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ABSTRACT Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely
aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and
Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and
dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores
potentially important community-level interactions in disease pathology, perhaps explain-
ing why these treatments are often less effective than predicted based on in vitro testing.
A better understanding of the ecological dynamics of this ecosystem may enable clini-
cians to harness these interactions and thereby improve treatment outcomes. Like all eco-
systems, the CF lung microbial community develops through a series of stages, each of
which may present with distinct microbial communities that generate unique host-
microbe and microbe-microbe interactions, metabolic profiles, and clinical phenotypes.
While insightful models have been developed to explain some of these stages and inter-
actions, there is no unifying model to describe how these infections develop and persist.
Here, we review current perspectives on the ecology of the CF airway and present the CF
Ecological Succession (CFES) model that aims to capture the spatial and temporal com-
plexity of CF lung infection, address current challenges in disease management, and
inform the development of ecologically driven therapeutic strategies.

KEYWORDS Pseudomonas aeruginosa, anaerobic bacteria, cystic fibrosis, ecological
succession, microbial ecology, microbiome, polymicrobial infections, pulmonary
exacerbations

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutation
of the cystic fibrosis transmembrane conductance regulator (CFTR) gene that enco-

des a transepithelial chloride transporter (1). CF primarily occurs in the Caucasian popula-
tion, with an incidence rate of 1 in 2,500 newborns and an estimated 70,000 individuals
affected worldwide (2). Currently, two-thirds of individuals are diagnosed during the first
year of life due to widespread newborn screening (3).

Although CF is a multiorgan disease, respiratory complications are a significant
source of morbidity and mortality (2). Chloride imbalances caused by CFTR mutation
lead to changes in normal lung physiology that promote the accumulation of viscous
dehydrated mucus, decreased mucociliary clearance, inflammation, and an altered
immune response. These factors ultimately contribute to the establishment of chronic
infections and an irreversible decline in lung function secondary to bronchiectasis (4).
As a part of progressive respiratory disease, patients also experience cycles of acute
intermittent aggravations of symptoms called pulmonary exacerbations (PEs) which
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may be characterized by a drop in lung function (measured as forced expiratory vol-
ume in 1 s [FEV1]), shortness of breath, chest pain, and increased cough and sputum
production (5, 6). Approximately 25% of patients fail to recover baseline lung function
following PEs (7). The exact cause of PEs remains unclear, making effective advanced
prediction and prevention difficult.

Current approaches in the treatment of CF lung infection center around the use of
broad-spectrum antimicrobials and airway clearance techniques to reduce the microbial
load and clear mucus obstruction in an attempt to improve lung function (8). These
approaches predominantly focus on the detection of “traditional CF pathogens” in respira-
tory cultures, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influ-
enzae, and Burkholderia cepacia complex (BCC) species such as Burkholderia multivorans
and Burkholderia cenocepacia, among others (9). In addition to traditional pathogens, other
bacteria, viruses, and fungi are typically identified concurrently in CF sputum specimens.
Contrasting hypotheses have been proposed to describe their role in lung disease, includ-
ing being involved in complex infectious polymicrobial networks or representing upper re-
spiratory contaminants introduced during expectoration. However, it is typically recog-
nized that CF airway communities are heterogeneous and differ in composition both
spatially and temporally (10–16). Despite this understanding, the traditional pathogens are
typically assumed to be the primary drivers of CF lung disease. The reliance on this
assumption may help explain why antimicrobial therapies fail all too frequently (17, 18).
Characterizing CF lung infections as ecologically homogeneous and driven by a few
dominant species minimizes the potential importance of complex and dynamic ecologi-
cal interactions.

Despite the potential diversity of the CF microbiome, culture-based microbiological
approaches often report negative findings when traditional pathogens are not isolated
(19). This may occur for multiple reasons, including the use of culture conditions spe-
cific to the traditional pathogens. Most microbial species are difficult to culture (19),
and their clinical significance is frequently unclear despite being relatively common in
CF airways and relatively rare among healthy individuals. Finally, since culture-depend-
ent analyses are predicated on the notion that a one or a small number of pathogens
are responsible for infection, they may be a poor clinical tool for CF respiratory speci-
mens (19–21).

