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Abstract Ca2+-stimulated translocation of cytosolic phospholipase A2a (cPLA2a) to the Golgi

induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid

synthesis. Structural insights into the cPLA2a preference for phosphatidylcholine (PC)-enriched

membranes have remained elusive. Here, we report the structure of the cPLA2a C2-domain (at 2.2

Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+

ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of

these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group,

which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation–p

interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and

Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2a activity.

The DHPC-binding mode of the cPLA2a C2-domain, which differs from phosphatidylserine or

phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens

knowledge of the lipid-binding mechanisms mediated by C2-domains.

Introduction
Lipids play indispensable roles in signal transduction, while also serving as essential structural com-

ponents of the cell membrane, as energy resources, and as metabolites for the generation of hor-

mones and eicosanoids. Phospholipase A2 (PLA2) is a member of a diverse enzyme superfamily that

hydrolyzes the sn-2 acyl bond of glycerol-based phospholipids (Smith, 1989; Dennis et al., 2011).

Cytosolic PLA2a (cPLA2a), a Group IV mammalian PLA2 family member, preferentially releases arach-

idonic acid from PLs in a cytosolic Ca2+-concentration-dependent manner (Clark et al., 1991;

Shimizu et al., 2006; Leslie et al., 2010; Vasquez et al., 2018). Arachidonic acid generated by

cPLA2a is a precursor of pro-inflammatory eicosanoids, including certain prostaglandins and leuko-

trienes. Consequently, cPLA2-mediated bioactive lipid production plays a major regulatory role in

physiological and pathogenic processes (Bonventre et al., 1997; Uozumi et al., 1997;

Leslie, 2015).

Insights into cPLA2a activation by regulatory mediators are of great importance because arachi-

donic acid release by cPLA2a at the membrane surface is the rate-limiting step in eicosanoid
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production. The ensuing prostaglandin and leukotriene production occurs via cyclooxygenases and

lipoxygenases, respectively. Increases in intracellular Ca2+ concentration that are induced by extra-

cellular stimuli activate cPLA2a by inducing translocation from the cytoplasm to the perinuclear

region, (i.e. the Golgi apparatus, nuclear envelope and endoplasmic reticulum) (Evans et al., 2001).

Mechanistically, the membrane translocation of cPLA2a is driven primarily by its N–terminal C2-

domain rather than its catalytic domain (Nalefski et al., 1994; Davletov et al., 1998; Dessen et al.,

1999). Complexation of two Ca2+ ions by the C2-domain neutralizes several Asp residues, facilitating

protein docking and penetration into the membrane interface region (Davletov et al., 1998;

Dessen et al., 1999; Perisic et al., 1998; Bittova et al., 1999). Occupation of one Ca2+-binding site

exerts stronger effects than occupation of the other in terms of stabilizing the membrane partition-

ing of the cPLA2a C2-domain (Bittova et al., 1999; Stahelin and Cho, 2001a).

In addition to Ca2+, cPLA2a activators include specific lipids. Mutational functional analyses have

revealed that ceramide-1-phosphate (C1P), a bioactive sphingolipid generated by ceramide kinase

in the trans-Golgi, enhances enzyme translocation to perinuclear regions (Pettus et al., 2004;

Stahelin et al., 2007; Lamour et al., 2009) by binding directly to the C2-domain. Phosphatidylinosi-

tol 4,5-bisphosphate (PI(4,5)P2) also activates cPLA2a, but independently of intracellular Ca2+ con-

centration (Mosior et al., 1998; Das and Cho, 2002; Casas et al., 2006), by binding a site that is

enriched in cationic residues in the catalytic domain (Das and Cho, 2002; Six and Dennis, 2003;

Tucker et al., 2009). The cationic residue clusters that the cPLA2a C2-domain uses to bind C1P for

membrane targeting (Stahelin et al., 2007; Ward et al., 2013) differ from those used by other C2-

domains [e.g., protein kinase C (PKC), Syt and Rabphilin] that bind PI(4,5)P2 (Honigmann et al.,

2013; Guillén et al., 2013).

Structural insights into cPLA2a interaction with lipids are limited. NMR data have enabled

the identification of several residues in the C2-domain calcium binding loops (CBLs) that interact

with dodecylphosphocholine micelles (Xu et al., 1998). Hydrogen-deuterium exchange mass spec-

trometry and molecular dynamic studies have also helped to map the membrane interaction regions

of the C2-domain and have shed light on catalytic domain conformational accommodation of methyl

arachidonoyl fluorophosphonate, a cPLA2a active-site inhibitor and 1-palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphocholine (PAPC) substrate (Burke et al., 2008; Cao et al., 2013; Mouchlis et al.,

2015). Nonetheless, the lack of crystal structures for the cPLA2a C2-domain or

for the cPLA2a catalytic domain containing bound phosphoglyceride has hampered understanding

of the structural basis that underlies the lipid activation mechanism(s) and the known preference of

cPLA2 for phosphatidylcholine (PC)-enriched membranes.

Here, we report the X-ray crystal structure of the cPLA2a C2-domain bound to 1,2-dihexanoyl-sn-

glycero-3-phosphocholine (DHPC). In contrast to the two bound Ca2+ ions reported in the lipid-free

structure (Dessen et al., 1999; Perisic et al., 1998), we observed three Ca2+ ions coordinated in the

PC-bound structural complex, consistent with the established Ca2+ dependence of membrane inter-

action by the C2-domain. Tyr96 is found to play a major role in the lipid recognition and selectivity

of DHPC via cation–p interaction with the lipid’s trimethylammonium [N+(CH3)3] group. Two of the

three bound Ca2+ ions provide bridging interactions between the C2-domain and the DHPC phos-

phate group, which also interacts directly with Asn65. The DHPC-binding mode of the cPLA2a C2-

domain differs substantially from that of the PKCa C2-domain or the Syt1 C2A-domain bound

to phosphatidylserine (PS) or PI(4,5)P2, thereby expanding and deepening our knowledge of

the lipid-binding mechanisms that are mediated by the C2-domain.

