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Abnormal placentation has been noticed in a variety of pregnancy complications such
as miscarriage, early-onset preeclampsia, and fetal growth restriction. Defects in the
developmental program of extravillous trophoblasts (EVTs), migrating from placental
anchoring villi into the maternal decidua and its vessels, is thought to be an underlying
cause. Yet, key regulatory mechanisms controlling commitment and differentiation of
the invasive trophoblast lineage remain largely elusive. Herein, comparative gene
expression analyses of HLA-G–purified EVTs, isolated from donor-matched placenta,
decidua, and trophoblast organoids (TB-ORGs), revealed biological processes and sig-
naling pathways governing EVT development. In particular, bioinformatics analyses
and manipulations in different versatile trophoblast cell models unraveled transforming
growth factor-β (TGF-β) signaling as a crucial pathway driving differentiation of
placental EVTs into decidual EVTs, the latter showing enrichment of a secretory gene
signature. Removal of Wingless signaling and subsequent activation of the TGF-β path-
way were required for the formation of human leukocyte antigen-G+ (HLA-G+) EVTs
in TB-ORGs that resemble in situ EVTs at the level of global gene expression. Accord-
ingly, TGF-β–treated EVTs secreted enzymes, such as DAO and PAPPA2, which were
predominantly expressed by decidual EVTs. Their genes were controlled by EVT-
specific induction and genomic binding of the TGF-β downstream effector SMAD3. In
summary, TGF-β signaling plays a key role in human placental development governing
the differentiation program of EVTs.
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Accurate control of expansion and differentiation of the human placenta is critical for a
successful pregnancy. The particular organ undergoes dynamic morphological changes
during gestation and fulfills multiple roles such as anchorage of the conceptus to the
maternal uterus, immunological tolerance, adjustment of the maternal endocrine sys-
tem, and, most important, transport of nutrients and oxygen to the developing fetus
(1–5). To adapt nutritional supply throughout pregnancy, maternal blood flow to the
placenta is precisely controlled. Extravillous trophoblasts (EVTs), the invasive epithelial
cells of the organ, play a pivotal role in this process. EVTs develop in placental anchor-
ing villi and migrate into the maternal decidual stroma and its vessels as so-called inter-
stitial EVTs (iEVTs) and endovascular EVTs (eEVTs), respectively (6–8). Shortly after
implantation, eEVTs plug the maternal spiral arteries, thereby preventing premature
oxygen delivery to the placental villi and oxidative stress (9). However, from the 10th
week of pregnancy onward, eEVTs remodel the arterioles in the decidua and first third
of the adjacent myometrium in conjunction with iEVTs and maternal leukocytes (10).
Thereby the spiral arteries are transformed into dilated conduits, ensuring steady low-
pressure blood flow to the placenta (11). During invasion, EVTs undergo cell differen-
tiation and acquire distinct molecular features such as a switch in integrin expression
and adoption of a vascular adhesion phenotype (12, 13). Yet, EVTs also perform many
other tasks during early pregnancy. They invade uterine glands, warranting early pla-
cental growth and histiotrophic nutrition of the fetus (14, 15), and infiltrate maternal
lymphatics and veins, a process which is disturbed in placentae of women with recur-
rent pregnancy loss (16, 17). Failures in placentation and vessel remodeling have also
been noticed in other pregnancy complications such as preterm labor, stillbirth, early-
onset preeclampsia, and severe fetal growth restriction (18–20). Besides fetal and mater-
nal aberrations, defects in EVT invasion, maturation, and differentiation, in situ as
well as in vitro, have been observed (21–24).
Development of the EVT lineage shares many features with tumorigenesis, yet repre-

sents a highly coordinated physiological process (25, 26). In placental anchoring villi,
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multilayered EVT progenitors are formed in their proximal cell
columns (CCs). Activation of canonical NOTCH1 signaling
could be required for expansion of these precursors (27). In the
distal part of the CC, EVT progenitors cease proliferation and
undergo genome amplification (28). These herein-termed placen-
tal EVTs (pEVTs) induce characteristic marker genes, for exam-
ple human leukocyte antigen-GHLA-G (29), NOTCH2 (30),
ERBB2 (31), and TCF-4, a key transcription factor of canonical
Wingless (WNT) signaling (25, 32). However, pEVTs subse-
quently differentiate into iEVTs upon detachment from anchor-
ing villi and invasion into the decidua and further up-regulate
specific proteins such as pregnancy-associated plasma protein A
(PAPPA), proteoglycan 2 (PRG2), and the histamine-degrading
enzyme diamine oxidase (DAO) (17, 26, 33). The two EVT pop-
ulations have also been recently identified by single-cell sequencing
of the fetal–maternal interface (34). Yet, our knowledge on key sig-
naling pathways regulating differentiation of pEVTs into iEVTs
remains scarce, mainly since self-renewing human trophoblast
models, allowing for controllable EVT lineage formation and
in vitro differentiation, have only been recently developed (35–37).
Despite differences in protocols, HLA-G+ EVTs were retrieved
from two-dimensional (2D) trophoblast stem cells (TSCs) and 3D
trophoblast organoids (TB-ORGs), developing from NOTCH1+