More recently, culture-independent methods have been applied to better charac-
terize the CF lung microbiota. These approaches identify microorganisms in respiratory
specimens in the absence of in vitro culture by sequencing PCR amplicons derived
from either a hypervariable region of the bacterial 16S rRNA or fungal ITS genes (i.e.,
microbiome sequencing) or by shotgun sequencing all nucleic acids present (i.e., meta-
genomic sequencing). Culture-independent methods have allowed for greater in-
depth examinations of microbial communities, allowing for the detection of many bac-
teria using 16S rRNA gene sequencing that were not previously identifiable using
culture-dependent methods (22). However, these methods are still limited since
16S rRNA gene-based analyses typically do not permit species-level identification
of taxa, produce count-based data that only measures the relative abundance (as
opposed to the absolute abundance) of taxa, can potentially be confounded by DNA
from environmental or nonviable sources, and can only infer host-microbe or
microbe-microbe interactions and the metabolic potential of individual taxa or the
community as a whole (12, 23–26). Reconciling the limitations of culture-dependent
and -independent methods is difficult and will require a better understanding of
whether the existence of polymicrobial CF communities also means that multiple
pathogens contribute to the pathology of CF infections.

Microbes regularly influence their environment both directly (e.g., through the pro-
duction of biofilm or metabolites that elicit a host response) and indirectly (e.g.,
through their interaction with other microbes); consequently, there is every reason to
believe that the specific composition of the CF lung microbial community may have a
strong influence on patient clinical status (8). Recent findings suggest that ecological
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interconnectedness of microbial communities may be more effective in identifying
specific taxa associated with changes in clinical states than simple correlations of rela-
tive or absolute taxa abundance (27, 28). However, the heterogeneity in the CF lung
has made it difficult to accurately describe the spatial and temporal changes that are
occurring. While recent studies have greatly improved our understanding of the range
of microbes that reside within the diseased lung, there is still a strong focus on tradi-
tional respiratory pathogens, with the potential role of other, lower-abundance taxa
remaining relatively undescribed. We (and others) (8, 28–33) argue that a more
nuanced understanding of the dynamic ecology of the CF microbiota may strengthen
our understanding of disease development and the role of microbes in PEs. We pro-
pose here that concepts of ecological succession and their framework for understand-
ing the development of complex biological communities and how these communities
respond to environmental perturbations may be useful. We hope that this ecological
approach will permit the development of improved therapies in CF that may limit the
selection of antimicrobial-resistant organisms.

ECOLOGICAL MODELS OF CF INFECTIONS

The first studies to discuss the CF airway as a dynamic ecological system were by
Harrison in 2007 and by van der Gast et al. in 2011 (16, 29). The minireview by Harrison
explicitly focused on understanding the CF lung as a community, with coinfection, mi-
crobial interactions (synergism and antagonism), and evolution playing potentially sig-
nificant roles in shaping the lung ecosystem (29). van der Gast et al. studied bacterial
communities in CF sputum using Sanger-based sequencing of the whole 16S rRNA
locus and was able to partition the community into core and transient groups by
applying community ecology metrics (16). However, it was not until several years later
that more general ecological models of the CF airways were described.

Climax-Attack Model. One of the most well-known ecological models of the CF air-
ways is the Climax-Attack Model (CAM). Conrad et al. postulated in 2013 the existence
of two broad functional states: a virulent, transient, attack state associated with PEs,
and a stable, persistent climax community (8). Since these states are functional, they
need not differ taxonomically, which is consistent with studies that show that the compo-
sition of the CF lung microbiome can remain largely unchanged between clinically stable
and exacerbated states (34–40). Instead of compositional differences, each state is defined
by differences in metabolic function, gene expression, or interactions between microbial
species. In this model, the attack community includes anaerobic genera such as Prevotella,
Veillonella, Fusobacterium, and Streptococcus, as well as eukaryotic viruses (8, 28). In concert
with the host immune system and hyperinflammatory phenotype of CF airway epithelial
cells, the attack community is thought to participate in airway remodeling that is charac-
terized by progressive bronchiectasis, atelectasis, fibrosis, and vascular changes which neg-
atively impact lung function (41, 42).

Airway remodeling promotes the colonization of climax species such as Pseudomonas
spp., Staphylococcus spp., Stenotrophomonas maltophilia, and Achromobacter spp., which
have a disproportionately large effect on the ecosystem relative to their abundance and
which can be difficult to eradicate (8). The CAM model is supported by a recent study that
measured microbial community composition and metabolic function in patients both pre-
and postantibiotic treatment that found evidence of alternate climax and attack functional
states (43). One alternative explanation for the stability of the microbial community during
exacerbations is that PEs are associated with intrapulmonary spread of infection rather
than changes in functionality or composition (36).

