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Cancers are rarely caused by single mutations, but often develop as a result of

the combined effects of multiple mutations. For most cells, the number of

possible cell divisions is limited because of various biological constraints,

such as progressive telomere shortening, cell senescence cascades or a hier-

archically organized tissue structure. Thus, the risk of accumulating cells

carrying multiple mutations is low. Nonetheless, many diseases are based

on the accumulation of such multiple mutations. We model a general, hier-

archically organized tissue by a multi-compartment approach, allowing any

number of mutations within a cell. We derive closed solutions for the deter-

ministic clonal dynamics and the reproductive capacity of single clones. Our

results hold for the average dynamics in a hierarchical tissue characterized

by an arbitrary combination of proliferation parameters. We show that

hierarchically organized tissues strongly suppress cells carrying multiple

mutations and derive closed solutions for the expected size and diversity of

clonal populations founded by a single mutant within the hierarchy. We dis-

cuss the example of childhood acute lymphoblastic leukaemia in detail and

find good agreement between our predicted results and recently observed

clonal diversities in patients. This result can contribute to the explanation

of very diverse mutation profiles observed by whole genome sequencing of

many different cancers.
1. Introduction
The lifespan of most cells in biological organisms is limited, and usually the life

expectancy of the organism exceeds this time by orders of magnitude [1,2].

As cells are continuously lost, mechanisms to replenish the cell pool have evolved

in organisms, enabling sustained cell production during the lifetime [3]. Often this

is realized by hierarchically organized tissue structures. At the root of the hierarchy

are a few tissue-specific stem cells, combining two properties—self-renewal and

differentiation potential [4]. During cell proliferation, cells differentiate and

become increasingly specialized to perform specific functions within the hierarchy.

After some differentiation steps, the complete spectrum of functional cells can be

obtained [5–10]. A prominent example is the haematopoietic system [6–11], but

other tissues such as skin [12,13] or colon [14] are also hierarchically organized.

A large number of cell divisions are indispensable to life; however, they are

unavoidably accompanied by mutations. Typically, these cells are washed out

of the hierarchy and thus, especially if they arise in relatively differentiated

cells, the associated mutations are lost in the long run [10,15]. But cells with

multiple mutational hits might persist for a long time, increasing the risk of

accumulation of additional mutations during cell proliferation, which can ulti-

mately lead to cancer. Although some cancers seem to be caused by single

mutation hits, for example the BCR-ABL oncogene occurring in stem cells in

chronic myeloid leukaemia [16] or the PML-RARA oncogene occurring in

more differentiated cells in acute promyelocytic leukaemia [17], they are rare.
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Figure 1. Schematic of the compartment structure of multiple mutations and the corresponding transition rates. The top compartments contain cells carrying no
mutation. The bottom compartments contain cells carrying one mutation. Compartments to the right represent more specialized cell stages and arrows represent
transition probabilities, where 1 denotes the differentiation probability, u denotes the mutation rate of cells and ak

i ¼ 1k
i þ u. Initially, no mutated cells are

present in the hierarchy. We then determine, how many cells are acquired from the founder compartment (top left) and investigate how many cells with k
mutations are on average expected at any stage of the hierarchy. (Online version in colour.)
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The majority of cancers are triggered by at least a handful of

mutations [18–20]. The recent progress in genome sequencing

techniques has allowed, in some cases, the classification of

cancer-initiating mutations; in other cases, the underlying

mutations remain unknown [21]. However, many of these

studies reveal a very diverse mutation landscape, indicating

the existence of several cancer-initiating driver mutations and

additional alterations that have a small or even no impact

on cancer development, the so-called passenger mutations

[22–29]. The precise impact of passenger mutations on

cancer progression is still under discussion, but the typical

assumption is that they are neutral and do not affect the pro-

liferation properties of cells [30,31]. In particular, this holds

for synonymous mutations that do not have any consequences

for protein structure or function [32].

In mathematical and computational approaches, compart-

ment models are frequently used to describe cell dynamics

in hierarchically organized tissue structures. Many of these

studies investigate the effects of stem cell mutations and the

related clinical implications [6,8,33–36]. Also the stochastic effects

of tissue homeostasis are analysed [37–39], highlighting that

cancer-driving mutations can in principle disappear by chance

(stochastic extinction). The interplay of stem cell and progenitor

cell mutations and their impact on cancer initiation are discussed

[40], and game theoretical approaches allow modelling of the

evolutionary aspects of tissue homeostasis and intercell compe-

tition [41,42]. Often, these studies investigate the effects of cells

carrying one or a very few specific mutations and assume

either constant population size or only minimal hierarchies.

