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Neural synchronization patterns are involved in several complex cognitive functions
and constitute a growing trend in neuroscience research. While synchrony patterns
in working memory have been extensively discussed, a complete understanding of
their role in cognitive control and inhibition is still elusive. Here, we provide an up-to-
date review on synchronization patterns underlying behavioral inhibition, extrapolating
common grounds, and dissociating features with other inhibitory functions. Moreover, we
suggest a schematic conceptual framework and highlight existing gaps in the literature,
current methodological challenges, and compelling research questions for future studies.
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INTRODUCTION

Investigating the relationship between cognitive function and underlying cerebral activity has
been, and still is, one of the greatest neuroscientific challenges. Functional magnetic resonance
imaging (fMRI) is a leading imaging method for quantifying and mapping the geographical
distribution of metabolic changes associated with brain activity, while resting (Riedl et al., 2016)
or actively processing information (Chen and Glover, 2015). Electroencephalography (EEG) is
a well-established electrophysiological technique providing a temporally accurate recording of
postsynaptic superficial brain activity (Burle et al., 2015), safely and non-invasively (Cohen,
2017), at rest or during task performance (Zani and Proverbio, 2003). Together with magneto-
electroencephalography (MEG), EEG has extensively contributed to the understanding of how the
brain’s oscillations at different frequencies relate to specific mental states and processes (Benedek
et al., 2014). Moreover, it permits to measure local alterations in amplitude, phase, and synchrony,
and to explore spatial and temporal distributions associated with specific cognitive functions
(Perfetti et al., 2011; Groppe et al., 2013; Roux and Uhlhaas, 2014), such as attention and memory.
This article will review the current knowledge of the patterns of focal and large-scale coordination
supporting cognitive control and inhibition.
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The Importance of Large-Scale
Synchronization in Complex
Cognitive Functions
Increased EEG/MEG amplitude, power and event-related
synchronization (ERS), or desynchronization (ERD), within
local circuits and specific frequencies support distinct cognitive
processes, including sensory processing and memory (reviewed
in Uhlhaas et al., 2008; Roohi-Azizi et al., 2017). However,
functional connectivity reports suggest that more complex
cognitive tasks, involving a dynamic combination of cognitive
processes, require a fast and adjustable information exchange
between brain circuits of large scale (Hampshire et al.,
2012). More emphasis is thus now given to investigating
coordination processes between long-range neural networks
and the underlying neurobiological mechanisms during more
demanding cognitive functions (Fries, 2005; Fell and Axmacher,
2011; Kazanovich, 2019; Wang et al., 2019).

Phase-synchronization processes ease the information
exchange within distributed brain networks, increasing network
efficiency, and facilitating synaptic plasticity (Varela et al., 2001;
Fries, 2005, 2015; Womelsdorf et al., 2007; Deco et al., 2011;
Fell and Axmacher, 2011; Parkin et al., 2015; Constantinidis
and Klingberg, 2016; Violante et al., 2017). The importance
of intact long-range synchronization dynamics is evident
in clinical contexts, where cognitively impaired Alzheimer’s
patients display significantly decreased phase-coordination
between most cortical regions in the delta band, relative to
controls (Hata et al., 2016). This calls for the need for further
investigations and the development of methods (e.g., Pesaran
et al., 2018; Widge et al., 2019a) to study synchronization
patterns between large-scale networks and the underlying
synaptic mechanisms, as well as their alterations in different
neuropsychiatric diseases.

The study of large-scale synchronization implies recording
neural activity contemporaneously from distributed brain
locations before assessing whether the activity at different
loci alters in a synchronous fashion (Nowak et al., 2017).
Activity within single voxels or region-of-interests is tracked
measuring the correlation across them over time series (Harris
and Gordon, 2015). Long-range phase-synchronization
dynamics between large-scale circuits can be explored
within the same, or between a broad span of, different
frequencies in EEG/MEG. Phase-coordination in different
frequencies is a type of cross-frequency coupling (CFC), called
‘‘cross-frequency phase-phase coupling’’ (Palva et al., 2005).
Phase-amplitude coupling is another type of CFC, which
describes the synchronization of the phase of a low-frequency
rhythm to the amplitude/power of a higher-frequency rhythm
(Canolty and Knight, 2010).