To test the CAM framework, Quinn et al. in 2015 developed the in vitro Winogradsky
(WinCF) model to study how the physiology of the CF lung contributes to PEs (44). They
created Winogradsky columns from narrow-capillary tubes filled with artificial sputum me-
dium to simulate the biogeochemical gradients within CF bronchioles. After inoculating
columns with CF patient sputum expectorated during PEs, they noted changes in pH, gas
production, and community composition. Pretreatment communities (the first was PE
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treated with intravenous antibiotics, and the second with oral antibiotics) included abun-
dant Lactobacillales and obligate anaerobes such as Prevotella and Veillonella, which pro-
duced large amounts of gas. Posttreatment communities were Pseudomonas-dominated
and had a lower relative abundance of anaerobes. Similar to the CAM, two distinct func-
tional states driven by changes in oxygen, pH, and metabolism were identified: one associ-
ated with aerobic metabolism and higher pH and a second associated with fermentative
metabolism, lower pH, and potentially PEs. The former includes members of the climax
community, including P. aeruginosa and S. maltophilia, while the latter is similar to an
attack community (45, 46). A subsequent ecological network analysis found that the attack
community correlated with lower pH, anaerobic genera, and fermentation, while the cli-
max community was associated with a pH increase, and ammonia production via deami-
nation (28).

Island Biogeography Model. Whiteson et al. developed the Island Biogeography
Model (IBM) that draws parallels from concepts of island biogeography to describe the
colonization of the CF lung. This model treats different human organs and tissues as
“islands.” each with a unique microbiota. Similar to islands, structures of the human
body experience migration of microorganisms from one environment or compartment
to others, with the rate and type of migration dependent on the dispersal rate and
ease of mobility between compartments (47–49). In this model, the source population
has the greatest diversity and contributes to sink populations via emigration. In CF, the
upper respiratory tract is typically assumed to be the source population or reservoir,
but colonization also occurs from other “islands” such as the gastrointestinal tract. The
source-sink relationship described in the IBM is supported by studies that have found
that by 2 years of age, the lung microbiome of CF infants shifts toward a community
dominated by organisms found in the oral cavity (50), and by bronchoscopy studies of
healthy individuals, which report pulmonary microbiota with similar composition to
that of the oropharynx (51–53).

The richness of an island’s species is based not only on the rate of colonization, but
also on the replication rate of the resident taxa and local extinction rate. While the CF
lung is a chronic inflammatory environment, some lung-specific immune responses
are impaired, including dysfunctional alveolar macrophages and autophagy (54–56),
reducing the rate of immune-mediated clearance (i.e., extinction). Further, the CF
lung is a nutrient-rich environment, which should theoretically support higher repli-
cation rates and carrying capacities; however, recent studies have found reduced
growth rates among many CF bacterial isolates (57, 58).

The composition of the CF lung community may also be indirectly influenced by
physically separated species via the elicitation of systemic immune responses or pro-
duction of metabolites that can be translocated into the lungs (59). For example, anae-
robes of the oropharyngeal flora have been found to modulate P. aeruginosa virulence
factor expression in the lower airways (60–62). In contrast to the CAM, which describes
the existence of two functional states that are separated temporally, the IBM can
explain spatial heterogeneity within the CF lung. A similar model was proposed by
Boutin and Dalpke (63) and incorporated concepts derived from neutral theory. With
this theoretical approach, these authors suggested that over time, disruption to the
balance of migration and elimination among anatomic sites early in life is the main de-
terminant of the lung microbiome composition rather than local selective processes
(63). They also speculated that microenvironmental factors affect the interplay of immi-
grating community which favors the outgrowth of certain bacterial species in later dis-
ease stages.

Limitations of current ecological models. Although models such as CAM and IBM
provide insight into critically important aspects of CF lung ecology, they focus on dis-
tinct facets of pulmonary infection and do not provide a unifying framework of the in-
fectious cycle over time. For example, the IBM describes the mechanism by which
microbes colonize and persist in the lung, but does not provide insight into the fre-
quently observed spatial structure or metabolic diversity of the microbial communities
in the upper and lower airways (64–69). It is unknown whether interlobe variability in
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community composition is driven more by stochastic variation in colonization success
or local (deterministic) selection pressures.

One important aspect of CF lung ecology that has received surprisingly little focus
in current ecological models is the temporal perspective of ecological succession. CF
microbial communities, like all ecosystems, show not only significant spatial diversity,
but also temporal variation. While the CAM provides a well-supported framework
based on two functional states, it does not specifically address the dynamics of CF
lung infections over the life-history of a CF patient (8). Here, we aim to describe the
temporal succession of the CF lung microbial communities and their relation to clinical
disease phenotype.