Here, we focus on the presence of cells carrying multiple

mutations within a hierarchically organized tissue. We show

mathematically that the hierarchical organization strongly

suppresses cells carrying multiple mutations and thus reduces

the risk of cancer initiation. Closed solutions for the total cell

population that arises from a single (mutant) cell are derived,
and from this the expected diversity of the mutation landscape

and the clonal size can be described. This enables a better

understanding of the expected diversity in mutation land-

scapes that are observed in both healthy and cancerous tissues.
1.1. Mathematical model
The hierarchical tissue organization is typically modelled by

a multi-compartment approach [6,10]. Each compartment

represents a certain differentiation in the stage of cells. At the

root of the hierarchy are stem cells ensuring a continuous

influx of cells. A proliferating cell in compartment i divides

and the two daughter cells differentiate and migrate into

the next downstream compartment (i þ 1) with probability 1,

increasing the downstream compartment by two cells, mutates

with probability u or self-renews within its own compart-

ment with probability 1 2 1 2 u. Mutated cells stay in the

hierarchy. If a mutated cell proliferates, it differentiates with

probability 1 into the next downstream compartment, it self-

renews with probability 1 2 1 2 u, or it mutates with prob-

ability u again, leading to a cell with two (or more)

mutations. All possible outcomes of a cell proliferation are

depicted in figure 1. The directions of the arrows point towards

the accessible cell states and the labels give the transition prob-

abilities. We allow arbitrary parameters and introduce 1k
i as the

differentiation probability of cells in compartment i carrying k
mutations. Asymmetric cell divisions are not explicitly

implemented, as they can be absorbed in the differentiation

probabilities on the population level. The fate of a cell’s off-

spring is determined based on the probabilities 1k
i . Cells

proliferate with a rate ri in each compartment i. Usually, cells

in upstream compartments proliferate slowly and cell prolifer-

ation speeds up in downstream compartments (i.e. ri , riþ1).

This general framework is very flexible and different tissue

structures can be represented.
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Figure 2. Clonal expansion within a hierarchically organized tissue. Cell pro-
liferation is driven by a few slow-dividing stem cells, giving rise to faster
dividing progenitor cells. After some differentiation steps, the mature
tissue cells are obtained. Initially cells have no mutations, but mutants
can arise and expand within the hierarchy. These cells either vanish or
gain an additional mutation, which again potentially spreads within the hier-
archy. Different colours code for a different number of mutations, whereas
different shapes indicate different mutations. (Online version in colour.)
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1.2. Stochastic individual-based simulations
We implement individual-based stochastic simulations of the

cell dynamics in hierarchically organized tissue structures.

We use an implementation of the Gillespie algorithm [43,44].

Originally introduced to simulate chemical reactions, it

allows us to reproduce exact stochastic trajectories of the

system. Each cell has an individual representation. Thus,

the complete clonal history of cells within the hierarchy can

be recorded. If a cell is chosen for reproduction (determined

by the Gillespie method), it differentiates, self-renews or

mutates according to the probabilities 1k
i and u. The parameters

of the simulated system are described later and chosen to

represent human haematopoiesis.

1.3. The haematopoietic system
In the following, we focus on the haematopoietic system. There,

approximately 400 stem cells replenish the haematopoietic

cell pool [45,46]. Each stem cell divides approximately once a

year [45,47]. Cell proliferation is assumed to increase exponen-

tially with compartment number i, ri ¼ g ir0, with g ¼ 1.26 and

r0 corresponds to the proliferation rate of stem cells. The differ-

entiation probability is assumed to be constant, 1 ¼ 0.85, for

all non-stem cell compartments, and in total i ¼ 31 compart-

ments are needed to ensure a daily bone marrow output of

approximately 3.5 � 1011 cells [6,10].
2. Results
2.1. Time continuous dynamics of multiple mutations
We describe the deterministic dynamics of a cell population

within a hierarchically organized tissue structure, which

initially carries no mutation. A cell may commit further into

the hierarchy (differentiate), mutate or self-renew. This occurs

with probability 1, u and 1 2 1 2 u, respectively. In figure 1,

a schematic of the resulting hierarchical structure is shown.

Compartments to the right represent downstream com-

partments of more specialized (differentiated) cells, while

compartments to the bottom represent states of cells which

accumulated an additional mutation. During one cell division,

a cell either mutates and moves one compartment to the

bottom, differentiates and produces two cells in the next down-

stream compartment to the right or self-renews and produces

an additional cell within its original compartment. This leads

to an expansion of clonal populations within the hierarchy

that potentially accumulates several (distinct) mutations

during the differentiation process. This is schematically

shown in figure 2.