Long-range phase-coordination between distributed
frontal/executive and sensory networks is associated to
increased cognitive demand, as a result of increased sensory-
processing (Crespo-Garcia et al., 2013), manipulation of sensory
information in working memory (Sauseng et al., 2005), as well
as memory encoding and retrieval (Schack and Klimesch, 2002;

Sauseng et al., 2004; Schack et al., 2005). The contribution of
different network components in a given task is dynamic in time
and extent and depends on the specific cognitive requirement.

Cross-frequency phase-phase/amplitude coupling dynamics
have been described in working memory processes. However,
it is yet to be established how they apply to behavioral
inhibition, a complex function that relies on a combination
of cognitive processes, including attention, working memory,
action selection (Hampshire et al., 2007; Stokes et al., 2013;
Provenza et al., 2019; Widge et al., 2019a), and that is
likewise distributed across brain networks (Erika-Florence et al.,
2014; Hampshire and Sharp, 2015). Existing knowledge and
evidence in this regard will be reviewed and elucidated in the
following sections.

FOCAL AND DISTRIBUTED PATTERNS OF
NEURAL SYNCHRONY IN BEHAVIORAL
INHIBITION

Control and Inhibition—Brief Conceptual
Definitions
Executive control is a major cognitive function comprising
several sub-functions (Jewsbury et al., 2016; Purpura et al.,
2017), including attentional control and working memory. But
it encompasses also inhibitory control or inhibition (Jones et al.,
2016), which regulates flexible and adaptive overt responses
as well as purpose-directed mental processes (Stuphorn and
Emeric, 2012). The ability to inhibit an internal process, or
to interfere with external information is generally referred to
as inhibitory control or, simply, inhibition (Xie et al., 2017).
The latter is, in turn, distinguished between behavioral or
response inhibition, which refers to the process of suppressing
an ongoingmotor action, whenever necessary (e.g., to implement
an alternative response; Aron, 2007). The most established
paradigms used to study behavioral inhibition are summarized
in Box 1. Cognitive inhibition (Bari and Robbins, 2013),
instead, involves the blockade of a mental process, such as
selective attention or memory retrieval (MacLeod, 2007), either
intentionally or unconsciously (Harnishfeger, 1995). A schematic
representation of the different inhibitory subfunctions is shown
in Figure 1.

Cognitive inhibition can be further distinguished into sub-
types. The act of preventing irrelevant sensory information from
undergoing further processing in working memory (Wilson and
Kipp, 1998; Diamond et al., 2013) is known as interference
suppression (Nigg, 2000), and can be assessed through the
Eriksen flanker task (Eriksen and Eriksen, 1974). This task
requires the subject to focus on the target letter in the
center, ignoring the neighboring letters (flankers), which are
either matching, neutral, or unmatching the central letter
concerning a specific feature (e.g., color, shape, size). Such
experiments demonstrated that people are generally slower
and more inaccurate at responding in target-unmatching,
relative to target-matching, trials (Eriksen, 1995). This finding
is known as ‘‘stimulus-response compatibility’’ effect (e.g.,
Richez et al., 2016). Variants to the Eriksen paradigm
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FIGURE 1 | Schematic illustration of the inhibitory sub-functions of executive control presented in descending order of specificity: from more general (top) to more
specific (bottom) and classical tasks that are used to study them. For a more exhaustive overview of executive control sub-functions, see Jones et al. (2016).

BOX 1 | Classical response inhibition tasks

A variety of behavioral tasks have been developed and used to study the neural underpinnings of behavioral inhibition, among which the most established constitute
the Go/No-go task (GNGT; e.g., Luijten et al., 2011; Uzefovsky et al., 2016) and stop-signal task (SST; e.g., Jahfari et al., 2010; Leunissen et al., 2016). Alternative
paradigms include the antisaccade (e.g., Tervo-Clemmens et al., 2017; Fernandez-Ruiz et al., 2018) and the delayed-gratification tasks (e.g., Jiang et al., 2018).

In the GNGT, the subject is presented with a series of different stimuli (e.g., arrows on a screen) and must respond to those defined as target (e.g., left-pointing
arrows) by taking a given action (e.g., button-press) as fast as possible. Upon occurrence of any non-target stimuli (e.g., right-pointing arrows) the participant must
instead suppress the response and not press. The task can be implemented using different stimuli, sensory modalities and response effectors. The GNGT performance
can be quantified in terms of reaction time to target stimuli (aka “go-trials”) and frequency of correct/incorrect presses and correct/incorrect suppressions, which would
define the accuracy.