EVT progenitors in the latter (35, 36). However, in both systems
the absence of several EVT markers, such as PAPPA and DAO,
has been noticed, suggesting that the in vitro generated EVTs are
not fully matured (26). Hence, we hypothesized that activation of
additional signaling pathways must be critical for completion of
EVT differentiation. To gain novel insights into the developmental
program of EVTs, we herein analyzed highly purified, donor-
matched preparations of pEVTs, iEVTs, and TB-ORG–derived
EVTs (TB-ORG-EVTs) using RNA sequencing (RNA-seq) and
identified transforming growth factor-β (TGF-β) signaling as an
activated pathway in tissue-derived EVTs. Finally, in vitro manipu-
lation of several versatile trophoblast models confirmed the key
role of TGF-β signaling in human placental EVT differentiation.

Results

Isolation and Characterization of EVTs Isolated from Placenta,
Decidua, and Trophoblast Organoids. In order to compare gene
expression profiles of in situ and in vitro derived EVT populations,

HLA-G+ EVTs were purified from first-trimester placenta,
decidua, and TB-ORGs of the same patient (n = 3). While
pEVTs and iEVTs were directly prepared from placental and
decidua basalis tissues, respectively, purified placental cytotropho-
blasts (CTBs) were used for establishing self-renewing TB-ORGs
in the presence of epidermal growth factor (EGF), the WNT
activator CHIR99021, and the TGF-β receptor (ALK4/5/7)
inhibitor A8301 as described (35, 38). TB-ORG-EVTs were gen-
erated by withdrawing CHIR99021 from these cultures (WNT�

condition) (Fig. 1A). All EVT populations expressed HLA-G,
which was utilized for immunopurification (Fig. 1B). To assess
purity, HLA-G+ EVTs as well as remaining cells were tested for
specific markers of CTB, EVT, and stromal cell populations (SI
Appendix, Fig. S1). In contrast to CTBs, pEVTs and iEVTs
expressed EVT-specific proteins such as HLA-G (29), fibronectin
1 (FN1) (39), and PRG2 (17) but lacked markers of decidual
stromal cells such as the Thy-1 cell-surface antigen (THY1) (40),
aminopeptidase N (CD13) (41), Dickkopf-1 (DKK1) (42), and
insulin-like growth factor–binding protein 1 (IGFBP-1) (43) (SI
Appendix, Fig. S1A). Flow cytometry data revealed that immuno-
purification had yielded EVT populations with a high degree of
purity (SI Appendix, Fig. S1 B and C).

EVTs, Purified from First-Trimester Placenta, Decidua, and
Organoids, Express Specific Gene Signatures. To delineate pos-
sible differences between EVT subtypes, immunopurified HLA-G+