CYSTIC FIBROSIS ECOLOGICAL SUCCESSION MODEL

The principles of ecological succession describe an initially barren environment that
is colonized by pioneer species from an external environmental reservoir that can sur-
vive in a landscape that is inhospitable to other species (33, 70). Pioneer species can
remodel the ecosystem over time in ways that allow for intermediate species to colo-
nize. Finally, a stable-state climax community is formed—characterized by long-term
persistence without significant change. This process is known as primary succession
(70) (Fig. 1). The climax community is often disrupted by transient ecological perturba-
tions. While the resilience of the climax community typically results in a return to the
original steady-state, rare, more severe perturbations can permanently disrupt the
community steady-state, resulting in a period of ecological shift and the establishment
of a new, but different steady-state (71). This type of succession occurs through species
that were local residents of the previous ecological community rather than species that
are colonizing from other environments and is termed secondary succession (Fig. 1).

The CF lung ecosystem, like all ecosystems, follows a pattern of ecological succes-
sion. The ecosystem begins as a sterile environment at birth and is initially colonized
by pioneer species, following a period of succession until the first stable climax com-
munity forms. Minor ecological perturbations, such as the introduction of a new spe-
cies, resources, or stresses from an external environment are frequent but have little
impact on the steady state of the climax community. In contrast, major perturbations
can greatly impact the stability and composition of the ecosystem, leading to second-
ary succession and the establishment of a new steady-state climax community.
Ecological theory also predicts that the greater the frequency and intensity of pertur-
bations, the less predictable the path and endpoint of succession (72).

FIG 1 Model of ecological succession describing the stages of primary succession (left) that occurs
through pioneer species which colonize an initially uninhabited landscape from an environmental
reservoir secondary succession (right) that occurs through locally resident species following a
perturbation that disrupts the normal steady state and results in the formal of a stable, but different
climax community. As the perturbations, however minor, are constantly occurring, even a relatively
“steady-state” community is constantly in a dynamic state of flux, and moving toward a desired
equilibrium, which may never be truly reached. The image was created with BioRender.
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The Cystic Fibrosis Ecological Succession (CFES) model (Fig. 2) aims to describe the
life-history of CF lung infections, beginning with initial colonization at birth and follow-
ing the stages of progressive CF lung disease and deterioration, which eventually lead
to premature death. We draw insights from the CAM and IBM models in describing var-
ious elements of CF lung ecology, including PEs, spatial heterogeneity within the CF
microbiota, and the colonization and diversification of bacteria.

Pioneer colonization. Culture-dependent methods have long suggested that lungs
are sterile at birth, and colonization may relate to the mode of delivery (73, 74). While
vaginal delivery results in oral colonization by vaginal and gut microbes, caesarean sec-
tion deliveries result in oral colonization by microbes predominantly found on the skin
and in the hospital environment and is associated with reduced oral microbiota diver-
sity (74–76).

The upper-airway, including the oral, nasal, and pharyngeal cavities, is believed
to be the source population for lower-airway colonization (50, 77, 78); conse-
quently, differences in CF versus non-CF upper airway microbes may result in differ-
ent pioneer species during the early colonization of the lower airways (33). As early
as the first few months of life, significant differences are observed between the na-
sopharyngeal microbiotas of CF infants and healthy controls, with a higher relative
abundance of Staphylococcus, Streptococcus, and Pseudomonas spp. observed in CF
infants (79). The early pattern of succession was also found to be different, with CF
infants seeing a shift from early S. aureus and H. influenzae dominance toward
Streptococcus and Moraxella spp. by 3 months of age, while the microbiota of

FIG 2 CFES model showing progressive changes to the lungs over time and disease development. Each stage of development corresponds to an
analogous stage of succession shown in Fig. 1, along with the microbial taxa frequently observed in the lung at that stage. The two gradients below the
lung diagrams illustrate traits that progressively change during the stages of succession, with light gray and dark gray indicating low and high levels,
respectively. (Copyright Maggie Middleton.)
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healthy infants maintains a steady dominance of Moraxella spp., Corynebacterium
spp., and H. influenzae (79). While the driver of the differences between healthy and
CF individuals is unknown, inflammation of the CF airways in the first few months
of life is detectable despite the absence of clinically diagnosed infection (80, 81).
This inflammation may be due to undiagnosed infections, altered immune function,
or decreased mucociliary clearance (80–85).

Muhlebach et al. (50) used both cross-sectional and longitudinal sampling via
bronchoalveolar lavage (BAL) to characterize the lower airway of CF patients ranging
from less than 1 year old through 5 years old and found that young CF patients had
few microbes in their lower airway, and the samples were largely indistinguishable
from background contamination. In keeping with the IBM, in the first year of life,
infant lungs had been colonized by a community dominated by oral and upper air-
way microbes (50). A similar trend was observed in a longitudinal study of CF infants
(,1 year of age) over a mean duration of 14-months where Streptococcus and
Haemophilus spp. dominated communities from throat swabs, with Staphylococcus
and Pseudomonas spp. being rarely detected (20).