In the SST, the subject must respond to different stimuli (e.g., left/right-pointing arrows) by selecting the corresponding response option (i.e., left/right button-press
based on arrow orientation) and inhibit the response whenever an additional infrequent stimulus (e.g., audio-tone), namely the stop-signal (SS), is presented (Ko
et al., 2016). Performance on the SST can be quantitatively modeled as a horse-race model (Logan et al., 1984), where a competition between the “go” and “stop”
processes determines behavior, producing an estimation of the SS reaction time (SSRT), which is the time necessary for suppressing the motor response (Band
et al., 2003; Boucher et al., 2007). The latter largely depends on the type of effectors chosen for selecting the response, with estimations averaging from 130 ms
in the saccade SST (Hanes and Carpenter, 1999) to 250 ms in the manual SST (Boucher et al., 2007). The delay of the SS relative to the antecedent (go) stimulus
determines the stop success probability (Logan et al., 1984). In the classical SST, the SS-latency is defined through a staircase design, which enables to adjust the
paradigm to the individual performance, narrowing it on to the 50% success probability of making the stop (Erika-Florence et al., 2014). Other relevant outcome
measures include direction errors, percentage of successful stops, and RT in go-trials (Stuphorn and Emeric, 2012).

include the Stroop task (Stroop, 1935), and the Simon task
(Simon and Wolf, 1963).

The process of actively suppressing an invalid rule or ‘‘task-
goal’’ is instead known as rule inhibition (Xie et al., 2017), and is
typically studied with directed forgetting and ‘‘task-switching’’ or
‘‘set-shifting’’ paradigms (Nigg, 2000; Monsell, 2003; Koch et al.,
2010). As opposed to interference suppression, rule inhibition
involves a working memory component, in that subjects must
actively suppress an old (invalid) task-goal or rule, while
mentally maintaining and applying the new (valid) task/rule
(Xie et al., 2017).

Within the scientific literature, a distinction is often made
between the proactive and reactive forms of inhibitory control
(Braver et al., 2008; Braver, 2012). Proactive inhibition represents
an anticipatory form of selection, by which goal-relevant
information is actively and continuously maintained in working
memory to direct attentional, perceptual, and motor systems

(Miller and Cohen, 2001). In other words, it cues attention
according to the current goal, preventing interference, and thus
allowing optimal performance (Stuphorn and Emeric, 2012).
Reactive inhibition is, instead, a late form of control acting
as a corrective mechanism that is transiently implemented
when encountering an interfering event (Jacoby et al., 1999).
It allows a reformulation of the goal based on episodic
associations (i.e., previous experience) or/and interference
demands (Stuphorn and Emeric, 2012). The proactive and
reactive inhibition mechanisms complement each other in terms
of advantages and disadvantages, since the first is less prone
to interference, although more cognitively demanding than
the second (Braver et al., 2008; Mäki-Marttunen et al., 2019).
Proactive and reactive inhibitory control have been probed in
both behavioral inhibition (Verbruggen and Logan, 2009; Benis
et al., 2014; Castro-Meneses et al., 2015) and task-switching
studies (Braver et al., 2008; Karayanidis and Jamadar, 2014).
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A Focal Brain Region Supporting
Behavioral Inhibition?
The neural basis of inhibitory control functions is a research
topic that has received conspicuous attention in the cognitive
neurosciences in the last few decades. This focus is in part
because deficits of response inhibition and cognitive flexibility
characterize several neuropsychological conditions, including
obsessive-compulsive disorder (OCD; McLaughlin et al., 2016),
schizophrenia (Hughes et al., 2012), as well as, post-traumatic-
stress-disorder (PTSD; Clausen et al., 2017), depression (Katz
et al., 2010), drug-addictions (Morein-Zamir and Robbins, 2015;
Wang et al., 2018) and attention-deficit-hyperactivity-disorder
(ADHD; Hwang et al., 2019).