cells were subjected to RNA-seq, bioinformatics, and gene
expression analyses (Fig. 2). Raw RNA-seq data of pEVTs,
iEVTs, and TB-ORG-EVTs are accessible at the Gene Exp-
ression Omnibus (GEO) database (accession no. GSE188352).
Principal-component analysis (PCA) (Fig. 2A) and hierarchical
clustering (SI Appendix, Fig. S2A) revealed strong similarities
among pEVT, iEVT, and TB-ORG-EVT cell preparations,
respectively; 7,211 transcripts were common to all EVT cell
types, whereas pEVT, iEVT, and TB-ORG-EVTs uniquely
expressed 195, 831, and 266 genes, respectively (Fig. 2B). Expres-
sion of the established pEVT markers ERBB2 (31), WWTR1,
encoding TAZ (38), NOTCH2 (30), ITGA5 and ITGB1 (12),
CDKN1C (28), CBLB (44), and TCF7L2 (32) was detected in
TB-ORG-EVTs as well as at a lower level in iEVTs (SI Appendix,
Fig. S2B). SPINT1/HAI-1, a marker for proliferative CTBs and
CC trophoblasts, and CDH5/VE-cadherin, localizing to a subset
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Fig. 1. Localization and identification of different EVT cell types used for bulk RNA-seq. (A) Schematic depiction showing localization of pEVTs, decidual iEVTs, and
TB-ORG-EVTs during early pregnancy. Whereas pEVTs and TB-ORG-EVTs develop from proliferative CC trophoblasts, iEVTs detach from CCs at anchoring sites and
migrate into the maternal decidua. TB-ORG-EVTs were generated in vitro by removing the GSK-3β inhibitor/canonical WNT activator CHIR22901 from the stem cell
medium for 8 d (WNT� condition). STB, syncytiotrophoblast; VC, villous core; vCTB, villous cytotrophoblast. (B) Representative immunofluorescence images (eighth
week of pregnancy) showing HLA-G expression in placental anchoring villi, decidua basalis, and Wnt� TB-ORGs of the same patient. HLA-G� decidual stromal cells
(DSCs) are marked. Nuclei are visualized by DAPI staining. Mouse immunoglobulin G (mIgG) isotype antibodies were used as negative control.
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of pEVTs adjacent to the proximal CC (27), also decreased in
iEVTs compared with pEVTs and/or TB-ORG-EVTs (Fig. 2C
and SI Appendix, Fig. S2 C–E). In contrast, transcript and/or pro-
tein levels of EVT-secreted factors, for example TIMP3 (45),
SERPINE1 (46), AOC1/DAO (33), PAPPA2 (47), and FN1
(39), were elevated in iEVTs (Fig. 2C and SI Appendix, Fig. S2 C
and D). DAO was detected in 5 to 8% of pEVTs, largely colo-
calizing with PAPPA2, whereas 55 to 65% and 70 to 80%
of iEVTs were positive for DAO and PAPPA2, respectively
(Fig. 2D). Both DAO and PAPPA2 were absent from TB-ORG-
EVTs (Fig. 2C and SI Appendix, Fig. S2E). Furthermore,
gene set variation analysis (GSVA) using a secretome-specific
gene signature indicated higher GSVA scores in iEVTs compared
with pEVTs (Fig. 2E). Accordingly, numerous transcripts encod-
ing secreted proteins were elevated in iEVTs such as proteases
(MMP11, HTRA1, PAPPA, PAPPA2, CTSB), protease inhibitors
(TIMP2, TIMP3, SERPINE1, SERPINE2, SERPING1), glyco-
proteins (CSH1, EBI3, FBLN1), and regulators of angiogenesis/
vessel function (ISM2, FLT1, ADM, GRN) (SI Appendix,
Fig. S2F). In summary, gene expression analyses suggested
that, in comparison with in situ EVTs, TB-ORG-EVTs were
less matured.

Differentiation of EVTs Is Associated with TGF-β Signaling.
Next, we next sought to unravel pathways critically involved in
EVT maturation. Gene set enrichment analysis revealed that dif-
ferent biological processes including angiogenesis, the reactive
oxygen species pathway, and signaling through TGF-β and
STAT3 were significantly up-regulated in iEVTs compared with
pEVTs, while MYC target genes were down-regulated (SI
Appendix, Fig. S3A). Not surprisingly, TGF-β signaling was also
up-regulated in pEVTs compared with the A8301-treated TB-
ORG-EVTs, while STAT3 and canonical WNT signaling
showed positive trends (SI Appendix, Fig. S3B). Furthermore, dif-
ferentiation of pEVTs into iEVTs was associated with increased
messenger RNA (mRNA) expression of canonical TGF-β targets
such as FN1, TIMP3, NOTUM, PAPPA2, and CTGF (SI
Appendix, Fig. S3 C and D) and with elevated transcript levels of
TGF-β receptor 1 (TGFBR1, encoding ALK5) and TGFBR2 (SI
Appendix, Fig. S3 E and F). In agreement, TGFβR1 and
TGFβR2 were hardly detectable in first-trimester placenta in situ,
whereas iEVTs of the decidua showed stronger signals (SI
Appendix, Fig. S3G). The downstream effector SMAD3 was
highly expressed in iEVTs but absent from proliferative CTBs
(SI Appendix, Fig. S3F). In summary, bioinformatics and
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expression analyses suggest that TGF-β signaling could play a
major role in the developmental program of EVTs.

Activation of TGF-β Signaling Governs EVT Differentiation. To
investigate the role of TGF-β signaling in EVT differentiation,
HLA-G+ EVTs were isolated from WNT� (removal of
CHIR99021) TB-ORGs in the presence of the TGF-β signaling
inhibitor A8301 (condition DIFF-1), as well as from WNT�

TB-ORGs cultured in the absence of A8301 (condition DIFF-2),
allowing for autocrine activation of the pathway (Fig. 3A and SI
Appendix, Fig. S4A). To further increase TGF-β signaling, recom-
binant TGF-β1 was added to WNT� A8301� TB-ORGs (con-
dition DIFF-3). Sequential withdrawal of CHIR99021 and
A8301 was critical for EVT formation in TB-ORGs, whereas
simultaneous removal of the inhibitors (condition DIFF-4 and
DIFF-5) blocked outgrowth and differentiation (SI Appendix,
Fig. S4 A and B). While condition DIFF-1 was sufficient for the
expression of HLA-G, VE-cadherin, and TAZ, activation of

TGF-β signaling (DIFF-2) was required for the induction of
FN1, DAO, and PAPPA2 (Fig. 3 B and C). The latter were fur-
ther up-regulated upon supplementation with TGF-β1 (DIFF-3),
while VE-cadherin decreased. Like in anchoring villi (Fig. 2D),
DAO localized to a small subset of distal CC EVTs in TGF-
β1–stimulated TB-ORGs (Fig. 3C). Similar to TB-ORGs,
DIFF-1 provoked HLA-G expression in 2D TSC lines, while
activation of TGF-β signaling (DIFF-2 and DIFF-3) was neces-
sary for the expression and secretion of FN1, DAO, and PAPPA2
(Fig. 3 D and E).