The above transition probabilities can be used in an indi-

vidual-based stochastic simulation. In the following, we

provide a deterministic description of the average dynamics

of cells carrying multiple mutations in such hierarchical struc-

tures. Thus, we describe the dynamics by transition rates

instead of transition probabilities, but only averages are

included in our description. By doing so, we neglect certain

effects, such as stochastic extinction of cells. However,

the approach allows us to investigate the averages of the

underlying stochastic simulations.

Assume that in compartment i there are Nk
i ðtÞ cells carry-

ing k mutations at time t. The number of these cells increases

as a result of influx from the upstream compartment at a rate

2ri�11
k
i�1, mutations at a rate riu and self-renewal at a rate
rið1� 1k
i � uÞ. Cells are lost either by mutation at a rate riu

or by differentiation at a rate ri1
k
i . The deterministic descrip-

tion of the hierarchical compartment model becomes a

system of coupled differential equations [10], given by

_N
k
i ðtÞ¼

rið1�2ak
i ÞNk

i ðtÞþ2ri�11
k
i�1Nk

i�1ðtÞ k¼ 0

rið1�2ak
i ÞNk

i ðtÞþ2ri�11
k
i�1Nk

i�1ðtÞþ riuNk�1
i ðtÞ k . 0:

(

ð2:1Þ

Here, ak
i ¼ 1k

i þ u denotes the probability that a cell with k
mutations leaves compartment i. Typically, ak

i is very close

to 1. A model for stochastic cell dynamics in the stem cell com-

partment for neutral and non-neutral mutations can be found

in [39,48]. In those papers, the stochastic Moran process is

used to investigate the extinction and fixation probabilities of

stem cell mutations. The deterministic stem cell-driven cell

replenishment in hierarchical tissues is studied in detail in

[10]. However, in that prior work, the effects arising from

additional mutations were neglected. Here, we focus on non-

stem cell-driven clonal dynamics. We explicitly allow for an

arbitrary number of mutational hits at any stage of the hierar-

chy, but we neglect a continuous influx of mutated cells from

the stem cell level. This assumption gives the condition

Nk
0ðtÞ ¼ 0. The initial condition

Nk
i ð0Þ ¼

n0 i ¼ 1 k ¼ 0,
0 otherwise;

�
ð2:2Þ

corresponds to initially n0 cells in compartment 1 carrying no

mutation. One can imagine a neutral marker approach, in

which one cell in the hierarchy is genetically marked, and

one considers the clonal population arising from this marked

cell [49]. Although we neglect a continuous influx of mutated

cells from the stem cell compartment, stem cell mutations can

be implemented indirectly. Our approach allows for altered

cell proliferation properties of the founder cell, potentially

derived by a mutation at the stem cell level. For a constant

differentiation probability, i.e. the case where all ak
i and all 1k

i
are identical, equation (2.1) can be solved recursively.
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Figure 3. (a) Number of cells carrying no mutation in compartments 1 – 31 arising from compartment 1 containing 1000 cells. Lines show equation (2.3), with parameters
n0 ¼ 1000, e ¼ 0.85, g ¼ 1.26, u ¼ 1026 and r0 ¼ 1/400. Cells are more likely to differentiate than to self-renew and thus progressively travel into more committed
compartments. Initially, the cell count increases, but cells get washed out in the long run. The time scale is determined by the number of stem cell divisions. A stem cell is
assumed to divide once a year, thus after 400 stem cell divisions a year has passed. (b) Count of cells carrying 0 – 3 mutations in compartment 31, given by equation (2.4). We
used the same parameters as in (a). Cells carrying multiple mutations are exponentially suppressed. (Online version in colour.)
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The number of cells in compartment i carrying no mutation

changes with time as

N0
i ðtÞ ¼ n0

ð21Þi�1

ð2a� 1Þi�1

Yi�1

j¼1

rj

0
@

1
AXi

l¼1

erlð1�2aÞtQi
h¼1
h=l
ðrh � rlÞ

: ð2:3Þ

The solution can also be derived recursively for cells carrying k
mutations in compartment i and becomes

Nk
i ðtÞ ¼ n0

Xk

h¼0

uk�hgh
i

k!

ð21Þi�1

ð2a� 1Þiþh�1

Yi�1

j¼1

rj

0
@

1
A

�
Xi

l¼1

ðrl tÞk�herlð1�2aÞtQi
h¼1
h=l
ðrh � rlÞ

; ð2:4Þ

where gh
i is a combinatoric parameter which is given for cells

carrying up to three mutations by

h ¼ 0 h ¼ 1 h ¼ 2 h ¼ 3
k ¼ 0 1
k ¼ 1 1 i� 1
k ¼ 2 1 ði� 1Þk iði� 1Þ
k ¼ 3 1 ði� 1Þk iði� 1Þk ðiþ 1Þiði� 1Þ:

ð2:5Þ

If a , 0.5, non-stem cells will continuously accumulate in

downstream compartments. The probability of self-renewal

in this case is larger than the probability of differentiation.