Results

Overall structure of the cPLA2 C2-domain bound to DHPC
To elucidate the mechanism of phosphoglyceride recognition by the C2-domain of cPLA2a, we ini-

tially attempted to generate complexes of the human recombinant protein with various lipids includ-

ing PC, related phosphoglycerides and C1P analogs. Despite extensive crystallization trials, the

resulting C2-domain crystals contained two bound Ca2+ ions, but no bound lipid [as also reported

by Perisic et al., 1998]. However, using purified Gallus gallus (chicken) cPLA2a C2-domain (81%

identical and 93% highly conserved sequence relative to human) (Figure 1A and Figure 1—figure

supplement 1), we obtained crystal complexes with 1,2-dihexanoyl-sn-glycero-3-phosphocholine
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Figure 1. Structure of cPLA2a C2--domain containing bound DHPC and calcium. (A) Sequence alignment of C2-domain calcium-binding loop (CBL)

regions in cPLA2a from different eukaryotes compared to human PKCs and Syt1. Residues that bind Ca2+ are green. Residues interacting directly with

PC in our structural complex (blue or blue asterisk) are absolutely conserved among eukaryotic cPLA2a proteins but not in PKCs and Syt1. Conversely,

residues that interact with PS in the PKCa-PS structure (magenta) are highly conserved in PKCs and Syt1, but not in cPLA2a. Shaded residues are

Figure 1 continued on next page
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(DHPC) (Figure 1C), enabling structure determination at 2.2 Å resolution (Figure 1B). The electron

density map for the entire C2-domain polypeptide chain is visible except for the N-terminal glycine,

a cloning residue artifact. Notably, extra electron density corresponding to a bound DHPC molecule

is found in the map (Figure 1D), near the position reported for a bound MES [2-(N-morpholino)

ethanesulfonic acid] buffer molecule in the structure of full-length human cPLA2a (Dessen et al.,

1999). Three C2-domain molecules comprise the asymmetric unit and each C2-domain contains one

bound DHPC molecule. The structures of the individual complexes are essentially the same. The C2-

domain–DHPC complex exhibits a b-sandwich topology formed by a pair of four-stranded antiparal-

lel b-sheets (one formed by the b4, b1, b8 and b7 strands; the other by the b3, b2, b5 and b6 strands)

(Figure 1B). Clearly resolved are the Ca2+-binding loops (CBL1, CBL2, and CBL3) formed by the b1–

b2, b3–b4, and b5–b6 loops, respectively. CBL1 contains a short a-helix. The structure of the chicken

C2-domain with bound DHPC is almost the same as that of human lipid-freeform (Dessen et al.,

1999; Perisic et al., 1998) with a small overall root mean square (r.m.s.) deviation of 0.7 Å after

superimposition of Ca atoms (Figure 1E). Interestingly, we observed three bound Ca2+ ions in the

C2-domain–DHPC complex (Figure 1B, D and E), two of which correspond to the bound Ca1 and

Ca4 in lipid-free human protein reported previously (Dessen et al., 1999; Perisic et al., 1998).

[Note: The Rizo and Südhof, 1998 numbering system is used for bound Ca2+ in C2-domains (Corba-

lan-Garcia and Gómez-Fernández, 2014).] We found that the Ca1 ion is bound via side-chain inter-

actions with Asp40, Asp43, Asp93 and Asn95 and the main chain carbonyl group of Ala94; whereas

Ca4 is bound via interaction with the side chains of Asp40, Asp43 and Asn65 and the main-chain car-

bonyl group of Thr41 (Figure 2A). The Ca1 and Ca4 coordination networks are almost the same as

those in the lipid-free structure (Dessen et al., 1999; Perisic et al., 1998). Binding of the third Ca2+

involves a stabilizing contact with Asn65 and interaction with the DHPC phosphoryl group. This Ca2+

is designated CaPC because of its novel location at CBL1, which is unique when compared with

Ca2+-binding sites in various other C2-domains (Rizo and Südhof, 1998; Corbalan-Garcia and

Gómez-Fernández, 2014).

PC recognition
The DHPC polar headgroup docks with the CBLs, whereas the fatty acid chains are largely exposed

to solvent. This orientation of bound PC in the complex is consistent with a function as an embedded

membrane-anchoring element for the docking site of the protein. In the C2-domain–DHPC complex

(Figure 2B), the DHPC sn-2 chain is largely disordered except for the ester group, but nearly all of

the sn-1 chain is observable because of the stabilizing interaction with CaPC and the partial contact

by Leu39 (Figure 1D). The shorter fatty acid chains of DHPC compared to those of natural PCs may

partially limit insights into the hydrophobic interactions mediated by fatty acid chains. Yet, it is note-

worthy that the bulk of natural long-chain fatty acyl chains need not interact with the protein, but

rather are expected to remain embedded in the bilayer to stabilize the PC headgroup docking sites

in the membrane for cPLA2a C2-domains.

The DHPC phosphoryl group is positioned at the center of the CBLs, with the -N+(CH3)3 group of

DHPC directed towards CBL3 (Figure 2B). The phosphoryl group is stabilized mainly by Ca2+-medi-

ated bridging interactions. The only direct interaction between the phosphoryl group and the C2-

domain is a hydrogen bond with the side chain of Asn65 (~3.1 Å) (Figure 2B). Although Ca1 does

not coordinate with the DHPC molecule, Ca4 does interact with two oxygen atoms of the DHPC

Figure 1 continued

identical. The human and chicken cPLA2a CBL sequences are 92% identical and 94.5% highly conserved (see Figure 1—figure supplement 1 for full-

length sequence alignment). (B) Ribbon structure representation of the cPLA2a C2-domain bound to 1,2-dihexanoyl-sn-glycero-3-phosphocholine

(DHPC). The DHPC molecule (beige stick) straddles the b1–b2 loop (CBL1, blue), b3–b4 loop (CBL2, cyan) and b5–b6 loop (CBL3, red). Ca1 and Ca4

(blue spheres) are in a similar position in the apo-form structure; whereas CaPC (magenta sphere) is unique to the DHPC-bound form. (C) DHPC

structural formula. (D) Fo-Fc omit electron density map for the bound DHPC molecule at the 2.5s contour level. (E) Superimposition of the chicken

cPLA2a C2-domain with bound DHPC (colored as in Figure 1B) on the human lipid-free structure (PDB: 1RLW, cyan). Root mean square deviation = 0.7

Å after superimposition of Ca atoms.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sequence alignment of cPLA2a for human, mouse, and chicken proteins.