Functional neuroimaging studies have provided essential
insights into the distribution of the cortical circuits underlying
behavioral inhibition. The earliest works have built extensively
on a modular view of the inhibitory functions, supporting that
the right inferior frontal gyrus (IFG) and the anterior insula
(AI) are brain regions specifically devoted to response inhibition
(Aron et al., 2003, 2004), primarily based on the association of
these areas’ activity with the successful withholding of automated
(go-signal) responses in stop-signal tasks (SSTs; Rubia et al.,
2001a,b). In support of this, selective disruptions of IFG activity
compromise SST performance (Aron et al., 2003). Clinically,
dysfunctional activations of the IFG and AI are observed in
subjects with impulse-control disorders (Rubia et al., 1999, 2014;
Seeley et al., 2009; Jilka et al., 2014). However, this is arguably
overly simplistic, since the activation of these two regions is not
specific to behavioral inhibition (Shallice et al., 2008; Hampshire
et al., 2010; Sharp et al., 2010; Erika-Florence et al., 2014;
Hampshire, 2015).

Saccadic and manual SST studies have demonstrated
that, additionally to the IFG and AI, a wide circuit of
frontoparietal structures, including the supplementary eye
fields, the supplementary and pre-supplementary motor cortices
(Curtis et al., 2005; Aron and Poldrack, 2006; Li et al., 2006;
Aron et al., 2007) and the intraparietal sulcus (Osada et al., 2019),
support response inhibition in collaboration with the limbic basal
ganglia. Notably, the striatum (Zandbelt and Vink, 2010; Mallet
et al., 2016) and the subthalamic nucleus (Brittain et al., 2012;
Alegre et al., 2013).

Functional connectivity analyses have probed the
co-activation of the IFC and AI with spatially distributed
subcortical and frontoparietal structures (Dosenbach et al.,
2008; Mostofsky and Simmonds, 2008; Duann et al., 2009;
Hampshire et al., 2012; Zhang and Li, 2012; Cai et al., 2019)
that compose the Multiple Demand Cortex (MDC; Hampshire
and Sharp, 2015), whose contribution in behavioral inhibition
differs in the extent, depending on the sensory modality and
cognitive demands (Erika-Florence et al., 2014). Relative to
the AI, the IFG is more involved in implementing inhibitory
control and more strongly connected to the dorsomedial PFC
and lateral frontoparietal cortices (Cai et al., 2014). The AI,
instead, predominantly deals with the detection of salient
inhibitory cues and shows a stronger intrinsic functional

connectivity with the ACC (Cai et al., 2017) and the STN (Cai
et al., 2019). The latter contributes to proactive and reactive
inhibitory processes through distinct EEG spectral patterns
(Benis et al., 2014).

Distributed Synchronization Patterns in
Cognitive Control and Response Inhibition
Response-inhibition is produced by inhibitory processes that
are ubiquitous in the human brain, namely lateral inhibition
and top-down potentiation (Desimone and Duncan, 1995;
Chelazzi et al., 1998). These are enacted at the level of
both local neuronal populations and long-range networks
(MacLeod, 2007; Hampshire and Sharp, 2015). Motor responses
in the SST are modulated and adjusted online by top-down
(or feedforward) control signals originating from the MDC
(Hampshire and Sharp, 2015) and by bottom-up (or feedback)
processes of lateral-inhibition, occurring at the level of local
sensorimotor neuronal populations (Boucher et al., 2007; Schall
and Godlove, 2012) that support competing motor programs
(Munakata et al., 2011).

While button presses to go-signals are automated responses
produced via direct sensorimotor mappings, blocking a routine
response is a non-automated process that requires the additional
intervention of higher-order frontoparietal circuits (Hampshire
and Sharp, 2015). The detection of a stop-signal results in
the activation of the MDC (Hampshire et al., 2007; Stokes
et al., 2013; Erika-Florence et al., 2014) and the sensorimotor
cortex (Hampshire et al., 2007; Erika-Florence et al., 2014).
The first would reinforce the motor program for the stop,
while downregulating the sensorimotor representations via
lateral-inhibition, decelerating the ‘‘go-response’’ and thus
producing the stop outcome (Hampshire and Sharp, 2015). Upon
training, response-withholding will eventually become automatic
(learning), no longer requiring top-down adjustments (Erika-
Florence et al., 2014; Widge et al., 2019a).

While fMRI and connectivity reports have spatially localized
the neural correlates of inhibition (Curtis et al., 2005; Aron
and Poldrack, 2006; Li et al., 2006; Aron et al., 2007; Zandbelt
and Vink, 2010; Brittain et al., 2012; Alegre et al., 2013;
Erika-Florence et al., 2014; Hampshire and Sharp, 2015; Mallet
et al., 2016), electrophysiological methods can provide precise
information about the development across the time of the
stop-detection and response-suppression processes, exploiting
their high temporal resolution. It would be especially important
to explore the chronological dynamics by which the sensorimotor
cortices are active, and by which the frontoparietal circuits exert
their modulatory (i.e., inhibitory) action over the motor output.