This scenario seems to be realized in certain blood cancers.

For example, in acute promyelocytic leukaemia an abnormal

increase in immature granulocytes and promyelocytes is

observed, resulting from a block of cell differentiation at a

late progenitor cell stage [17,50]. However, these cases are rare.

For a . 0.5, the solution becomes a clonal wave, travelling

through the hierarchy in time. In this case, the probability of

differentiation is larger than the probability of self-renewal

and thus cells progressively travel downstream (figure 3).

The cell population founded by a single non-stem cell expands

within the hierarchy initially, but gets washed out and

vanishes in the long run. This is believed to be true for healthy

homeostasis. For example, for the haematopoietic system, the

differentiation probability was estimated to be 1 ¼ 0.85 [6].

As by far the most cell proliferations occur at the progenitor

and more committed differentiation stages, this provides a

natural protection for the organism against the accumulation

of multiple mutations, as the survival time of most (non-stem

cell-like) mutations is finite.
The maximum mutant cell count of the clonal wave and

the time to reach this maximum can be calculated for the

compartment of the mutant origin, in our case the first

compartment. The time is given by

tk
max ¼

k
ð2a� 1Þr1

: ð2:6Þ

The time to reach the maximum increases linearly with the

number of additional mutations k. The cell count at the

maximum becomes

Nk
1ðtmaxÞ ¼

ðukÞk

k!ð2a� 1Þk
e�k � uk

ð2a� 1Þk
1ffiffiffiffiffiffiffiffi
2pk
p ; ð2:7Þ

where we used the Stirling formula to approximate k!. The

maximum scales with uk and thus decreases exponentially

with k. In addition, the factor 1=
ffiffiffi
k
p

leads to a further suppres-

sion of the maximum for increasing k. However, the risk of

additional mutations depends not only on the maximal cell

count but also on the reproductive capacity of a cell line. This

reproductive capacity can be captured by the cumulative cell

count. The number of cells within compartment i carrying k
mutations produced until time t is given by

mk
i ðtÞ ¼ ria

k
i

ðt

0

dsNk
i ðsÞ; ð2:8Þ

and the reproductive capacity can be derived by taking the time

limit to infinity. The general solution (2.4) allows us to carry out

the integral exactly by integration by parts. However, the pro-

blem can be tackled from a different perspective, leading to a

more transparent solution of (2.8) that is easier to handle.

2.2. Cell reproductive capacity
We call the cell subpopulation within a compartment i, which

is derived by a single founder cell in an upstream compart-

ment, the reproductive capacity of this founder cell. This

idea directly corresponds to the method of neutral markers.

We imagine a genetically marked cell somewhere in the hier-

archy and count the offspring of this cell at any stage of the

hierarchy. This corresponds to the total count of cells with

the same colour in figure 2.

Assume a single cell carrying no mutation in compart-

ment 1. This cell differentiates with probability 10
1 into the

next downstream compartment, mutates with probability u
or produces an additional cell in compartment 1 with
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probability 1� 10
1 � u. We first discuss the probability that a

cell leaves compartment 1 after exactly l cell divisions. A cell

can leave a compartment either by mutation or by differen-

tiation, before which the cell has to undergo l 2 1 self-

renewals. Thus, this probability becomes (1 þ u)(1 2 1 2

u)l21. During this time, the cell population in compartment 1

derived from this single cell increases to 2l21 cells, if all daugh-

ter cells share the same proliferation probabilities. With this, the

reproductive capacity of a single cell in compartment 1 is on

average

m0
1 ¼

X1
l¼0

a0
1 2lð1� a0

1Þ
l ¼

a0
1

2a0
1 � 1

a0
1 .