In contrast, Jorth et al. (86) reported that compositions in the early lung micro-
biota differed in 22 children and young adults with CF ranging in ages from 6 to
21 years old. In BAL samples, bacterial communities consisting of Streptococcus,
Prevotella, and Veillonella among others, did not establish prior to traditional CF
pathogens. Analysis of paired BAL samples and analyte negative reagent controls
(standard reagents used during sequencing experiments in the absence of clinical
samples) indicated that nonconventional taxa detected in low-biomass BALs were
likely contaminants from processing reagents and did not reflect true microbial
communities (86). In samples where typical oropharyngeal genera were found at an
increased relative abundance compared to controls, they were associated with and
vastly outnumbered by traditional CF pathogens (86). These findings contradict
existing theories and suggest that the pioneer species may in fact be traditional CF
pathogens and that anaerobic or environmental taxa detected earlier on through
16S rRNA gene sequencing may simply be nonviable or transient contaminants
from the upper airways.

Primary succession and the intermediate community. Early colonization events
are followed by stages of succession. Infections in infants and young children with CF
typically harbor S. aureus and H. influenzae, with rates of infection by P. aeruginosa, S.
maltophilia, Achromobacter spp., and BCC. becoming more common through adoles-
cence and young adulthood (87). By 3 years of age, serological evidence of intermittent
P. aeruginosa infection is found in 95% of children (88). The sources of traditional CF
pathogens such as P. aeruginosa and BCC are believed to be environmental reservoirs
since most of these species are commonly found in soil, although interpatient horizon-
tal transmission is also well described (89, 90). While the sources of these infections are
not entirely clear, the consequences are, since colonization by P. aeruginosa and BCC
are strongly associated with poor prognosis, frequent PEs, and decline in lung function
(91, 92).

In general, the underlying drivers of succession in this ecosystem are unknown,
although it has been shown that the presence of some microbes can facilitate or
hinder the colonization by others. For example, S. aureus infection has been found
to predispose the lungs to future P. aeruginosa infection (65, 93). Interactions
between P. aeruginosa and S. aureus in CF are well-recognized and recently
reviewed by Hotterbeekx et al. (94). These interactions are often metabolically
driven. For example, P. aeruginosa preferentially utilizes S. aureus-produced lactate, while
generating metabolites that can, in turn, reduce S. aureus viability. These observations are
supported by an inverse correlation between the prevalence of P. aeruginosa and S. aureus
(28, 95–98) and in vitro studies showing that P. aeruginosa competitively excludes S. aureus
in coculture (99–103). Other inhibitory mechanisms such as the sequestration of iron and
production of antimicrobials also contribute (99, 104–106). These data are in agreement
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with the CAM, which argues for significant remodeling of the airways in early life
by attack communities prior to the establishment of chronic CF infection by tradi-
tional pathogens (8).

Changes to the CF lung microenvironment as the disease progresses are believed
to cause drastic shifts in community structure. The lung is a heterogeneous and com-
partmentalized organ with variable oxygen and chemical composition due to the con-
tinued accumulation of mucus and diseased tissues and microaspiration events. This
can introduce variation in local conditions within the smaller airways. It is possible that
a spatial component of succession events exists, the extent of which may be experi-
enced differently across communities in individual lung compartments. As seen in the
WinCF model, areas of hypoxia and variable acidity may create favorable niches for an-
aerobic bacteria that require alternate-electron acceptors for growth (9, 107). This may
contribute to a temporary period in which microbial diversity increases and peaks dur-
ing adolescence before significant remodeling of the lung occurs through attack com-
munities (8, 108, 109). It has been proposed that the reduced pH associated with an-
aerobic fermentation may trigger 2,3-butanedione biosynthesis by Streptococcus spp.
to avoid lethal acidification. These fermentation by-products may then be metabolized
by P. aeruginosa to produce compounds such as phenazines (59). This may contribute
to the success of P. aeruginosa in anoxic regions of the CF lung as phenazines can be
used to relieve redox stress, in addition to other anaerobic respiratory pathways (31,
110–112). The production of 2,3-butanedione by anaerobic species can enhance P. aer-
uginosa biofilm formation and antibiotic tolerance and contributes to airway inflamma-
tion (62, 113, 114). Anaerobic conditions have also been associated with the formation
of P. aeruginosa macrocolonies, which provides greater defense against leukocytes
(107, 115).