Several EEG/MEG studies of response inhibition have
identified characteristic event-related potential (ERP)
components (i.e., N2/P2 complex) in association to the stop/no-
go, but not the go, trials, in both the SST (Ramautar et al., 2006;
González-Villar et al., 2016) and the Go/No-go task (GNGT;
Falkenstein et al., 2002; Nieuwenhuis et al., 2004; Johnstone
et al., 2007). These consist of a frontomedial negative component
arising 200–300 ms after the occurrence of the stop-signal
(SS), succeeded, after about 150 ms, by a frontomedial and
parietomedial positive deflection. However, as we will discuss
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in the next paragraphs, these ERP components are not specific
to behavioral inhibition, as similar patterns have also been
reported in cognitive inhibition processes in Stroop (Liotti et al.,
2000; Bruchmann et al., 2010), Flanker (Kopp et al., 1996) and
task-switching paradigms (Karayanidis and Jamadar, 2014).

Intracranial stereoelectroencephalography (SEEG) and
electrocorticography (ECoG) are invasive electrophysiological
recordings of brain activity (Young et al., 2019). Although only
applied to clinical populations, the direct recording from the
brain tissue allows a relatively superior geographical resolution.
The assessment of large-scale LFP synchronization dynamics
can provide potential insights into the exact source of top-down
inhibitory inputs (Widge et al., 2019a). Increased demands of
top-down control, due to conflict (e.g., interference, stop-signal)
detection, are indexed by cross-frequency ECoG coupling
between prefrontal theta phase and the amplitude of primary
motor high-frequency oscillations (Voytek et al., 2015). ECoG
theta coupling accompanies information exchange from fronto
medial to parietal areas upon error feedback in a Stroop-like
paradigm (Smith et al., 2015), likely acting as a modulatory
attentional mechanism over motor areas, augmenting the
stimulus-detection probability. Theta synchrony circuits during
conflict detection also convolve the dorsal cingulate cortex and
subcortical structures (Provenza et al., 2019; Smith et al., 2019).

Successful response-inhibition in the GNGT provides SEEG
gamma synchrony within the default mode network and the
limbic system (Laviolette, 2007; Arnulfo et al., 2018). The
affective attribute of response-withholding is further probed
by facial electromyography, where the corrugator supercilii, a
muscle closely associated with negative affect, shows higher
activity in no-go, relative to go, trials (Clancy et al., 2019).
This suggests that response-inhibition may negatively affect the
emotional/motivational connotation of the response-associated
stimulus. This is compatible with the presence of inhibitory
deficits in psychiatric conditions, such as major depression
and schizophrenia, involving dopaminergic dysregulations in
the limbic-prefrontal (mesocortical) projection (Patel et al.,
2010; Grace, 2012; Belujon and Grace, 2017). Brain stimulation
(Dubreuil-Vall et al., 2019;Widge et al., 2019b) of control circuits
can indeed restore both clinical symptoms and cognitive deficits
in clinical populations.

Dissociating Stop Expectancy From
Response Inhibition
Investigating the functional correlates of behavioral inhibition
requires the isolation of the mere behavioral act of response-
withholding from its cognitive component: conflict detection
or interference/stop-expectancy. In this regard, Chikazoe et al.
(2009) designed a modified SST that enabled the separation
of response inhibition from SS-expectancy or RT slowing, by
introducing ‘‘certain go-trials’’ in which the SS never occurs, in
addition to ‘‘uncertain go-trials’’ where a SS may occur, as in
the classical SST. By comparing RTs to certain and uncertain
go-trials, it emerged that slowing of RT to go-trials reflects the
subject’s SS-expectancy and proactive inhibition, thus improving
the SS reaction time (SSRT).

Stop-expectancy can be quantified trial-by-trial as stop-
occurrence-probability from a dynamic Bayesian model
(Yu and Cohen, 2009) and behaviorally, it correlates with RT
slowing to go-signals. The spectral correlates of stop-expectancy
and RT-slowing seem to be inversely related across trials (Chang
et al., 2017). Stop-anticipation is accompanied by a pronounced
low-theta activity in the supramarginal gyrus (SMG) and
anterior SMC preceding, but not after, the occurrence of the
go-signal. Slowing of RT is instead negatively associated with
IFG and posterior delta-theta activity. The results suggest
that stop-expectancy and response-inhibition are processed
by distinct frontoparietal networks, in coordination with
temporally distinguished theta contributions (Chang et al.,
2017). The evidence supports earlier-discussed fMRI findings
(Hu et al., 2015a,b; Manza et al., 2016) in that proactive
behavioral inhibition does not map onto a specific brain region,
but, instead, results from the interaction between distributed
frontoparietal MDC networks (Hampshire and Sharp, 2015).