1

2

1 a0
1 �

1

2
:

8>><
>>: ð2:9Þ

The sum becomes infinite if a � 0.5, as the probability of

producing offspring in the founder compartment is higher

than the probability of leaving the compartment. Thus, the

cell population continuously increases. Of course, under

normal conditions, cells do not have an unlimited capacity to

divide and serial telomere erosion, among others, will

impose a physical limit on the number of divisions a cell can

undergo [1,51]. The biologically more relevant case is a . 0.5

and cells tend to differentiate into more committed compart-

ments. In this case, the total number of offspring cells that

arise from a single cell (i.e. a clone) is finite and given by

(2.9). The number of cells m0
i in compartment i carrying no

mutation increases because of the influx of cells via differen-

tiation from compartment i 2 1 and the expansion of these

cells owing to self-renewal in compartment i. Thus, we can

write for the reproductive capacity of cells in compartment i
without mutation

m0
i ¼ 2

10
i�1

a0
i�1

m0
i�1

a0
i

2a0
i � 1

¼ a0
i

2a0
i � 1

Yi�1

l¼1

210
l

2a0
l � 1

: ð2:10Þ

This can be generalized, and an expression for the reproduc-

tive capacity of cells in compartment i carrying k mutations

can be derived. Cells in compartment i with k mutations are

acquired by differentiation of cells from compartment i 2 1

that carry k mutations, by mutation of cells in compartment i
carrying k 2 1 mutations or by self-renewal of cells already in

compartment i and k mutations. With this, we can write

mk
i ¼ 2

1k
i�1

ak
i�1

mk
i�1 þ

u
ak�1

i

mk�1
i

 !
ak

i

2ak
i � 1

; ð2:11Þ

where the two terms in the brackets represent cells produced

either by differentiation or by mutation, multiplied by the

self-renewal potential of these cells. This recurrence relation

can be solved recursively

mk
i ¼

ak
i

2ak
i � 1

Xi

l¼1

2i�l u
ak�1

l

mk�1
l

Yi�1

h¼l

1k
h

2ak
h � 1

: ð2:12Þ

As m0
i is given by (2.10), one can construct the explicit solution

iteratively. Equation (2.12) allows for arbitrary parameters ak
i

and thus incorporates any mutation-induced change in the

cell proliferation parameters. However, if ak
i � 0:5 the sum

diverges. Cells with at least k mutations will accumulate in

all compartments downstream of i. Note that equation (2.12)

captures the general deterministic dynamics of a cell lineage

founded by a single cell somewhere in the hierarchy. We

are especially interested in the case where this founder cell

carries critical, potentially cancer-driving mutations that will
allow us to address the expected number of mutations arising

in this mutant clone. In addition, the probability of obtaining

such a critical mutational hit can be investigated. But even if

a cell accumulated a critical number of mutations, it might

still become extinct because of stochastic effects [19,37,39]. In

the following, we discuss the general solution of equation

(2.12) for mutations that are neutral relative to the founder cell.
2.3. Reproductive capacity of neutral mutants
We call a mutation neutral if the reproductive capacity of the

mutant and the founder cell is equal. In §2.2, we have shown

that the reproductive capacity of a cell depends on its differen-

tiation probability 1 and its mutation rate u, but interestingly it

is independent of the reproduction rate r. Therefore, the clonal

lineage and the number and type of mutations that arise from a

single founder cell do not depend on the proliferation rates of

the founder cell. However, the time to reach those states of

course depends on r. Therefore, although two mutations lead

to the same outcome, this might occur on distinct time scales,

with observable differences in the progression of diseases.

Nonetheless, our definition of neutral mutations only requires

constant differentiation probabilities and mutation rates rela-

tive to the founder cell. This assumption allows us to write

1k
i ¼ 1i and thus the number of parameters is reduced from

(k þ 1) i þ 1 for the general case to i þ 1 for the neutral case.

This number can be reduced to two parameters, u and 1, if a

constant differentiation probability for all non-stem cell

stages is assumed, 1i ¼ 1. This simplifies the evaluation of the

recurrence relation (2.12) significantly. The reproductive

capacity mk
i of neutral mutations in compartment i carrying k

mutations becomes

mk
i ¼ a

uk

k!

ð21Þi�1

ð2a� 1Þiþk

Yk

l¼1

ðiþ l� 1Þ

¼ auk ð21Þi�1

ð2a� 1Þiþk
iþ k � 1

k

� �
: ð2:13Þ

Mutants carrying k mutations are suppressed by a factor uk

and thus are rare in the early differentiation stages. The

number increases exponentially for downstream compart-

ments, and a significant load of cells carrying few mutations

can be observed in the late differentiation stages (figure 4).

Equation (2.13) reveals interesting properties of hierarchi-

cal tissue structures. The ratio of cells carrying k mutations to

cells carrying k 2 1 mutations in compartment i is

mk
i

mk�1
i

¼ u
2a� 1

1þ i� 1

k

� �
: ð2:14Þ

The ratio increases with compartment number, but the

increase becomes flatter for increasing k. The compartment

structure leads to an additional suppression of cells carrying

multiple mutations and thus is a protection mechanism

against cancer initiation. The ratio is constant for i ¼ 1, the

compartment of the mutant origin. The protection mechan-

ism affects only downstream compartments.