TGF-β-SMAD3 Signaling Promotes Expression of iEVT-Specific
Genes. Next, signaling of TGF-β through its downstream effec-
tor SMAD3 was analyzed in first-trimester villous explant cul-
tures, primary EVTs, TSCs, and TB-ORGs (Fig. 4 and SI
Appendix, Fig. S4). CC outgrowth and HLA-G expression were
not affected by A8301 in villous explants (Fig. 4 A and B and
SI Appendix, Fig. S4C). However, the inhibitor increased
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CDH5/VE-cadherin and repressed CTGF, AOC1/DAO, FN1,
and PAPPA2 in these cultures, whereas active TGF-β signaling
had the opposite effect (Fig. 4 A and B and SI Appendix, Fig.
S4 C and D). In analogy, TGF-β signaling also elevated AOC1/
DAO, FN1, PAPPA2, and TIMP3 in cells and supernatants
of HLA-G–purified pEVTs cultivated on fibronectin (SI
Appendix, Fig. S4 E–G). In vivo, SMAD3 was detectable in
nuclei of iEVTs and in a subset of pEVTs, located in the outer-
most regions of the distal CC (SI Appendix, Fig. S4H). Whereas

condition DIFF-1 was sufficient for SMAD3 expression in TB-
ORG-EVTs (Fig. 4C), activation of TGF-β signaling was
required for SMAD3 nuclear recruitment and its canonical,
C-terminal phosphorylation (pSMAD3C) (Fig. 4 D and E).
Accordingly, inhibition of the signaling pathway decreased
numbers of SMAD3+ nuclei in primary pEVTs and abolished
nuclear pSMAD3C in these cells (SI Appendix, Fig. S4 I and J).
TGF-β inhibition also eliminated coexpression of SMAD3
and DAO in EVTs of villous explant cultures (SI Appendix,
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Fig. S4K). Gene silencing of TGFBR1, TGFBR2, or both recep-
tors decreased AOC1/DAO as well as CTGF and FN1 expression
in primary pEVTs and TSCs (SI Appendix, Fig. S4 L–O). More-
over, small interfering RNA (siRNA)–mediated down-regulation
of SMAD3 diminished AOC1/DAO, CTGF, and FN1 expres-
sion in TSCs, cultivated under condition DIFF-3 (Fig. 4 F
and G), and abrogated TGF-β1–dependent expression of FN1,
DAO, and PAPPA2 in primary pEVTs (Fig. 4H). Likewise, tran-
script and protein levels of these iEVT markers declined in differ-
entiating TSCs and TB-ORGs upon treatment with the selective
SMAD3 inhibitor SIS3 (48) (Fig. 4 F, G, I, and J).
Furthermore, genomic sequences of AOC1, PAPPA2, FN1,

and CTFG, previously identified as SMAD3-binding regions,
were retrieved from the Gene Transcription Regulation Database
or selected publications (SI Appendix, Fig. S5A). Primers were
designed for these sites (SI Appendix, Table S2) and used for
qPCR after SMAD3-specifc chromatin immunoprecipitation
with chromatin isolated from primary CTBs or HLA-G–purified
EVTs. Increased binding of SMAD3 to the AOC1 promoter and
an upstream enhancer region was identified in EVTs, whereas a
distal enhancer of the PAPPA2 gene was recognized (SI Appendix,

Fig. S5B). Moreover, interaction of SMAD3 with proximal and
distal genomic regions of FN1 and CTGF, respectively, was
detected in these cells (SI Appendix, Fig. S5B). In conclusion,
activation of TGF-β-SMAD3 seemed to be crucial for EVT dif-
ferentiation and iEVT-specific gene expression.