Figure supplement 2. Tubular topology formed in the crystal lattice of the cPLA2a C2-domain–DHPC structural complex.
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Figure 2. Structural interactions of the cPLA2a C2-domain complexed with Ca2+ and DHPC. (A) Coordination of three bound Ca2+ ions observed in the

C2-domain–DHPC complex. Residues that interact with Ca2+ ions are labeled in black with their side-chains (cyan) depicted in a stick representation. (B)

Same view as in panel (A), but with PC-mediated interactions highlighted. Residues that interact directly with DHPC are labeled in red. (C) Space-filling

view of bound DHPC and of Ca4 and CaPC in the cPLA2a C2-domain. Darker gray residues (Y96, A94, H62, N64, and D43) provide contact surfaces for

choline (cyan). Phosphorus is represented in orange; calcium in green; oxygen in red; and acyl carbons in beige. (D) Schematic summary of DHPC- and

Ca2+-binding interactions with the cPLA2a C2-domain.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Zoomed views of the cPLA2a C2-domain complexed with Ca2+ and DHPC.
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phosphoryl group in bifurcated fashion (2.1 and 3.7 Å). CaPC, which was not observed in two previ-

ous lipid-free structures (Perisic et al., 1998), bridges the C2-domain to DHPC via its phosphoryl

group (3.6 Å) and sn-1 carbonyl group (3.2 Å) and also interacts with the Asn65 side-chain (3.1 Å)

(Figure 2; Figure 2—figure supplement 1; Table 1). Thus, Ca4 and CaPC mediate both partial

charge neutralization of the DHPC phosphoryl group, and by doing so, bridge the C2-domain and

PC. The findings further elucidate the role played by bound Ca2+ in mediating nonspecific mem-

brane interaction while revealing direct interaction with PC. Zoomed views of the cPLA2a C2-domain

complexed with Ca2+ and DHPC are provided in Figure 2—figure supplement 1 and associated

interaction distances are summarized in Table 1.

The -N+(CH3)3 group of DHPC is partially surrounded by Tyr96 of CBL3 and His62 and Asn64 of

CBL2 (Figure 2B and C). Importantly, the Tyr96 aromatic ring stacks in planar-like fashion with the

cationic -N+(CH3)3 group. This kind of electrostatic interaction, that is cation-p interaction, occurs at

distances of less than 6.0 Å between a positively charged atom or group and the flat face of an aro-

matic ring that has a partial negative charge due to delocalized p electrons (Dougherty, 2013;

Gallivan and Dougherty, 1999). The position of the -N+(CH3)3 group is further stabilized by van der

Waals contacts with the Ala94 methyl group and by a possible weak (off-angle) cation-p interaction

with the His62 imidazole ring (Figure 2B and C). The orientation of His62 appears to be affected by

hydrogen bonding (2.8 Å) between its imidazole group and the side-chain carbonyl group of Asn64,

which also interacts (weakly) with the -N+(CH3)3 group. Notably, in the structure of the lipid-free C2-

domain (Perisic et al., 1998), a cadmium ion from the crystallization buffer was localized between

Tyr96 and His62, consistent with cation-p interaction (Figure 1E). Previous mutational analyses sup-

port His62 interaction with PC as well as a more significant role for this residue in binding C1P

(Ward et al., 2013). In other proteins that specifically bind PC, such as the PC transfer protein,

Table 1. Interaction distances in cPLA2a C2-domain.

Interaction distances (Å) associated with bound calcium in the lipid-free cPLA2a C2-domain structure (2.4 Å resolution; PDB 1RLW)

of Perisic et al. (1998) and with bound calcium and DHPC in the C2-domain–DHPC crystal complex (2.2 Å resolution) of the present

study.

1RLW Ca1 Ca4

Asp40 2.3/3.4 2.3

Asp43 2.1 2.6/2.2

Asp93 2.7/2.5

Asn65 2.1

Asn95 2.2

C2/DHPC
C2 DHPC

Ca1 Ca4 CaPC N+(CH3)3 PO4 sn-2 C=O sn-1 C=O sn-1 chain

Asp40 2.4/3.4 2.4

Asp43 2.3 2.6/2.7

Asp93 2.7/2.8

Asn65 2.4 3.1

Asn95 2.3

Tyr96 ~4.0

Ala94 3.6

His62 ~5.0 ~8.5

Asn64 3.6

Leu39 5.4

Ca1 5.5 5.7

Ca4 6.3 2.1

CaPC 8.5 3.6 3.2 3.1
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cation–p interactions involving Tyr and Trp are determinants of PC specificity (Roderick et al., 2002;

Kang et al., 2010).

In our study, DHPC binding induced no major conformational changes in the C2-domain CBLs.

Notably, NMR studies of the cPLA2a C2-domain depict the Tyr96 indole ring in an outward position

when not interacting with dodecylphosphocholine micelles (Xu et al., 1998). Thus, PC binding could

require local conformational changes, such as inward flipping of Tyr96, to optimize p–cation interac-

tion for complex formation.

