTEx and investigated the
tissue specificity of TF–gene regulatory relationships. They
found many tissue-specific regulatory relationships that would
have been missed by using expression information alone. For
example, when comparing the tissue-specific regulatory activity
of TFs based on gene expression with that deduced using
network targeting, they found that TF regulation of tissue-specific
function was evident when using gene targeting metrics, but it
was largely independent of TF expression level (Sonawane et al.,
2017). PANDA analysis also identified unique, tissue-specific
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FIGURE 1 | Differential expression vs. differential co-expression. As a toy example, we consider the expression of four genes in (A) nine healthy individuals and (B)
nine individuals with a disease. In this example, none of the genes are differentially expressed, as they have a similar average expression level in both healthy and
disease individuals, shown in examples (C) gene G1 and (D) gene G3. However, when we look at the co-expression between genes within healthy individuals (E)
and within disease individuals (F), we see that there is obvious differential co-expression between genes in healthy individuals, compared with disease individuals.

targeting patterns in the TF–gene edges and found significant
enrichment of tissue-specific regulatory edges targeting tissue-
specific expressed genes. This example demonstrates how
differences in tissue-specific regulatory relationships between TFs
and genes can give rise to the distinct phenotype by altering
regulation of key biological processes (Sonawane et al., 2017).

A study of COPD by Glass et al. (2014) found patterns
of gene targeting that differed between men and women and

offered a possible explanation for higher disease susceptibility
of women compared with men. They first compared gene
expression between males and females with COPD and found
little evidence of differential expression of autosomal genes.
Using a resampling approach, they constructed an ensemble
of 100 male and 100 female PANDA GRNs. They calculated a
targeting score for each gene in each network defined as the sum
of all inbound edge weights for the gene. They found several
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FIGURE 2 | Gene targeting. Gene targeting scores are derived from gene regulatory networks (GRNs) and thus are influenced by the components used to derive the
edge weights of a GRN. For example, PANDA GRNs include information regarding the (A) co-expression relationships between genes and (B) protein–protein
interactions between transcription factors (TFs). (C) Gene targeting scores are calculated as the sum of the weights across all inbound edges pointing to a gene.
(D) Gene Ontology (GO) enrichment of ranked differential gene scores comparing the basal-like and classical pancreatic ductal adenocarcinoma (PDAC) subtypes.
Genes were ranked by differential targeting (red), differential co-expression (orange), and differential expression (blue).

genes that were not differentially expressed but nevertheless had
significantly different targeting scores between the sexes. Pre-
ranked gene set enrichment analysis based on targeting scores
found many processes associated with mitochondrial function
that were more highly targeted in females; these processes had
previously been implicated in many aspects of COPD and lung
disease (Glass et al., 2014). These results suggest that that
differential regulation of processes associated with disease may
alter disease development and progression in meaningful ways.

Lopes-Ramos et al. (2020) investigated sex differences in
gene expression and gene regulation in 29 human tissues by
constructing individual-specific networks for each sample in each
tissue. Differential edge weights between males and females were
identified, and genes were classified as differentially targeted if
at least 5% of their inbound edge weights were significantly
different between males and females. This allowed genes to be
classified as being male-biased if most (>60%) of the inbound
differential edges were higher in males, female-biased if most
(>60%) of the inbound differential edges were higher in females,
and sex-divergent if the number of inbound differential edges
was evenly split between being higher in males and higher in
females (Lopes-Ramos et al., 2020). Consistent with previous
studies, they found little differential gene expression except in
breast tissue, with the median number of differentially expressed
genes across tissues equal to 64. However, widespread sex-
biased targeting was detected in all tissues, with a median
number of differentially targeted genes across tissues equal
to 169. Interestingly, the sex hormone receptors ESR1, ESR2,
and AR were differentially targeted between male and female
individuals in several tissues such as the breast, heart, and
blood, despite the fact that those hormone receptors were not
differentially expressed.