TGF-β Signaling Impairs Extravillous Trophoblast Motility.
Inspection of the different trophoblast models revealed that
TGF-β inhibition altered cellular appearance as well as migra-
tory behavior of EVTs (Fig. 5). In contrast to the epithelial
phenotype of controls, EVTs of A8301-treated villous explants,
TB-ORGs, and 2D primary cultures displayed a spindle-
shaped, fibroblast-like morphology (Fig. 5 A and B and SI
Appendix, Fig. S6A). TGF-β inhibition in primary pEVTs pro-
moted lamellipodium and actin stress fiber formation indicative
of directed cell movement (49), whereas control cultures pre-
sented a dense crisscross F-actin/α-actinin meshwork (SI
Appendix, Fig. S5B). Proteins associated with focal adhesions
(vinculin, paxillin, zyxin) were observed at the leading edge of
A8301-treated primary pEVTs and TB-ORG-EVTs, whereas a
radial distribution was detected in cells with activated TGF-β
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Fig. 5. Inhibition of TGF-β signaling increases EVT motility and promotes lamellipodium formation. F-actin was visualized by fluorescence-labeled phalloidin stain-
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signaling (Fig. 5C and SI Appendix, Fig. S6C). Accordingly, inhibi-
tion of TGF-β signaling increased motility of pEVTs on fibronectin
(Fig. 5 D and E and Movies S1 and S2), as well as migration
through fibronectin-coated transwells (SI Appendix, Fig. S6D). In
summary, autocrine TGF-β signaling suppressed the mesenchymal
phenotype of EVTs and impaired their migration.

TGF-β–Activated TB-ORG-EVTs Resemble Tissue-Derived EVTs.
To investigate global effects of TGF-β signaling on EVTs,
TB-ORGs, isolated from three different first-trimester placen-
tae (sixth to eighth week), were treated with the different con-
ditions described in Fig. 3A. HLA-G+ EVTs were purified
from these cultures and subjected to RNA-seq (raw data are
available at the GEO; accession no. GSE188352) and bioinfor-
matics analyses were conducted in comparison with the donor-
matched EVT samples (Fig. 6). PCA and hierarchical clustering
revealed that EVTs isolated from condition DIFF-2 (A8301�)
or DIFF-3 (A8301�, TGF-β1+) display similarities with in situ
pEVTs at the level of global mRNA expression (Fig. 6 A
and B). TGF-β–activated TB-ORG-EVTs up-regulated tran-
scripts that were elevated in pEVTs and iEVTs encoding
secreted enzymes (PAPPA, PAPPA2, AOC1, HTRA1), canoni-
cal TGF-β targets (NOTUM, CTGF, FN1), and angiogenic fac-
tors (ISM2, FLT1, GRN) (SI Appendix, Fig. S7). Others that
were enriched in iEVTs vs. pEVTs (e.g., CTSB, TIMP2, ADM,
FOS, JUN, TGFBR1) were not increased by the TGF-β1 treat-
ment (SI Appendix, Fig. S7). Interestingly, some mRNAs that
were abundant in pEVTs and TB-ORG-EVTs and expressed at
lower levels in iEVTs also declined upon TGF-β1 activation,
for example the distal CC markers TCF7L2 and NOTCH2 and
components of the WNT pathway (FZD5, FZD6, LRP5,

WNT7A) (SI Appendix, Fig. S7). Compared with DIFF-1
(A8301+), DIFF-2 and DIFF-3 reduced the number of differ-
entially expressed genes between TB-ORG-EVTs and pEVTs
or iEVTs, respectively (Fig. 6C). In conclusion, activation of
TGF-β signaling in TB-ORG-EVTs recapitulates major aspects
of in situ EVTs.

Discussion

Factors and signaling cascades controlling trophoblast invasion and
migration have been widely studied (25, 50). However, key mecha-
nisms governing EVT progenitor development and differentiation
have only recently begun to emerge. While expansion and survival
of proliferative, ITGA2+ EVT progenitors could be controlled by
NOTCH1 (27, 51), EVT differentiation was shown to be associ-
ated with the activation of specific pathways such as hypoxia-
inducible factor–mediated signaling and canonical WNT signaling
(32, 35, 52). Low oxygen triggers NOTCH1 expression in EVT
progenitors, an early step of EVT lineage development, and pro-
motes differentiation of TSCs and primary CTBs involving down-
stream targets such as ASCL2 (27, 52, 53). The role of canonical
WNT signaling in placentation seems to be complex. Whereas acti-
vation of WNT by CHIR99021 is necessary for trophoblast stem-
ness, loss of WNT is required for the formation of CC/
NOTCH1+ EVT progenitors (35). Differentiation of these precur-
sors into pEVTs is achieved by autocrine reactivation of the path-
way, accompanied by the induction of the critical WNT down-
stream effector TCF-4 that also controls EVT migration (32, 35).