On the other hand, the scaling properties for more differ-

entiated cells also show interesting properties. The ratio of

cells with k mutations in compartment i þ 1 to cells with k
mutations in compartment i is given by

mk
iþ1

mk
i

¼ 21

2a� 1
1þ k

i

� �
: ð2:15Þ
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The increase in cells is constant for cells carrying no

mutations, k ¼ 0. It increases with k, but is suppressed

within the hierarchy by a factor of 1/i.
2.4. Number of distinct neutral mutations
So far, we have discussed the reproductive capacity of cells.

However, we did not distinguish between different mutations,

but grouped together cells with an equal number of mutations.

Often, experimental studies focus on mutation landscapes,

investigating the variation in clonal loads in healthy and sick

individuals. Our approach allows us to estimate the expected

number of distinct mutations that arise from a single founder

cell, corresponding to the count of distinct symbols with the

same colour in figure 2.

Let us assume that every mutation event is unique. Thus,

we neglect the possibility that the same mutation is deri-

ved twice independently. The diversity in compartment i
increases either by additional mutations of cells in compart-

ment i or by differentiation of clones from compartment i 2

1 into compartment i. Assuming a differentiation probability

1 . 0 the expected diversity nkþ1
i of cells with k þ 1 mutations

in compartment i is

nkþ1
i ¼ u

Xi

j¼1

mk
j ¼ aukþ1

Xi

j¼1

ð21Þ j�1

ð2a� 1Þ jþk
jþ k � 1

k

� �
: ð2:16Þ

As an example, if we use the parametrization of the

haematopoietic system, 1 ¼ 0.85 and u ¼ 1026, we find

approximately n1
31 � 30 distinct single mutations in com-

partment 31 that were derived from the clonal progeny of

a single founder cell in compartment 1. But the founder cell

by chance could carry a mutation that changes their cell

proliferation parameters. For example, the differentiation prob-

ability of the founder cell could change to 1 ¼ 0.75. In this case,

equation (2.16) estimates 28 000 distinct mutations derived

from this single founder cell. We note that the above change

in the differentiation probability from 0.85 to 0.75 is sufficient

to explain the manifestation of chronic myeloid leukaemia in

otherwise healthy adults [38,52]. However, equation (2.16) rep-

resents an average, and in individual cases fluctuations, caused

by stochasticity, are expected. But also small changes in 1 or

in u influence the expected diversity significantly. A linear
error analysis [53] reveals the dependency of (2.16) on the

uncertainties of u and 1, which is given by

Dnkþ1
i ¼

Xi

j¼1

ð21Þ j�1

ð2a� 1Þ jþkþ1
ðc1j þ du

j Þ
jþ k � 1

k

� �
; ð2:17Þ

with c1j ¼ ukþ1j2að1� j� kÞ � 1jD1 and d1j ¼ ukjðk þ 1Þ1
ð21� 1Þ þ uð2ðk � jþ 3Þ1� k � 2Þ þ 2u2ð2� jÞjDu. If we

assume that Du ¼ 1027 and D1 ¼ 0.01 the uncertainty given

by (2.17) becomesDn1
31 � 35, where the individual error contri-

butions in u and 1 are 7 and 28, respectively. Especially, note

the strong dependency on D1. If we choose D1 ¼ 0.05, a devi-

ation that might be difficult to detect in vivo, one gets

Dn1
31 � 150. Thus, small variations in 1 lead to significant

differences in the expected diversity of clonal populations,

one aspect that might contribute to the explanation of the

observation of very diverse mutation landscapes. Note also

that an increasing mutation rate Du ¼ 1026 gives Dn1
31 � 65.

Of course, higher mutation rates increase the expected diver-

sity of clonal populations. However, a higher mutation rate

(or genomic instability) is neither the exclusive nor necessarily

the dominant underlying cause of the diversity in the mutation

landscape that is observed.
2.5. Example: clonal diversity in acute
lymphoblastic leukaemia

Let us now consider a specific example using data from

childhood acute lymphoblastic leukaemia (ALL). The most

common chromosomal abnormality in this disease is the

t(12;21) translocation that results in the fusion gene ETV6–

RUNX1 (also known as TEL/AML1). There is evidence that

this mutation often arises in utero. This has been confirmed to

be the case in at least one pair of monozygotic twins [54]. This

mutation is a founder mutation and is considered to be criti-

cal for the disease. Cells that express this fusion gene appear

to have a higher self-renewal rate and enhanced survival

when compared with normal cells [54,55]. In our model,

enhanced self-renewal implies a reduced differentiation prob-

ability for the cells carrying the mutation (1 , 0.85). Recently,

Ma et al. [56] performed whole genome sequencing on leukae-

mic cells isolated from two pairs of monozygotic twins. In one

pair of twins, the initial event occurred in utero since the



rsif.royalsocietypublishing.org
JR

SocInterface
10:20130349

7
ETV6–RUNX1 fusion was shared by both siblings. They found

that the incidence of non-synonymous single nucleotide

mutations between the samples ranged from 708 to 1237 [56].