SPECIFIC EXAMPLE: PANCREATIC
DUCTAL ADENOCARCINOMA
SUBTYPES

PDAC is a lethal disease involving heterogeneous tumors
composed of diverse cell types including tumor epithelial cells
and components of the tumor microenvironment such as
immune cells and fibroblasts. Molecular subtypes of PDAC have
been identified through gene expression analysis (Collisson et al.,
2011; Moffitt et al., 2015; Bailey et al., 2016; Puleo et al., 2018;
Maurer et al., 2019), and the basal-like and classical subtypes
first identified by Moffitt et al. have been associated with both
prognosis and treatment response (Moffitt et al., 2015; Aung
et al., 2018; Rashid et al., 2020; O’Kane et al., 2020). The basal-
like subtype is associated with worse median patient survival
and resistance to chemotherapy (Moffitt et al., 2015; O’Kane
et al., 2020) and has characteristically high expression of keratins
and laminins, both structural proteins also associated with
the basal subtypes of breast and bladder cancers (Damrauer
et al., 2014; McConkey et al., 2014; Weinstein et al., 2014).
The classical subtype shows better response to treatment and
better overall survival and is marked by increased expression
of GATA binding protein 6 (GATA6), a TF involved in cell
differentiation.

To identify factors driving these subtypes, we compared
differential gene expression and differential GRN gene targeting
scores between basal-like and classical subtypes of 150 PDAC
tumors using TCGA (Cancer Genome Atlas Research Network,
2017) transcripts per kilobase million (TPM) expression data
processed using Recount (Collado-Torres et al., 2017). We used
PANDA and LIONESS to construct sample specific GRNs and
chose to limit our analysis to those genes with a high standard
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deviation of logTPMs [sd(logTPMs) > 0.4] across samples. For
each gene in each individual tumor, a gene targeting score was
calculated as the sum of all inbound edge weights surrounding
each gene. Separately, we also calculated a sample-specific co-
expression network for each tumor (Kuijjer et al., 2019a) and
for each gene in each sample, and we calculated a gene co-
expression score equal to the sum of each gene’s co-expression
edges surrounding the gene. We used limma (Ritchie et al., 2015)
to compare the expression data, the correlation networks, and
GRNs between the basal-like and classical subtypes, allowing us to
identify differentially expressed genes, differentially co-expressed
genes, and differentially targeted genes, respectively.

The three genes found to be most significantly differentially
targeted in GRNs, but not differentially expressed, between basal-
like and classical subtypes are folate receptor beta (FOLR2),
hedgehog interacting protein (HHIP), and the CD209 antigen
C-type lectin domain family 4 member L (CD209). FOLR2
encodes the folate receptor 2 protein and is known to be
overexpressed in tumor-associated macrophages (Tie et al., 2020).
HHIP codes for the hedgehog interacting protein; the hedgehog
signaling pathway regulates cell differentiation and proliferation
and is activated in several cancers including PDAC (Yang et al.,
2010; Honselmann et al., 2015; Gu et al., 2016). CD209 codes
for a C-type lectin domain family 4 protein and is a dendritic
cell marker. The roles that these play in PDAC have not
yet been explored.

Ranking genes according to three different metrics, differential
targeting, differential co-expression, and differential expression,
we performed ranked gene set enrichment analysis (Eden
et al., 2009; Supek et al., 2011) to identify significantly over-
represented biological process Gene Ontology (GO) terms. Both
the differential targeting analysis and differential expression
analysis identified keratinization, cornification, cell death, and
wound healing as differentiating basal-like and classical samples.
However, several immune-related processes, epigenetic, and cell
cycle processes found by differential targeting analysis were
missed using differential expression alone (Figure 2). Functional
enrichment using co-expression scores to rank genes identified
some processes similar to those found using differential targeting
but missed several important pathways related to cell cycle and
other processes, such as chromatin organization.

The identification of keratinization as enriched in
differentially expressed genes is consistent with previous
studies that identified genes encoding keratins and laminins
as biomarkers for basal-like tumors (Moffitt et al., 2015,
O’Kane et al., 2020). The fact that both differential expression
and differential targeting identified keratinization and cell
adhesion as biological processes distinguishing PDAC subtypes
serves as an internal consistency check. Differential targeting
alone identified processes related to the immune system and
speaks to the importance of the tumor microenvironment,
which is known to influence PDAC prognosis and drug
response. A high degree of tumor-associated macrophage
infiltration has been linked to lower survival (Karamitopoulou,
2019), which is a known hallmark of the basal-like subtype,
and it is possible that the differential targeting analysis
is detecting cross-talk between the tumor and the tumor

microenvironment. The differential targeting of epigenetic
functions between subtypes is consistent with reports that
the basal-like and classical subtypes have distinct epigenetic
landscapes (Lomberk et al., 2018).