Yet despite the identification of several regulatory mechanisms,
a deeper understanding of EVT differentiation, and in particular
how decidual iEVTs develop, is lacking. On the one hand, the
availability of early-pregnancy tissues for isolating pEVTs and
iEVTs is limited. On the other hand, the traditional culture con-
ditions for 2D primary CTBs, spontaneously differentiating
in vitro, did not allow investigating EVT formation in a control-
lable manner. Recently, however, first protocols for initiation
and differentiation of EVTs were established using self-renewing
2D TSCs and 3D TB-ORGs (35, 36). Removal of CHIR99021
and the presence of the TGF-β inhibitor A8301 and Matrigel
were sufficient to generate HLA-G+ EVTs in both systems.
TSCs were additionally treated with neuregulin-1 and increased
concentrations of A8301 for EVT differentiation (36). While
inactivation of TGF-β signaling was shown to be critical for the
induction of human trophectodermal stem cells from naive plu-
ripotent stem cells and for the expansion of postimplantation
TSCs and TB-ORGs (35–37, 54, 55), continuous inhibition of
the pathway during EVT differentiation remained questionable
to us. The absence of EVT markers such as DAO and PAPPA
(25, 26), as well as the spindle-shaped morphology of EVTs in
the presence of A8301 (36) (Fig. 5), contrasting the appearance
of in situ EVTs, prompted us to reinforce the culture conditions,
particularly by activating TGF-β signaling at a later stage of EVT
differentiation. Indeed, both EVTs and decidua are rich sources
of TGF-β ligands (56, 57), suggesting that particular cytokines
could play crucial roles in EVT differentiation.

We decided to perform RNA-seq and bioinformatics analyses of
EVTs generated in TB-ORGs. In analogy to the in vivo situation,
TB-ORG-EVTs develop in 3D from NOTCH1+ CC progenitors
(27, 35), whereas the path of differentiation has not been defined
in 2D cultured TSCs. In addition, TGF-β–activated TB-ORG-
EVTs were compared with donor-matched, first-trimester pEVTs
and iEVTs at the level of global gene expression. Analyses of the
latter revealed several biological processes involved in the transition
from pEVT to iEVT. Besides IL-6-STAT3, TGF-β signaling, and
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others, iEVTs displayed enrichment of a gene set characteristic
for angiogenesis (SI Appendix, Fig. S3A). For instance, iEVTs
expressed elevated transcript levels of secreted angiogenic proteins
such as FLT1, ISM2, ADM, and GRN (SI Appendix, Fig. S2F).
Expression of these factors could be associated with EVT-
dependent spiral artery remodeling resembling angiogenesis at its
initial stages (58). TGF-β, a known regulator of vascular remodel-
ing (59), could be critically involved since transcript levels of some
of the above-mentioned factors were increased upon TGF-β activa-
tion (SI Appendix, Fig. S7).
The only genes significantly down-regulated in iEVTs vs.

pEVTs were targets of MYC (SI Appendix, Fig. S3A). This
could be indicative of the decreasing mitotic activity during
EVT differentiation. However, MYC has also been implicated
in the acquisition of polyploidy and its placental expression is
predominantly detected in the CC, where pEVTs undergo
genome amplification (27, 28, 60). This process could be miti-
gated in decidual iEVTs. It is noteworthy that WNT-β-catenin
signaling also showed a trend to decrease during iEVT forma-
tion (SI Appendix, Fig. S3A), coinciding with the reduced
mRNA expression of TCFL2/TCF-4 in iEVTs (SI Appendix,
Fig. S2B) and differentiated TB-ORGs (SI Appendix, Fig. S7).
TCF-4, which is also a WNT target gene, controls expression
of EVT markers such as ITGA5 and NOTCH2 (32). Tran-
script levels of these genes were lower in iEVTs compared with
pEVTs (SI Appendix, Fig. S2B). Down-regulation of WNT sig-
naling could be explained by the paracrine effects of the soluble
WNT inhibitor DKK1, abundantly expressed by decidual stro-
mal cells (42), providing a mechanism to limit the depth of tro-
phoblast invasion (61). In addition, high concentrations of
NOTUM (SI Appendix, Fig. S2F), a serine hydrolase inactivat-
ing secreted WNT ligands (62), as well as the diminished
expression of components of the heterodimeric WNT receptors
(FZD5, FZD6, LRP5, LRP6) in iEVTs and TGF-β–activated
TB-ORG-EVTs (SI Appendix, Fig. S7) could promote auto-
crine down-regulation of the pathway.
Modest changes in biological processes were observed between