These mutations must have occurred after the founder mutation

and independent of each other. The time from the putative

appearance of the shared ETV6–RUNX1 mutation and disease

was 48–55 months. The second pair of monozygotic twins

shared a mutation in NF-1, and the time to diagnosis of ALL

was 72–77 months after birth. The tumours in these two chil-

dren had 949–975 unique non-synonymous single nucleotide

mutations. Using these constraints and an estimate of 10–75%

cancer cells at diagnosis, unchanged proliferation rates as well

as N0 ¼ 100 [57], we use equation (2.4) to estimate the differen-

tiation probability 1 for the mutant cells, which is then in the

range of 0.78–0.81, i.e. only slightly lower than that of normal

cells. Based on equation (2.4), it takes approximately 50–80

months to reach this load. We further predict a range of 350–

2600 distinct mutations by using equation (2.16), assuming a

mutation rate of u ¼ 1026 and the above range of differentiation

probabilities. Thus, we expect slightly more distinct mutations

than found in patients. But some of those theoretically predicted

clonal populations are small and may escape detection. For

example, if we neglect mutations that occur during the last

differentiation step of cells in compartments 30–31 (expected

to be small cell populations), we predict only 150–950 distinct

mutations. Clearly, the model as presented can explain the

large number of passenger mutations that can be expected in a

typical patient with ALL and probably other types of leukaemia.
3. Discussion
The accumulation of multiple mutations in cells is considered

to be critical for cancer initiation. However, mutations un-

avoidably accompany cell proliferation and thus cancer can

potentially occur in any multicellular organism. Hierarchical

tissue structures contribute to the protection against such

mutations. So far, the suppression of single mutations in hier-

archical tissue structures has been the focus. Here, we have

shown that, in addition, the risk of the accumulation of

multiple mutations is dramatically reduced by a hierarchical

tissue organization. The cell population is divided into a few

slowly proliferating stem cells and many faster proliferating

progenitor cells. Stem cells have an almost infinite cell repro-

ductive capacity, but the manifestation of a critical mutational

load often exceeds an organism’s expected natural lifetime. Pro-

genitor cells proliferate faster, but their reproductive capacity

usually is limited, and thus they give rise to clonal waves travel-

ling through the hierarchy. Still, both cases can be observed.

There are cancers that presumably originate from stem cell

mutations, for example chronic myeloid leukaemia, and there

are cancers that originate in the later stages of haematopoiesis,

for example acute promyelocytic leukaemia and various other

subtypes of acute myeloid leukaemia [17]. Understanding the

clonal dynamics for both cases is of importance. Here, we

have focused on the accumulation of non-stem cell-driven

mutations in hierarchically organized tissues. We arrived at

closed solutions for the clonal waves travelling through the hier-

archy. From this, the reproductive capacity of cells can be

deduced. This allows us to predict the expected risk of acquiring

any number of mutations from one single cell, given the pro-

liferation properties of this cell. We derived equations that

allow the quantitative classification of multiple mutations in
hierarchically organized structures, highlighting the strong

suppression of clones carrying multiple mutations by this

architecture. Although we neglected clonal competition over

limited resources, such as cytokines or nutrients, we expect

the model to capture general patterns of clonal expansions in

hierarchically organized tissues and to serve as a null model.

Moreover, those cancer cells that divide independently of pro-

liferation signals (for example, owing to mutated tyrosine

kinases) escape such a competition.

Another important question emerged more recently with

the accessibility of whole genome sequencing technology.

These techniques revealed very complex and diverse mutation

landscapes for many different cancers, with the classification of

driver and passenger mutations as the final goal. Knowing

the exact driver mutations might help our understanding of

the properties of specific cancer cells, allowing the develop-

ment of effective treatment strategies. A promising example

is the design of molecularly targeted agents such as the various

tyrosine kinase inhibitors (imatinib, nilotinib, etc.) to treat

patients with chronic myeloid leukaemia. These molecules

specifically bind to kinase domains encoded by the BCR-ABL

oncogene and strongly suppress the proliferative capacity of

these cells [58–60]. Our work can contribute to this question

by predicting the average number of distinct neutral (passen-

ger) mutations acquired from a single cell at any stage of the

hierarchy. This approach directly corresponds to the method

of a neutral marker. The genetically marked cell represents

the founder cell of the clonal population and one can follow

the offspring of this founder cell throughout the hierarchy.