Interspecies interactions, particularly those between anaerobes and traditional CF
pathogens, may also play a role at this stage of infection. Examples of these associa-
tions include the production of antibiotic degrading enzymes by some anaerobes
which provide traditional CF pathogens with defense against b-lactam antibiotics, and
the production of metabolic by-products such as short-chain fatty acids (SCFAs) that
can be produced by the metabolic degradation of airway mucins (116). SCFAs can
drive powerful proinflammatory responses, marked by the release of cytokines in the
bronchial epithelium, and are associated with neutrophil recruitment into the lungs
(117). These factors may contribute to the increased relative abundance of anaerobes,
metabolic fermentation, and community (alpha) diversity that is observed during PEs
compared to baseline (27, 44, 118, 119). Some studies have suggested that changes in the
abundance of obligate anaerobes such as Veillonella, Porphyromonas, and Prevotella may
be potential predictors of PE onset (120, 121). However, there has been no reliable indica-
tion of whether anaerobic bacteria actually drive the onset of PEs or whether their growth
is simply favored during the physiological changes that occur during exacerbations.

While many mechanistic studies suggest a role for anaerobes as participants or facil-
itators of CF lung disease, these appear discordant with clinical observations, as gen-
eral anaerobe abundance and community (alpha) diversity often correlate with milder
disease, greater lung function and body mass index, and decreased pancreatic insuffi-
ciency (16, 122). The relative abundance of Prevotella spp. in particular has been associ-
ated with increased FEV1, and lower inflammation and C-reactive protein levels com-
pared to infection with P. aeruginosa and other traditional pathogens (123). The
relative abundance of anaerobic genera and overall microbial community diversity has
been shown to decline with disease progression and be inversely related to increases
in the abundance of traditional CF pathogens (21, 119, 124). However, some studies
have shown that FEV1 did not differ significantly between patients with and without
obligate anaerobes and that their prevalence did not correlate with the presence of P.
aeruginosa, as suggested by previous studies (118, 125). Since less-severe PEs tend to
be treated with antibiotic regimens that have less anti-anaerobic activity, it has been
suggested that differences between regimens may be a confounding factor that
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contribute to these contradictory findings (27). This conflicting information makes it
difficult to elucidate the role of anaerobic organisms in CF lung disease.
Correlations between anaerobic diversity and milder lung disease may simply be
explained by greater microbial community diversity and anaerobes being more
likely to be present in high-diversity communities. In CF patients older than
25 years of age, an increased anaerobe abundance has been observed, which may
suggest that a “survivorship effect” exists, since a higher rate of anaerobes and
greater community diversity correlate with a milder CF disease phenotype (25).

The role of anaerobes in CF lung disease progression may also be dependent on
the specific composition of their associated microbiome, including the identity, relative
abundances, and potential interactions with other members of the polymicrobial mi-
lieu. This has been noted particularly in Prevotella spp., which are some of the most
common anaerobes found in the CF airways and constitute a large number of different
species that may vary in their pathogenic potential (123, 126). Regardless of whether
anaerobes carry a true pathogenic role themselves, are merely influential in the patho-
genic behavior of other species, or are inert bystanders, there is mounting evidence to
suggest that they are part of the “attack” community that is involved in significant
remodeling of the airways (8).

Climax community. In a forest ecosystem, climax communities are characterized
by the dominance of large trees that crowd the canopy, occlude sunlight, and use their
deep root systems to monopolize water and nutrient access. This leads to the gradual
elimination of previously abundant pioneer and intermediate species. The optimal con-
ditions that promote the establishment of climax communities do not exist during the
early stages of primary succession. Instead, the ecosystem is primed to support and
sustain climax communities by the activities of pioneer and intermediate species. A no-
table example of this is the reconstitution of nutrient-poor soil by nitrogen-fixing pioneer
species which is vital for the growth of larger plant species (70, 127, 128). Applying this
concept to CF, while climax species such as P. aeruginosa and BCC may appear earlier in
disease progression, they may be better suited to competing in the immunogenic,
crowded, and heterogenous lung environment seen in later stages of CF disease after
the airway microenvironment has been remodeled by the early pioneers and intermedi-
ate community (8, 12).

CF climax species also utilize multiple mechanisms to promote their own domi-
nance over other genera in the lower airways, similar to the deep roots and tall stature
of trees that enable them to outcompete intermediate species in the forest ecosystem
(12). For example, ammonia production by some pathogens may stabilize lung pH and
prevent the onset of PEs where conditions may favor anaerobic species (28). Both P.
aeruginosa and BCC produce a variety of compounds such as 2-alkyl-4(1H)-quinolones
and phenazines that can enhance their competitiveness by sequestering essential bio-
molecules such as iron or facilitate the use of alternate metabolic pathways under oxy-
gen-limiting conditions, thereby preventing disruptions in community composition
from constant colonization events (110, 129, 130).