Functional mutagenesis analyses of PC-interacting residues in
the cPLA2a C2-domain
The central importance of Tyr96 for PC selectivity is supported by functional mutagenesis of the C2-

domain residues observed interacting with DHPC. The Y96A point mutant, which is unable to

undergo cation–p interaction with the -N+(CH3)3 group of DHPC, exhibited significantly reduced

affinity for PC bilayer vesicles when compared to either the conservatively mutated Y96F (which sup-

ports strong cation-p interaction) or the control C2–domain, as shown by SPR (Figure 3A; Table 1).

Also, disruption of the PC phosphate group interaction with N65 by point mutation to Asp (N65D)

significantly reduced partitioning to PC vesicles (Figure 3A; Table 1). In previous surface plasmon

resonance (SPR) and DHPC-coated bead studies involving a refolded C2-domain containing a 20-res-

idue affinity tag including 6xHis (Bittova et al., 1999; Stahelin and Cho, 2001b; Ward et al., 2012),

weaker affinity of Y96A and D65A mutants for DHPC was observed. In our experiments, the Ca2+-

concentration-dependence of the process that drives C2-doman point mutants (Y96A, Y96F, and

N65D) to PC membranes was assessed by Förster resonance energy transfer (FRET) between Trp71

of the C2-domain and dansyl-PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(5-dimethyla-

mino-1-naphthalenesulfonyl) in the PC model membranes (Figure 3B). The need for greater Ca2+

concentrations to induce Y96A or N65D partitioning to the PC model membranes compared to

either Y96F or control C2-domain partitioning, was clearly evident. Figure 3C shows additional FRET

data obtained by titration of the C2-domain mutants with increasing amounts of PC model mem-

branes at constant Ca2+ concentration (50 mM). The summarized data (Figure 3D) confirm the

weaker PC-binding affinity of the Y96A and N65D mutants compared to the Y96F mutant or the con-

trol C2-domain.

Since the preceding mutational analyses focused on the role of PC-interacting residues in isolated

C2-domain on protein binding to PC membranes, the functional impact of these same mutations on

the catalytic activity of cPLA2a (C2-domain + catalytic domain) was also determined using estab-

lished mixed-micelle assays (Wijesinghe et al., 2009). By using surface dilution kinetics and tracking

the total mass of arachidonic acid release from 1-palmitoyl- 2-arachidonoyl-sn-glycero-3-phospho-

choline (PAPC) via UPLC-MS/MS, protein interfacial partitioning and enzymatic activity were ana-

lyzed (Figure 3E and F, Table 2 and 3). Notably, the data support the functional importance of

Tyr96 for PC association. Specifically, the association of the Y96A mutant with PAPC-containing

mixed micelles is significantly reduced, that is , the dissociation rate is increased as signified by an

increased KsA, compared to that of either the conservative Y96F point mutant or the control enzyme

(Figure 3E; Table 2). Also, the turnover of the Y96A mutant enzyme displayed allosteric sigmoidal

kinetics once the enzyme was bound to the surface of micelles containing PAPC (e.g., a significant

difference in Vmax was observed) without significantly affecting K0.5(i.e., the PAPC concentration

that produces half-maximal enzyme velocity) (Figure 3F; Table 3). These data indicate that Tyr96 is

key for recognizing and binding PC in the membrane but not for the enzymatic activity of the cata-

lytic domain towards substrate once the enzyme is associated with the membrane.

In cPLA2a, disruption of the N65 interaction with the PC phosphate group by point mutation to

Asp (N65D) also significantly reduced the association with micelles containing PAPC when compared

to the same interaction for the WT enzyme and the N64A mutant (Figure 3E; Table 2), in agreement

with the SPR and FRET findings for purified C2-domain mutants. Notably, however, the reduced

Vmax observed for N65D cPLA2a, alongside the lack of a significant effect on the enzyme’s affinity

for substrate, K0.5 (Figure 3F; Table 3), suggests a possible role in enzyme lateral diffusion (i.

e., ‘scooting’) once bound to the membrane. Of note, N64 replacement with Ala (N64A) had no sig-

nificant effect on either the dissociation rate or the kinetic parameters of the enzyme. Overall, the

mutagenesis data strongly support the key role played by both Y96 and N65 in recognizing and

binding to PC-rich membranes, with N65 and Y96 regulating PC-binding affinity and playing a
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Figure 3. Membrane partitioning of cPLA2a C2-domains and cPLA2a catalytic activities of point-mutated C2-

domains in the PC-binding region. (A) SPR binding isotherms showing point mutant and control protein

equilibrium adsorption to immobilized 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) vesicles saturating a L1

sensor chip at 5 ml/min solution flow rates (see ’Materials and methods’). (B) FRET binding isotherms showing the

Ca2+ dependence of point mutant and control protein (0.5 mM) equilibrium adsorption to POPC–DHPC bicelle-

dilution vesicles (4 mM) (see ’Materials and methods’). (C) FRET-binding isotherms showing the POPC–DHPC

bicelle-dilution vesicle dependence of point mutant and control protein (0.5 mM) equilibrium adsorption at 50 mM

Ca2+ (see ’Materials and methods’). (D) Relative binding affinity of C2-domain point mutants and control protein

obtained for binding isotherms shown in panel (C). (E) Effect of the Y96F, Y96A, N64A, and N65D mutations on

the dissociation constant (Ks
A) of human cPLA2a activity. Proteins were purified as described Stahelin et al. (2007).

Activity was measured as a function of PC molar concentration for 60 min at 37˚C. The PC mole fraction was held

constant at 0.285. cPLA2a activities (nmol of arachidonic acid released/min/mg of recombinant cPLA2a) were

collected on eight separate occasions and are presented as n = 4 for Y96F, n = 4 for Y96A, n = 4 for N64A, n = 4

Figure 3 continued on next page
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potential role in the enzyme’s ability to ‘scoot’ while bound to the membrane and thus to cleave

substrate, as previously modeled by Gelb and co-workers (Bayburt and Gelb, 1997).