Furthermore, a simultaneous fMRI-EEG SST study (Ko et al.,
2016) has shown that beta synchronization in the right medial
frontal gyrus (rMFG) after the go-stimuli precedes alpha-beta
suppression in the preSMA in the stop-, as opposed to go-,
trials. The findings align with Chang et al. (2017) supporting
that response inhibition is mediated by beta and theta activity in
communication with the same MDC components. In a previous
work, Swann et al. (2009) observed a stronger IFG beta (16 Hz)
activity occurring 100–250 ms after the SS onset, in successful,
compared to unsuccessful stop trials, accompanied by reduced
synchronization in the primary motor cortex, possibly reflecting
increased GABA-mediated inhibition.

Taken together, the evidence suggests that behavioral
inhibition is implemented via IFG beta and preSMC theta
activities, in communication with other frontoparietal and
basal ganglia circuits, with downstream effects on the M1.
Importantly, beta activity during response-inhibition processes
shows opposite patterns in different MDC components,
decrementing in the preSMC, but increasing in the IFG.

FUNCTIONAL DISSOCIATIONS BETWEEN
DIFFERENT INHIBITORY SUB-FUNCTIONS

Interference suppression and response-inhibition activate
spatially overlapping, yet distinguishable, ERP correlates in
combined GNGT and flanker task studies (Johnstone et al.,
2009; Brydges et al., 2012, 2013; Van Velzen et al., 2014; Vuillier
et al., 2016), supporting a functional dissociation between the
two inhibitory subfunctions. Target-matching trials give rise
to a stronger N2 component, compared to unmatching ones.
However, while the P3 amplitude is higher in congruent trials
involving response-suppression compared to those that do not,
the N2 component seems to be unaffected (Groom and Cragg,
2015).

In a modified flanker task that allows to contemporaneously
assess different inhibitory control sub-functions, Xie et al. (2017)
observed that while interference suppression originates a larger
frontal N2 compared to non-inhibitory trials, rule inhibition
induces higher frontal P3a amplitudes, reflecting the criticality
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of frontal circuits in cognitive control, via online adjustments
of stimulus-response associations. Behavioral inhibition instead
shows a more substantial posterior P3b component, presumably
indexing motor re-programming. Consistently, time-frequency
EEG analyses confirm a fronto medial (Fz) involvement in
different inhibitory sub-functions (Cavanagh and Frank, 2014;
Cohen, 2014). Increased theta activity predicts slower responses
to target-incongruent trials of Simon tasks or variants (Cohen
and Donner, 2013; Cohen and Ridderinkhof, 2013; Clayton
et al., 2015; Pastötter et al., 2010, 2013; Cohen and Cavanagh,
2011; Nigbur et al., 2011), while frontal alpha activity is instead
associated with the suppression of non-relevant sensory stimuli
in flanker tasks (Suzuki and Shinoda, 2015).

These findings suggest that different inhibitory sub-functions
produce spatially, temporally, and quantitatively distinguishable
brain activity patterns, highlighting the importance of
maintaining a conceptual separation and the non-generalization
of the evidence relating to any sub-functions.

DISCUSSION

This article reviewed the patterns of neural synchronization
underlying cognitive control and behavioral inhibition. So far,
electrophysiology research has demonstrated the pivotal role of
focal (de)synchronization patterns within specific frequencies in
different cognitive processes (reviewed in Uhlhaas et al., 2008;
Roohi-Azizi et al., 2017). However, emerging evidence suggests
that more complex cognitive functions, in addition to local
(de)synchronizations, require the contribution and coordination
of brain circuits located distally from the site of primary
processing (Schack and Klimesch, 2002; Sauseng et al., 2004,
2005; Schack et al., 2005; Hampshire et al., 2012; Crespo-Garcia
et al., 2013).