Perturbations. Ecological disturbances or perturbations are any transient phenom-
ena that result in a significant change to the structure of the community. Small pertur-
bations typically have only short-term impacts followed by a return to the prior steady
state, while large perturbations can push to community to an entirely new configura-
tion. Perturbations can also be necessary for the establishment of specific climax com-
munities. For instance, forest fires are a major perturbation that can decimate and
remodel the landscape, but they also put nutrients back in the soil and open pinecones
which will seed the next climax community.

In CF, the most frequently discussed perturbations are PEs, although perturba-
tions can also be caused by antibiotic treatment, strong immune responses, other
health-related phenomenon, and of course, lung transplantation. Determining the
underlying cause(s) of PEs has been one of the most difficult problems in CF
research. PEs not only pose acute, life-threatening health challenges to CF patients but
also have long-term impacts since each PE can result in irreversible airway damage that
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accelerates lung disease progression (7, 131). Relative to healthy tissue, the fluid lining the
CF airways shows a reduced pH even before infection, possibly due to impaired bicarbon-
ate transport (132). This may facilitate the growth of acid-tolerant organisms such as
Lactobacillus, Prevotella, Veillonella, Streptococcus, Rothia, and Granulicatella whose ferment-
ative metabolism could sustain a low-pH environment (28). An increase in anaerobic fer-
mentation can create a positive-feedback loop that favors the growth of anaerobic bacte-
ria. Consequently, PEs have been associated with increases in both the relative and
absolute abundance of anaerobic taxa (44, 118, 119) and a disruption in the composition
and structure of climax communities (27, 28, 44, 133). These findings further support the
existence of two functional states as described in the CAM, where low-pH environments
favor acid-tolerant anaerobes, while environments with higher pH favor climax community
pathogens (8, 28).

Ecological theory predicts that communities with greater diversity and richness of
species are more resilient to perturbations because they have a greater functional
capacity to adapt to environment change or resist invasive species (134–137). Diverse
communities are less likely to experience intense disruptions and are therefore pre-
dicted to remain close to their desired steady state rather than constantly experiencing
major succession events. Compared to healthy controls, analysis of both expectorated
sputum and BAL fluid from CF patients has shown that lung microbial diversity
decreases with age, often resulting in the establishment of a dominant taxa (i.e., found
at .50% relative abundance) (12, 138). This may explain why PEs also become more
common with age, as the ability of the microbiota to resist perturbations decreases
with the decline in community richness (139).

Secondary succession. Communities will begin to return to a steady state follow-
ing any nonterminal perturbation. Strains and species that survive a perturbation will
expand to fill vacant niches, with the surviving diversity largely shaped by the selective
pressures imposed in the prior perturbation, coupled with both local adaptation and
stochastic events (i.e., genetic drift) (140–142). Unlike more well-studied macroecosys-
tems (e.g., forests), postperturbation microbiomes may show less turnover in species
composition but instead see a substantial turnover in clonal lineages. For example, fol-
lowing the antimicrobial treatment of PEs, a microbial community may consist of the
same traditional CF pathogens as seen in the prior climax community but now be
dominated by derived clonal lineages that have higher levels of antibiotic resistance
(107, 142–145). The lack of a stable and resilient climax community may provide an op-
portunity for other species to colonize from extrapulmonary sites. However, the now
significantly remodeled CF airways may be inhospitable to many organisms, which
may be rapidly outcompeted by residents of the previous climax community that per-
sisted through the disturbance. After a brief period of intermediate succession, a new
climax community will form and persist until another perturbation occurs and the cycle
of secondary succession begins anew. This process of ecological succession is a mecha-
nism that could describe the cyclic nature of PEs in CF patients and the natural pro-
gression of lung disease.

ECOLOGY-INFLUENCED APPROACHES TO TREAT CF LUNG INFECTIONS

As we continue to search for novel strategies to treat and manage chronic
infections in individuals with CF, there may be advantages to identifying treat-
ments that take ecological and evolutionary principles into consideration. Many
authors have suggested that the manipulation of CF microbial communities, both
in terms of taxonomic composition and metabolic function, could be a suitable al-
ternative to traditional antibiotic therapies (8, 146). These could be conceived in
the form of: (i) increased microbial diversity via supplementation, (ii) alteration of
microbial metabolic networks, or (iii) targeted physiological changes within the
lung microenvironment.

The notion that milder disease is associated with increased community diversity
may indicate that boosting its structure and diversity by artificial means may be
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beneficial (16). For example, dietary supplementation with Lactobacillus casei has
been shown to stimulate alveolar macrophages in mice, leading to enhanced clear-
ance of respiratory P. aeruginosa (147). A similar approach that could increase mi-
crobial diversity within the lung or drive the community toward that of an earlier
succession state may be beneficial.