Lipid specificity of the cPLA2a C2-domain
To further evaluate the apparent preference of the cPLA2a C2-domain for PC, SPR analyses were

carried out using phosphoglycerides with different polar headgroups (Figure 4A). The relative bind-

ing affinity of the C2-domain for POPC was found to be ~5 fold greater than that for chain-matched

phosphatidylserine (POPS), phosphatidic acid (POPA), phosphatidylglycerol (POPG), or phosphatidy-

linositol (POPI) (Figure 4B). With phosphatidylethanolamine (POPE), lipid adsorption to the SPR L1

Sensor Chip was quite low compared to that of the other phospholipids. To circumvent this issue, 30

mole% POPE was co-mixed with either POPC or POPS. No significant change was found for C2-

domain binding to POPC vesicles containing POPE or POPS compared to binding to pure POPC

vesicles, showing the dominating effect of the PC headgroup. Yet, C2-domain binding to the POPS

vesicles was slightly improved by 30 mole% POPE (see Figure 4—figure supplement 1). Our single

phosphoglyceride SPR results agree with previous FRET studies (Trp to dansyl-PE) in which binding

to lipid vesicles was assessed using a slightly longer, re-folded, recombinant, human cPLA2a C2-

domain (Nalefski et al., 1998).

Because of the proposed preference of the cPLA2a C2-domain for the PC headgroup, we evalu-

ated C2-domain binding to sphingomyelin (SM), which also has a phosphorylcholine headgroup

(Nalefski et al., 1998; Leslie and Channon, 1990; Klapisz et al., 2000; Nakamura et al., 2010). An

issue in need of clarification is whether the reported inhibition of cPLA2a activity by SM arises from

diminished membrane binding driven by the C2-domain or simply because of the inability of the

cPLA2a esterase (i.e., catalytic domain) to hydrolyze SM after binding to the membrane. Using SPR,

we detected significantly weaker binding affinity of C2–domain for vesicles composed of N–oleoyl

SM (Kd = 0.93 ± 0.28 x 10�5) compared to POPC (Kd = 4.2 ± 0.8 x 10�7), despite the shared phos-

phorylcholine headgroup and the presence of 50 mM CaCl2 (Figure 4C). Notably, SPR measurements

involving the Y96F, Y96A, and N65D mutants revealed similar relative decreases in binding to 18:1-

SM vesicles compared to POPC vesicles (Figure 4D). These findings support the key involvement of

Figure 3 continued

for N65D, and n = 8 for WT. Error = standard deviation. R2 values are 0.9021, 09609, 0.9586, 0.9780, and 0.9485 for

WT, Y96F, Y96A, N64A, and N65D, respectively. (F) Effect of Y96F, Y96A, N64A, and N65D mutations on

the allosteric sigmoidal constant (Khalf) of human cPLA2a activity. Activity was measured as a function of increasing

PC mole fractions for 60 min at 37˚C. The PC mole fraction ([PC]/[PC]+[TX-100]) was 0.024 at 50 mM PC, 0.047 at

100 mM PC, 0.069 at 150 mM, 0.091 at 200 mM, 0.13 at 300 mM PC, 0.166 at 400 mM, 0.2 at 500 mM PC, 0.28 at 800

mM PC, 0.37 at 1200 mM PC, and 0.44 at 1600 mM PC. cPLA2a activities (nmol of arachidonic acid released/min/mg

of recombinant cPLA2a) were collected on ten separate occasions and are presented as n = 4 for Y96F, n = 4 for

Y96A, n = 4 for N64A, n = 4 for N65D, and n = 4 for WT. Error = standard deviation. R2 values are 0.9413, 0.9577,

0.9407, 0.9376, and 0.9761 for WT, Y96F, Y96A, N64A, and N65D, respectively.

The online version of this article includes the following source data for figure 3:

Source data 1. Membrane partitioning data for cPLA2a C2-domains mutated in PC binding region.

Source data 2. Activity data for cPLA2a C2-domains mutated in PC binding region.

Table 2. Kd values determined by SPR.

Protein Kd (M) Fold increase*

WT-C2-domain (4.2 ± 0.8)�10�7 ——

Y96F-C2-domain (4.3 ± 0.5)�10�7 1

Y96A-C2-domain (2.4 ± 0.4)�10�6 5.7

N65D-C2-domain (2.2 ± 0.5)�10�6 5.2

*Fold increase in Kd relative to the C2-domain binding to POPC vesicles. Kd values were determined from the nor-

malized saturation binding responses (Req) at the protein concentrations shown in Figure 4—figure supplement 1

after fitting by nonlinear least squares analysis using Req = Rmax/(1 + Kd/C).
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Tyr96 and Asn65 in binding the phosphorylcholine headgroup of SM but indicate that other factors

contribute to the weaker binding of the cPLA2a C2-domain to SM compared to PC.

It is noteworthy that N-oleoyl SM was used for comparison with POPC to avoid effects related to

lipid-packing differences of bilayer liquid-crystalline versus gel phase states and to provide relatively

well-matched aliphatic chains (18:1-SM vs POPC). Nonetheless, the known propensity of SM for

intra- and inter-molecular hydrogen bonding enables more self-interaction than is possible for POPC

even when both lipids are in similar bilayer phase states (Smaby et al., 1996; Brown and Brockman,

2007; Zhai et al., 2014; Slotte, 2016). The net effect for SM is not only moderately tighter lateral

packing in bilayers (compared to POPC) but a phosphorylcholine headgroup with altered conforma-

tion and restricted orientational freedom that may partially mitigate interaction with C2-domain

binding site residues.