Phase-synchronization facilitates the communication
between distributed neural circuits, by augmenting the
transmission efficiency and by promoting synaptic plasticity
(Fries, 2015; Parkin et al., 2015; Constantinidis and Klingberg,
2016; Violante et al., 2017). Dysfunctions in long-range
synchronization are, not surprisingly, implicated in clinical
neurological conditions (Hata et al., 2016), raising the necessity
of new methods and research for the study of phase dynamics
across distributed brain networks.

Large-scale synchronization can be observed in fMRI and
EEG/MEG, where the cooperation between distributed brain
regions can occur via phase-synchronization within the same
or/and between different frequencies (Palva et al., 2005; Canolty
and Knight, 2010). While phase coupling dynamics have been
described in working memory (Schack and Klimesch, 2002;
Sauseng et al., 2004, 2005; Schack et al., 2005; Crespo-Garcia
et al., 2013), the synchronization patterns involved in inhibition,
a complex function that is likewise distributed across large-scale
circuits, remain elusive.

Coordination patterns between frontoparietal MDC circuits
act as a modulatory top-down control mechanism over sensory
areas, refining/adjusting the processing, maintenance, retrieval
and manipulation of relevant information, to support cognitively
demanding tasks (Sauseng et al., 2005; Hampshire et al., 2012;

Crespo-Garcia et al., 2013). In behavioral inhibition, specifically,
the choice of motor response (press/no-press) depends on
given pre-assumptions (i.e., stimulus type), which may incur
a change over time (i.e., stop signal), therefore requiring
a fast adjustment and correction of the motor command
(i.e., ‘‘no-press’’).

The GNGT and the SST represent two well-established
paradigms, by which the cognitive processes and functional
neural dynamics underlying behavioral inhibition can be studied.
Functional connectivity fMRI studies have been instrumental in
demonstrating how response inhibition does not map onto a
single dedicated brain area. Still, it is supported by the dynamic
coordination between distributed frontoparietal networks, whose
specific contribution (i.e., extent and spatial distribution) relates
to the contextual demand (Curtis et al., 2005; Aron and Poldrack,
2006; Li et al., 2006; Aron et al., 2007; Zandbelt and Vink, 2010;
Brittain et al., 2012; Hampshire et al., 2012; Alegre et al., 2013;
Erika-Florence et al., 2014; Hampshire and Sharp, 2015; Mallet
et al., 2016).

While fMRI has been fundamental to localize the distributed
coordination dynamics during response inhibition spatially,
electrophysiology focuses on the dynamic patterns of phase-
synchronization over time. Notably, one would define the exact
timings at which specific frontoparietal MDC components
exert their modulatory action over the sensorimotor cortices.
Specific EEG/MEG ERP components have been related to the
stop process (Ramautar et al., 2006; González-Villar et al.,
2016), although lacking specificity for a given inhibitory
sub-function (Kopp et al., 1996; Liotti et al., 2000; Bruchmann
et al., 2010; Karayanidis and Jamadar, 2014). Intracranial
electrophysiology in clinical populations showed that theta-
synchronization within fronto medial, cingulate, and parietal
circuits are key components of top-down control. In addition,
response-withholding has a motivational attribute and is
mediated by gamma synchrony within limbic-prefrontal
mesocortical projections.

Electrophysiological investigations showed that response
inhibition and the ‘‘overlapping’’ processes of SS-expectancy,
RT-slowing are accompanied by oscillatory activity that is
temporally and frequency-wise distinguished for different MDC
components. This highlights the necessity of experimental
designs that allow their separation (e.g., Chikazoe et al., 2009;
Swann et al., 2009; Ko et al., 2016; Chang et al., 2017).
The evidence is still elusive due to a mismatch between the
experimental designs, preventing a close comparison and direct
inferences from the results.

Further research is required, and multimodal synchronized
EEG-fMRI approaches (e.g., Mizuhara et al., 2005) or the
more recent DSI-Hybrid-EEG-fMRI headset (e.g., Hong et al.,
2018) have the potential to further elucidate patterns of
focal and long-range synchronization. This will be achieved
by exploiting the respective advantages of electrophysiological
and hemodynamic imaging techniques in terms of temporal
and spatial resolution. Neural stimulation techniques, such
as transcranial alternating current stimulation (e.g., Violante
et al., 2017), can manipulate the modulatory effect of prefrontal
networks over sensory areas during inhibitory processes, thus
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allowing to draw and ascertain conclusions on the topographical
and chronological distribution of the causal relations between
distributed circuits.
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