patient-matched pEVTs and TB-ORG-EVTs, although each of
the two EVT populations expressed unique genes (Fig. 2B and SI
Appendix, Fig. S3B). Indeed, TB-ORG-EVTs developed in an
artificial 3D environment which might have affected EVT matu-
ration. In this regard, it is worth mentioning that A8301-treated
TB-ORG-EVTs and villous explant cultures expressed higher lev-
els of CDH5/VE-cadherin (e.g., Figs. 3B and 4B). VE-cadherin is
a critical component of endothelial adherens junctions and has
been identified as a marker of the adhesion phenotype of eEVTs
(24). However, VE-cadherin is also specifically expressed in an
intermediate region of the CC in TB-ORGs (SI Appendix, Fig.
S2E) and placental tissues (27). The absence of TGF-β signaling
in TB-ORG-EVTs/DIFF-1 could provoke accumulation of
less-matured EVTs. Indeed, VE-cadherin+ pEVTs represent the
first HLA-G+ cells that develop during EVT differentiation,
whereas pEVTs of the distal CC and iEVTs lack VE-cadherin
protein. Alternatively, TGF-β might switch off its expression in
TB-ORGs (Fig. 3B). Indeed, TGF-β was shown to suppress
VE-cadherin in trophoblastic HTR-8/SVneo cells, thereby
decreasing invasion (63). However, its role might differ in pEVTs
since down-regulation of VE-cadherin in the distal CC correlated
with acquisition of the invasive phenotype.
Like in other epithelial cell types, TGF-β signaling could

control trophoblast cell expansion. While recombinant TGF-β1
could increase villous CTB proliferation, possibly through ERK
activation and linker-phosphorylated SMAD2, it was shown
to impair proliferation of immortalized trophoblasts (64–66).

Since outgrowth in villous explant cultures occurred in the
absence or presence of A8301 (Fig. 4), TGF-β signaling may
have little effect on CC proliferation. However, our results sug-
gest that TGF-β impaired EVT motility since A8301 provoked
formation of stress fibers as well as focal adhesions at the lead-
ing edge of primary EVTs and increased their migratory capac-
ity (Fig. 5 and SI Appendix, Fig. S6). These data are in line
with different reports showing down-regulation of invasion of
primary trophoblast and trophoblastic cell lines in the presence
of recombinant TGF-β ligands (57). Since iEVTs expressed ele-
vated levels of TIMPs and SERPINEs (SI Appendix, Fig. S2 C
and F), invasion, mediated through MMPs and uPA (67, 68),
could be further attenuated when cells reach deeper regions of
the decidua.

TGF-β is likely to perform multiple tasks during EVT devel-
opment. Whereas levels of TGFBR1 and TGFBR2 were low in
pEVTs and TB-ORG-EVTs (DIFF-1), SMAD3 was induced in
TB-ORG-EVTs that developed in the absence of WNT and
TGF-β signaling (Fig. 4C and SI Appendix, Fig. S3F). However,
nuclear recruitment of SMAD3 only occurred in a subset of the
outermost pEVTs of the distal CC in vivo as well as in migra-
tory TB-ORG-EVTs when A8301 was removed and recombi-
nant TGF-β was added (Fig. 4D and SI Appendix, Fig. S4H).
Accordingly, canonical activation of SMAD3 by C-terminal
phosphorylation (pSMAD3C) was detected in TGF-β–treated
TB-ORG-EVTs and differentiating primary EVTs, the latter
activating the pathway in an autocrine manner (Fig. 4E and SI
Appendix, Fig. S4J). In vivo, pSMAD3C was observed in the
outer areas of distal CCs and conditioned medium of isolated
decidual stromal cells was shown to increase SMAD3 phosphor-
ylation in primary EVTs (66). In summary, we speculate that
TGF-β, present in the adjacent decidua and in the Matrigel sur-
rounding TB-ORG-EVTs, promotes nuclear recruitment and
phosphorylation of SMAD3 (69). Together with SMAD4 and
pSMAD2C, expressed in nuclei of pEVTs (66), functional
SMAD transcription factors could be formed. In summary,
pSMAD2C/3C in the outer pEVTs of the distal CC suggested
active TGF-β signaling in these cells. Accordingly, activation of
TGF-β signaling in TB-ORG-EVTs increased the similarity to
pEVTs at the level of global gene expression (Fig. 6).

TGF-β–controlled differentiation may not only recapitulate
features of pEVTs but also aspects of iEVTs since autocrine
activation of the pathway (DIFF-2) reduced the number of dif-
ferentially expressed genes between iEVTs and TB-ORG-EVTs
(DIFF-1). However, TGF-β signaling can only partly stimulate
differentiation into iEVTs, the latter forming a distinct cluster
in the PCA (Fig. 6). Indeed, numerous growth factor and sig-
naling cascades have been discovered in EVTs that may further
shape gene expression and function of iEVTs (25, 50).