While there is significant interpatient variation in CF microbial community com-
position, the functional microbial metagenome is less variable (31). This could pro-
vide an opportunity to target conserved functional pathways among common
organisms. The suppression of a keystone species such as P. aeruginosa in this man-
ner may initiate a cascade that negatively affects interspecies associations, biofilm
formation, metabolic cross-feeding and antibiotic resistance, thereby altering
pathogen virulence and the dynamics of infection. Similarly, disrupting essential
functional pathways such as the nonmevalonate pathway of Rothia spp. or amino
acid metabolism may help to reduce the overall microbial burden in the airways;
however, targeting lung populations exclusively without altering other extrapulmo-
nary microbiota may prove difficult (28).

Another element of ecological theory that could be applied toward CF treatment
is that interspecies interactions may be either agonistic or antagonistic in different
situations. Interactions can occur both within the same level of the trophic web
(i.e., between bacteria) or between levels of the trophic web (i.e., between bacteria
and host). The impact of these interactions can manifest in terms of net effects on
the ecosystem and environment, or in the case of CF, the patient. As discussed previously,
some anaerobe-mediated actions, such as cross-feeding of SCFAs, can enhance the growth
of traditional CF pathogens (148), whereas others, such as changes in pH, negatively
impact the viability of traditional pathogens (44). Enhancing the antagonistic interactions
between bacteria, in particular stimulating pH changes, may limit the pathogenicity of spe-
cific CF communities. In contrast, disrupting interactions between species, such as those
between P. aeruginosa and filamentous bacteriophages, may also be useful. Preventing
these interactions may limit the development of phenotypes that enhance pathogen fit-
ness in CF (e.g., biofilm formation and antibiotic tolerance) since many phage-infected
strains exhibit these properties and are often associated with worsening lung function dur-
ing PEs (149).

CONCLUSIONS AND FUTURE DIRECTIONS

Life expectancy for CF patients has risen significantly since the initial description of
the disease, from death during infancy being common in the 1950s to a current me-
dian age of survival of more than 50 years in North America (150, 151). However,
chronic polymicrobial lung infections remain the largest cause of morbidity and mor-
tality, and therefore the greatest barrier to improving clinical outcomes (152). The
cystic fibrosis ecological succession (CFES) model synthesizes the dynamics of CF lower
airways communities over the course of disease using fundamental concepts of ecol-
ogy. Each stage of ecological succession within the CF microbiota is associated with
specific clinically observable pathologies and contributes to the progressive lung
decline and, ultimately, premature death. The CFES model aims to enhance existing ec-
ological models of CF infections with a longitudinal perspective that describes CF air-
way ecology, while highlighting the species and metabolic mechanisms involved in
progression of CF lung disease.

A more complete understanding of the CF lung ecosystem requires additional lon-
gitudinal studies of the microbiome, metagenome, metatranscriptome, and metabo-
lome to fully characterize the dynamics and diversity of this system. Long-term longitu-
dinal studies of ecological succession in the CF lung will help separate out correlation
from causation and identify host and microbiological factors that trigger or facilitate
PEs, therapeutic failure, and disease development. A limitation of all current CF ecological
models, including the CFES described here, is our poor understanding of the host’s role in
driving CF lung ecology, including local immunogenic, structural, and physiochemical
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changes that result in the provision of nutrients, substrates, or antimicrobial compounds
or conditions (153).

While it is well established that traditional CF pathogens play key roles in CF infec-
tions, a growing literature indicates that there is also an important role for unconven-
tional CF taxa like anaerobic species in disease pathology. Significant discourse still
exists in the literature surrounding the role of unconventional pathogens, the mecha-
nisms of PEs, and other elements of CF disease pathology. Due to variations in the
microbiotas of individual patients and patient cohorts between studies, it is difficult to
know whether seemingly contradicting results are truly discordant or simply reflect the
diversity of CF microbial infections or sampling strategies. There has been interest in
including viruses and fungi into ecological models of CF due to their presence in cul-
ture-independent data sets and association with clinically significant events such as
PEs (15, 154–160). However, the role of these microbes in CF lung disease is not well
understood and requires further study.

As explored in this review, there is immense spatial and temporal variation in the
CF microbiome, both within and between patients. With the advent of personalized
medicine, the profiling of patient-specific microbial communities will become increas-
ing important in developing effective treatments that aim to match the dynamic na-
ture of CF infection. This will require not only better clinically accessible methods that
can provide robust species- and strain-level identification of microbes but also a com-
prehensive model of CF microbial ecology, which we have proposed here. The use of
these ecological principles may be able to allow for improvements to CF treatment
and provide a solution to contemporary challenges in effective disease management
such as pulmonary exacerbations and antimicrobial resistance.
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