This enables the prediction of the size and the variability of

the clonal population. For example, in normal haematopoiesis,

we expect cells to have a differentiation probability of 1 ¼ 0.85,

leading to approximately 30 distinct single mutations (sub-

clones) in adult cells acquired from this single cell. If this

founder cell acquired a mutation that changed the differentia-

tion probability to 1 ¼ 0.75 by chance, the expected number

of distinct single mutations increases to approximately 28 000.

We have shown that even a slight change in the self-renewal

probability of progenitor cells can lead to substantial differences

in the number of passenger mutations observed in ALL. This

probably holds true for other malignancies. In acute promyelo-

cytic leukaemia, apart from the t(15;17) that is a critical event

in the origin of this disease (akin to the ETV6–RUNX1 discussed

earlier for ALL), approximately 440 non-synonymous single

nucleotide mutations were found, which were unique to the

tumour clone [21]. Interestingly, it is highly likely that the cell

of origin of acute promyelocytic leukaemia is downstream (a

progenitor cell) of the cell of origin of ETV6–RUNX1-driven

ALL and this may, in part, explain the less diverse mutational

landscape reported in acute promyelocytic leukaemia compared

with ALL and would fit well with our model. Of course, any

genomic instability will further increase the repertoire of

passenger mutations that is observed in any given tumour.

We also note that the effect of a specific mutation on a cell

needs not be large for the effect to spread throughout the

tumour. Tissue architecture and dynamics, such as in haemato-

poiesis, serve as a deterrent against the accumulation of

mutations, in particular multiple mutations occurring in one

cell. Once a driver mutation appears, if this changes either the

self-renewal of the cell or the mutation rate, then the appearance

of many passenger mutations becomes inevitable in such an

architecture because of the amplification of cells that occurs.

Thus, a minor change in the differentiation probabilities that
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might be difficult to detect in vivo drastically changes the

expected number of passenger mutations that would be

observed. Concomitantly, this will increase the risk of acquiring

mutations in ‘driver genes’ and so lead to malignancy. How-

ever, if the initiation of disease requires several co-occurring
mutations, a hierarchical tissue structure is a powerful mechan-

ism of tumour suppression.

B.W. and A.T. thank the Max Planck Society and the Emmy-Noether
programme of the German Research Foundation for generous funding.
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60. Werner B, Lutz D, Brümmendorf TH, Traulsen A,
Balabanov S. 2011 Dynamics of resistance
development to iImatinib under increasing selection
pressure: a combination of mathematical models
and in vitro data. PLoS ONE 6, e28955. (doi:10.
1371/journal.pone.0028955)

http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.004
http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.004
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/10.1371/journal.pone.0000002
http://dx.doi.org/10.1371/journal.pone.0000002
http://dx.doi.org/10.1172/JCI112140
http://dx.doi.org/10.1172/JCI112140
http://dx.doi.org/10.1084/jem.190.2.157
http://dx.doi.org/10.4161/cc.6.4.3853
http://dx.doi.org/10.1182/blood-2009-06-229757
http://dx.doi.org/10.1056/NEJM199307153290307
http://dx.doi.org/10.1056/NEJM199307153290307
http://dx.doi.org/10.1038/nrg3246
http://dx.doi.org/10.1038/nrg3246
http://dx.doi.org/10.3816/CLK.2008.n.017
http://dx.doi.org/10.1126/science.1150648
http://dx.doi.org/10.1126/science.1150648
http://dx.doi.org/10.1038/sj.onc.1208931
http://dx.doi.org/10.1073/pnas.1221099110
http://dx.doi.org/10.1073/pnas.1221099110
http://dx.doi.org/10.1098/rspb.2007.0780
http://dx.doi.org/10.1098/rspb.2007.0780
http://dx.doi.org/10.1056/NEJMoa062867
http://dx.doi.org/10.1056/NEJMoa062867
http://dx.doi.org/10.1056/NEJMoa0912614
http://dx.doi.org/10.1056/NEJMoa0912614
http://dx.doi.org/10.1371/journal.pone.0028955
http://dx.doi.org/10.1371/journal.pone.0028955

	A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues
	Introduction
	Mathematical model
	Stochastic individual-based simulations
	The haematopoietic system

	Results
	Time continuous dynamics of multiple mutations
	Cell reproductive capacity
	Reproductive capacity of neutral mutants
	Number of distinct neutral mutations
	Example: clonal diversity in acute lymphoblastic leukaemia

	Discussion
	B.W. and A.T. thank the Max Planck Society and the Emmy-Noether programme of the German Research Foundation for generous funding.
	References