Another important parameter that can affect protein behavior at the membrane interface is the

dipole potential that arises from the oriented lipid polar functional groups and associated water mol-

ecules located in the interfacial region separating the aqueous phase and hydrocarbon-like interior

of the membrane (Brockman, 1994; McIntosh et al., 1992; Brockman et al., 2004). Because of

structural differences in the lipid backbones (glycerol with esterified acyl chains in POPC versus

sphingosine with an amide-linked acyl chain in SM) (Figure 1C and 4C), their dipole potentials differ

by ~90 to 240 mV (depending on lipid phase state). This difference has been traced to the similar

positioning of the carbonyl group in the esterified fatty acyl chain of POPC and the 3-OH group in

the SM sphingoid chain (McIntosh et al., 1992). Given the importance of the bilayer dipole potential

in the regulation of amphitropic protein and drug translocation to the membrane interface

(Alakoskela et al., 2004; Brockman, 1994; Kovács et al., 2017; Richens et al., 2015), the lower

dipole potential of SM appears to be a probable contributor to the weaker interaction of the cPLA2a

C2-domain for SM bilayers.

The structure of the C2-domain–DHPC complex also reveals the role played by the PC sn-1 ester

linkage and associated carboxyl moiety (Figure 1C) interacting with the CaPC ion. Although the

structurally equivalent amide-acyl linkage in SM (Figure 4C) could interact with the CaPC ion, the

weaker electronegativity of the carbonyl group in the amide linkage (compared to an ester linkage)

may contribute to the diminished binding affinity. Regardless, it is noteworthy that the cPLA2a

Table 3. Kinetic activity parameters for point-mutated PC-binding-site residues in the C2-domain of

cPLA2a*.

Protein KsA (mM) Vmax (nmol/min/mg)

WT-cPLA2a 182.8 ± 12.5 4.053 ± 0.092

Y96F-cPLA2a 205.8 ± 12.7 4.930 ± 0.111

Y96A-cPLA2a 467.5 ± 31.6 3.438 ± 0.177

N65D-cPLA2a 394.9 ± 29.8 3.203 ± 0.166

N64A-cPLA2a 207.7 ± 9.63 4.328 ± 0.069

*Analyses for data shown in Figure 3E.

Table 4. Kinetic activity parameters for point-mutated PC-binding-site residues in the C2-domain of

cPLA2a *

Protein
K0.5

(mole fraction)
Vmax

(nmol/min/mg)

WT-cPLA2a 0.130 ± 0.007 4.352 ± 0.183

Y96F-cPLA2a 0.132 ± 0.007 4.362 ± 0.172

Y96A-cPLA2a 0.139 ± 0.006 2.510 ± 0.098

N65D-cPLA2a 0.143 ± 0.005 1.791 ± 0.050

N64A-cPLA2a 0.142 ± 0.008 3.436 ± 0.168

*Analyses for data shown in Figure 3F
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Figure 4. cPLA2a C2-domain binding affinity for phosphoglyceride and sphingomyelin (SM) vesicles. (A) Phosphoglyceride structural formulas. (B)

Relative affinities of the C2-domain (1 mM) for different phosphoglycerides obtained by SPR. Molar ratios for PS/PE, PC/PS and PC/PE mixed

composition vesicles are 7:3. (see Figure 4—figure supplement 1). (C) SPR binding isotherms showing C2-domain equilibrium adsorption to

immobilized POPC or 18:1-SM vesicles as a function of protein concentration (see Figure 4—figure supplement 2 for additional information). (D) Effect

of C2-domain mutations (1 mM) on binding to 18:1 SM obtained by SPR (see ’Materials and methods’ for other details).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. cPLA2a C2-domain binding affinity for phosphoglyceride and sphingomyelin (SM) vesicles.

Figure supplement 1. Assessment of C2-domain binding to different phosphoglycerides.

Figure 4 continued on next page
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association with SM-enriched membranes will not enable SM hydrolysis because cPLA2a is an ester-

ase and its catalytic domain can hydrolyze neither the sphingoid chain nor the amide-linked acyl

chain in SM. Our SPR data showing 4-to 5-fold weaker C2-domain binding to SM vesicles than to

POPC clarify somewhat conflicting earlier findings regarding the molecular basis for SM inhibition of

cPLA2a action (Nalefski et al., 1998; Nakamura et al., 2010). Notably, despite the weak affinity of

the cPLA2a C2-domain for SM, in vivo inhibition of activity is unlikely because of intracellular topo-

logical factors. cPLA2a translocates to the Golgi cytosolic face to function; whereas SM is synthe-

sized at the Golgi lumen before being exported to the plasma membrane (Tafesse et al., 2007;

Deng et al., 2016).

Discussion
C2-domains occur in many (>127) eukaryotic proteins. The C2-domain superfamily includes two fami-

lies: i) PLC-like variants (including cPLA2a), known as the P-family or type II topology and ii) synapto-

tagmin (Syt)-like variants referred to as the S-family or type I topology, based on their circularly

permuted topologies that generate a different orientation of their eight b-strands (Corbalan-

Garcia and Gómez-Fernández, 2014). In both C2-domain families, Ca2+ ions bind acidic residues

within Ca2+ binding loops that converge at one end of the b-sandwich structure. The resulting elec-

trostatic neutralization serves as molecular glue to bridge the C2–domain to the phosphoglyceride

membrane. Previous analyses of the cPLA2a C2-domain D93N and N65A mutants, which

have defects in the Ca1 and Ca4 sites, respectively, indicate that occupation of the Ca1 site is more

essential for membrane binding and activity, perhaps because of favorable conformational changes

in the nonpolar residue aliphatic and aromatic side-chains of CBL3 that stabilize membrane interac-

tion (Bittova et al., 1999; Stahelin and Cho, 2001a). Other mutational studies have shown the key

role played by various nonpolar residues located in the CBLs in membrane docking and insertion by

the C2-domain upon Ca2+ binding and neutralization of nearby anionic Asp residues (Nalefski et al.,

1994; Davletov et al., 1998; Dessen et al., 1999; Perisic et al., 1998; Bittova et al., 1999; Six and

Dennis, 2003; Burke et al., 2008; Stahelin and Cho, 2001a; Stahelin and Cho, 2001b;

Nalefski and Falke, 1998; Ball et al., 1999; Malmberg et al., 2003; Malmberg and Falke, 2005;