This analysis of PDAC subtypes, although abbreviated,
demonstrates the power of using GRN inference and gene
targeting score analysis to identify regulatory processes that
characterize distinct phenotypes—including processes that are
distinct from those that are associated with patterns of gene
expression. The biologically relevant differences we see in
targeting but not expression or co-expression suggest that
regulatory control, even if not activated, is important in defining
health and disease.

DISCUSSION

There is growing experimental evidence of the importance of
complex regulatory processes in distinguishing phenotypes in
health and disease. For example, the Wilms tumor-1 (WT1)
TF is a master regulator that targets several essential genes in
kidney podocyte cells. Ettou et al. (2020) investigated WT1-
based gene regulation during podocyte injury and found that
WT1 maintained open chromatin in the regions of its target
genes but that the expression level of WT1 was not universally
associated with the intensity of its binding. They also found
that WT1 could cause either an increase or a decrease in the
expression of its target genes. The role of complex regulatory
processes is further illustrated by the work of Carnesecchi et al.
(2020), who investigated how a single TF could regulate different
developmental programs in various cell lineages. They showed
that the Ubx TF forms different complexes with distinct binding
partners in various cell lineages despite the fact that most
of the interaction partners showed no differential expression
across the lineages.

Taken together, the results reported by Ettou and Carnesecchi
illustrate the complexity of regulatory processes and the
importance that regulatory targeting plays in defining phenotype,
even in instances in which a key regulator does not itself
substantially change in its expression levels. Their results
also point to the importance of modeling both “direct” and
“indirect” regulation of genes by TFs and the complexes they
form. Among the methods for GRN inference, PANDA (and
by extension, PANDA+LIONESS) is singular in considering
interactions between TF proteins in its model. PANDA’s
integrative approach using TF–TF interactions, predicted TF–
gene regulatory relationships, and gene co-expression data,
refines the inputs to optimize agreement between them; the
resulting networks provide unique insight into regulatory
processes that are linked to phenotypes.

The work summarized in this perspective demonstrates the
value of the gene targeting score as a metric for assessing the
drivers of phenotypic differences. Gene targeting scores not only
capture structural characteristics of regulatory networks but also
allow for the identification of processes that may be activated
in response to appropriate stimuli and in this way help to
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define phenotypes and disease subtypes. For example, Lopes-
Ramos et al. (2018) performed gene targeting analysis on gene
expression data from colon cancer tumor samples and discovered
differences between males and females in the regulation of genes
involved drug metabolism, suggesting that male and female
tumor cells are programmed to respond differently. They found
that genes in drug metabolism pathways, particularly those
acting through cytochrome P450, had higher targeting scores
in female networks than male networks. Furthermore, higher
targeting of the drug metabolism pathways was found to correlate
with patient survival, indicating a mechanism for sex-divergent
response to chemotherapy in colon cancer.

Our application of PANDA and LIONESS in comparing
PDAC subtypes demonstrates the value of the GRN-based
approach and of using network-based metrics such as gene
targeting to characterize properties of biological systems. We
constructed sample-specific GRNs for 150 PDAC tumors and
used gene targeting to compare the topologies of networks
derived from basal-like and classical tumor subtypes. We
found that differential targeting analysis identified compelling
differences between the two subtypes in the regulation of
processes related to cell cycle, immune, and epigenetic functions,
none of which were seen in a standard differential expression
analysis. Given that PDAC tumors are known to exhibit immune
infiltration, and that the subtypes differ in both their epigenetic
landscapes and patient survival, our identification of relevant
processes illustrates how GRN-based methods can provide
important and relevant biological insights into disease-associated
processes beyond what is seen using other analytical methods.

PANDA and LIONESS software for GRN analyses and
identification of differential targeting are freely available as open-
source tools with extensive documentation (netzoo.github.io)

and can easily be implemented in most analytical workflows. We
hope that this review motivates the broader use and appreciation
of gene targeting analysis.
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