Nevertheless, TGF-β-SMAD3 could play an important role in
the differentiation of pEVTs into iEVTs. The latter showed
abundant nuclear SMAD3, as well as up-regulation of TGFβR1
and TGFβR2 (SI Appendix, Figs. S3 F and G and S4H). Elevated
levels of TGF-β receptors could be critical for the paracrine acti-
vation of SMAD3, mediated through TGF-β ligands secreted
from the decidua (57). Enhanced TGF-β signaling in iEVTs
might be crucial for developing their secretory phenotype. Besides
the aforementioned angiogenic factors and regulator of invasion,
TGF-β signaling controlled PAPPA2 and DAO, two enzymes
that are expressed by the majority of decidual iEVTs (Fig. 2D).
Investigations in different trophoblast models suggested that
TGF-β-ALK5 promoted expression and secretion of PAPPA2 and
DAO and provoked recruitment of SMAD3 to the promoter/
enhancer regions of their genes. Accordingly, siRNA-mediated
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silencing of TGFBR1, TGFBR2, and SMAD3 in primary EVTs
and differentiating TSCs as well as chemical inhibition of
SMAD3 in TGF-β–activated TB-ORG-EVTs down-regulated
expression of these iEVT markers (Fig. 4 F–J and SI Appendix,
Fig. S4 L–O). PAPPA2 likely regulates trophoblast motility, since
it cleaves specific IGFBPs which control the bioavailability of
promigratory IGFs (70). However, DAO is a histamine-
degrading enzyme that within the placenta is exclusively expressed
and secreted by EVTs (33). Its expression in decidual iEVTs was
shown to increase when the cells approach decidual arterial and
venous vessels. Indeed, DAO was already detected at the seventh
week of gestation in the serum of pregnant women and showed
significantly lower levels in early-onset preeclampsia (33). Hence,
TGF-β could be critical for the secretion of iEVT-specific prod-
ucts into the decidual veins, thereby modulating metabolic func-
tions of the mother, at a time when spiral arteries are still thought
to be plugged (9).
In summary, the present data suggest that TGF-β signaling

plays a pivotal role in extravillous differentiation (Fig. 7). Removal
of WNT activation allows for formation of CCs and HLA-G+

EVTs, whereas activation of TGF-β signaling in pEVTs, contact-
ing the maternal decidua, could be required for EVT maturation.
It is noteworthy that only a small subset of pEVTs, expressing
DAO and PAPPA2, undergoes differentiation into an iEVT phe-
notype in the distal CC (Fig. 4A). Hence, we speculate that in the
majority of distal pEVTs, TGF-β-SMAD3 signaling is not fully
activated, allowing for detachment and migration into the mater-
nal environment. In the decidua, iEVTs up-regulate TGF-β

receptors and TGF-β signaling, thereby slowing down migration
and promoting differentiation into a secretory iEVT phenotype.
However, TGF-β only partly accounts for the features of iEVTs,
since the present RNA-seq data also suggest considerable differ-
ences between iEVTs and the TGF-β–activated TB-ORG-EVTs
(Fig. 6C). Additional analyses of critical signaling pathways and
their temporal activation are needed to further optimize in vitro
formation and differentiation of EVTs. Moreover, single-cell
RNA-seq analyses will further unravel the heterogeneity of the
different in vivo EVT populations.

Materials and Methods

Tissue Collection. First-trimester placental and decidual tissue (sixth to eighth
week of gestation, n = 51) was obtained from legal pregnancy terminations. Uti-
lization of tissues and all experimental procedures were approved by the ethics
boards of the Medical University of Vienna (no. 084/2009), and required written
informed consent from donating women. For isolation of patient-matched pEVTs
and iEVTs, placenta and decidua basalis were collected from the same single
donor. Unless stated otherwise, all cell isolations were performed from
single placentae.

EVT Differentiation in TB-ORGs. For TGF-β experiments, TB-ORGs at passage
2 were split into 48 domes supplemented with 50 ng/mL EGF, with/without
2 μM A8301, and with/without 5 ng/mL recombinant TGF-β1 (Abcam). After
evaluation of these conditions (SI Appendix, Fig. S4 A and B), the following pro-
tocol was finally applied: An initial differentiation mixture (bTOM containing
50 ng/mL rhEGF and 2 μM A8301) was added to the cultures for 5 d. Afterward,
the TB-ORG domes were washed and prewarmed bTOM was added for 1 h at
37 °C. Subsequently, three different media were supplemented for another 5 d:
bTOM containing 2 μM A8301 and 50 ng/mL EGF (DIFF-1), bTOM containing
50 ng/mL rhEGF (DIFF-2), and bTOM containing 50 ng/mL EGF and 5 ng/mL
TGF-β1 (DIFF-3). For SMAD3 inhibition during differentiation, 10 μM SMAD3
inhibitor SIS3 (Calbiochem) was supplemented from day 6 to 10. During
differentiation, culture media were changed every 2 to 3 d. At the end of the
experiments, a fraction of TB-ORG domes was fixed for paraffin embedding and
subsequent immunofluorescence analyses. For RNA and protein isolation,
TB-ORG-EVTs were purified using HLA-G-PE antibodies and anti-PE MicroBeads,
respectively, as described in SI Appendix, Methods.

For an additional description of methods, see SI Appendix, Methods.

Data Availability. The RNA-seq data reported in this article have been depos-
ited in the GEO (accession no. GSE188352) (71).

All study data are included in the article and/or supporting information.
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