Málková et al., 2005). For instance, studies of F35A, M38A, L39A in CBL1 as well as Y96A, V97A,

and M98A in CBL3 support their involvement in the interaction with DHPC-coated beads and their

importance for optimal cPLA2a activity (Bittova et al., 1999). Several of these earlier biophysical

studies have provided detailed insights into general aspects of membrane interaction involving the

cPLA2a C2-domain. Not previously addressed, however, was the possibility that the cPLA2a C2-

domain is structurally designed to target PC-rich membrane regions, thereby helping to increase

the enzymatic efficiency of the catalytic domain, which prefers PCs carrying polyunsaturated acyl

chains. The current study reveals the molecular basis through which Ca4 and CaPC, as well as Tyr96,

Ala94, Asn64, Asn65, and Leu39, work together to target lipids containing phosphorylcholine head-

groups (such as PC and SM) whereas other nonpolar residues (Phe35, Met38, Met98, and Val97)

appear to promote more nonspecific interactions with the phosphoglyceride bilayer.

The molecular details provided by our structure-function data on DHPC binding with the cPLA2a

C2-domain provide further insight into the C2-domain’s penetration of the membrane interface.

Figure 5A depicts an ad hoc model showing the interaction of the C2-domain–DHPC complex with

a PC membrane interface, within the context of an earlier docking and penetration model associated

with a more general membrane interaction by the cPLA2a C2-domain (Figure 5B). In addition, we

consider structural parameters determined for liquid-crystalline (La phase) bilayers consisting of di-

oleoyl PC (Wiener and White, 1992). Such parameters include the distances of choline (21.87 Å),

phosphate (20.17 Å), and the acyl chain carbonyl groups (15.98 Å) from the bilayer mid-plane, as

well as the nitrogen–phosphate distance (4.5 Å) within phosphorylcholine, which orients at 22 ± 4˚

with respect to the bilayer surface. Using the acyl carbonyl groups as markers of the headgroup-

hydrocarbon boundary (Wiener and White, 1992), the polar headgroup region thickness

Figure 4 continued

Figure supplement 2. The concentration- and time-dependence of C2-domain adsorption/desorption to/from immobilized POPC and 18:1 SM vesicles
measured by SPR.
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Figure 5. Model of the cPLA2a C2-domain selectively interacting with the PC membrane interface. (A) Interaction of the C2-domain–DHPC structural

complex with a PC membrane interface produced by ad hoc modeling. The dashed horizontal lines represent planar boundaries for the lipid

headgroup and hydrocarbon regions of the PC bilayer. The crystal structure of the C2-domain–DHPC complex is represented as pale green ribbon. The

Ca2+ ion that is unique to the C2-domain–DHPC complex is shown as a pale magenta sphere; whereas the other two Ca2+ ions are shown as green

spheres. In the bound DHPC structure, blue, red, orange, and beige colors represent nitrogen, oxygen, phosphorus, and carbon atoms, respectively.

The zoomed view shows how the orientation and position of the PC headgroup bound by the C2-domain requires no major conformational change

relative to those of unbound PC headgroups comprising the membrane interface. Membrane docking orientation and penetration depth by the C2-

domain are based on previous data illustrated in panel (B) (Nalefski and Falke, 1998; Ball et al., 1999; Malmberg et al., 2003; Malmberg and Falke,

2005). (B) cPLA2a C2-domain docking orientation and penetration depth at the membrane interface, as determined by electron paramagnetic

resonance power saturation. [Reprinted (adapted) with permission Malmberg et al., 2003, Biochemistry 42, 13227–13240. Copyright: American

Figure 5 continued on next page
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equals ~8.5–9.0 Å (based on ~5.9 Å for the acyl carbonyl group to choline nitrogen, when allowing

plus 2.5–3.0 Å for the hydration of choline). In the C2-domain–DHPC crystal complex, slightly larger

distances are observed, such as 6.9 Å for sn-2 carbonyl to choline nitrogen and 4.7 Å for the nitro-

gen-to-phosphate distance. Membrane penetration depths estimated from the crystal structure data

for CBL3 Val97 and for CBL1 Ile39 are 10–10.5 Å and 12–12.5 Å, respectively, which are comparable

with previous data (Malmberg et al., 2003) and which represent a ~78–85% penetration depth rela-

tive to the mid-plane of a fluid bilayer (Wiener and White, 1992).

In other recent studies, cPLA2a has been implicated as an inducer of membrane structural

changes in cells (Grimmer et al., 2005; San Pietro et al., 2009; Cai et al., 2012). This function

occurs independently of catalytic activity, but is important for physiological processes such as

the regulation of Fc-receptor-mediated phagocytosis (Zizza et al., 2012). The membrane structural

alterations that are mediated by cPLA2a have been linked to the C2–domain, which can generate

membrane curvature and tubulation in vitro (Ward et al., 2012). Penetration by the cPLA2a C2-

domain into POPC or POPC/POPE/POPS membranes induces positive membrane curvature that is

abrogated by Y96A mutation, F35A/L39A double mutation, or Ca2+ chelation by EGTA (ethylene

glycol-bis(b-aminoethyl ether) (Ward et al., 2012). In this regard, it is interesting to note that the

crystal structure of the C2-domain–DHPC complex contains three C2-domain molecules (protomers

A, B, C) in the asymmetric unit, with the six protomers in two asymmetric units forming a ring-like

structure (Figure 1—figure supplement 2, upper left panel). The DHPC molecules contribute to the

molecular packing of neighboring molecules by locating inside the ring, resulting in a tube-like struc-

ture that is enclosed by the C2-domain ring (Figure 1—figure supplement 2, upper right panel).

Thus, the crystal packing superstructure of the cPLA2a C2-domain complexed with DHPC supports

the induction of positive membrane curvature and tubulation reported for this C2-domain

(Ward et al., 2012), an arrangement not supported well by the different crystal packing structure of

lipid-free C2-domain (Figure 1—figure supplement 2, lower panel).

Comparison of phospholipid recognition by the PKCa C2-
domain and other C2-domains
Structural analyses of four other C2-domains containing bound phosphoglycerides have been

reported. In the C2-domains of PKCa and rabphilin-3A, phosphatidylinositol 4,5-bisphosphate bind-

ing occurs at a basic residue cluster without Ca2+ involvement (Guerrero-Valero et al., 2009;

Zizza et al., 2012; Verdaguer et al., 1999). By contrast, only two other C2–domain structures have

to date been found to utilize bound Ca2+ to mediate phosphoglyceride binding: PKCa C2–domain

complexed with 1,2-dicaproyl-sn-phosphatidyl-L-serine (DCPS), a short-chain PS analog

(Verdaguer et al., 1999) and Syt1 C2B–domain complexed with phosphoserine (Guillén et al.,

2013). In the DCPS–PKCa C2–domain structure (Figure 6B), one of three bound Ca2+ ions is coordi-

nated in a position similar to that of Ca1 in the cPLA2 C2–domain (Figure 6A), whereas the others

are located at different positions far from CBL2 (Figure 6B). In sharp contrast to DHPC recognition

by cPLA2a, binding of the phosphoryl group of DCPS involves only Ca1. The seryl moiety of the

head group docks mainly with CBL1 but in an orientation (Figure 6B) that is almost opposite to that

of the bound phosphorylcholine in the cPLA2a C2–domain–DHPC complex (Figure 6A). The seryl

carboxyl group hydrogen bonds with Asn189 on CBL1, whereas the carbonyl groups of the fatty

acid chains interact with CBL2 and CBL3. In the structures of the Syt1 C2B-domain complexed with

phosphoserine (Ferrer-Orta et al., 2017) (Figure 6C) and the lipid-free Syt1 C2A-domain

(Shao et al., 1998) (Figure 6—figure supplement 1), three bound Ca2+ ions are coordinated simi-

larly to those in the cPLA2a C2-domain but only the Ca1 position is shared with the cPLA2a C2-

domain (Figure 6A). In the Syt1 C2B–domain (Figure 6C), the seryl moiety docks deeply towards

the Ca2+ ion sites, whereas the phosphoryl group interacts with Lys366 in CBL3, but not with any

Ca2+ ions. Within the seryl moiety, the carboxyl group interacts with Ca1 and the main chain of

Figure 5 continued

Chemical Society.]. The crystal structure of the lipid-free C2-domain (PDB: RLW) is represented by the cyan ribbon with two Ca2+ ions shown as yellow

spheres. The horizontal lines represent planar boundaries for the lipid headgroup and hydrocarbon regions of the bilayer. Protein spin labels oriented

in their final optimized conformations are colored according to their measured depth parameters (F), with positive and negative depth parameters

indicated by increasing red and blue color intensity, respectively.
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Lys366, while the amine group forms a hydrogen bond with Asp309. This binding mode differs from

PS recognition by PKCa, although the lack of fatty acyl chains might be the cause of the different

interaction. Thus, it is clear that PC recognition by the cPLA2a C2-domain (Figure 6A) is very differ-

ent from PS recognition by the C2-domains of PKCa2 and Syt1 (Figure 6B and C). Among eukar-

yotes, Tyr96 and Asn65 are absolutely conserved in cPLA2a, but not in PKCs or synaptotagmin1

(Figure 1A).

Y96

H62 N64 N65

41
A94

L39

CBL2

CBL3

CBL1

K366

D309

CBL2

CBL3 CBL1

11

23
R216

R249

T251

N189

16

1

6

1 2

CBL2

CBL3 CBL1

2

PC

PC

4 4

PC

B C

A DHPC/cPLA2a  C2 

DCPS/PKCa  C2 PS/Syt1 C2B DCPS/PKC y

Figure 6. Structures of various C2-domains bound to lipids. (A) cPLA2a C2-domain bound to DHPC determined in this study. (B) PKCa C2-domain

bound to phosphatidylserine (PDB 1DSY). (C) Synaptotagmin-1 C2B-domain bound to phosphoserine (PDB 2YOA). For comparison, Ca4 (purple sphere)

and CaPC (pink sphere) in panel (A) are overlaid as pale white spheres in panels (B) and (C). Residues that are interacting directly with ligand are shown

as stick models and labeled in red.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Ca2+binding site differences in the synaptotagmin-1 C2A domain versus the cPLA2a C2-domain complexed with DHPC.
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Recent structural studies of another cPLA2, cPLA2d, have provided molecular insights into the

apo-form and the enzyme’s catalytic domain complexed with a covalently linked inhibitor (tri-unsatu-

rated 18-carbon phosphonate), but not into phosphoglyceride binding by the enzyme’s two tandem

C2-domains (Wang et al., 2016). Although a general model is proposed for the membrane interac-

tion of cPLA2d, involving its tandem C2-domains, this model does not address the issue of phospho-

glyceride selectivity.

Our findings point to the key role of cation–p interactions provided by Tyr96 for targeting lipids

containing phosphorylcholine headgroups (e.g. PC and SM). Aromatic side-chains (e.g. Tyr and Trp)

in mammalian PC transfer protein and in yeast Sec14 transfer protein play a key role in selectivity for

PC (Roderick et al., 2002; Kang et al., 2010; Schaaf et al., 2008), as well as in the SM selectivity

reported for actinoporin toxins produced by sea anemones (Garcı́a-Ortega et al., 2011). Moreover,

Tyr residues that are introduced in close proximity by mutation into peripheral proteins induce

a specific interaction with PC in membranes (Cheng et al., 2013). Examination of the X-ray structure

of the cPLA2a catalytic domain (Dessen et al., 1999) reveals a cluster of aromatic residues (Tyr, Trp,

and Phe) in close proximity to the Arg200/Ser228/Asp549 catalytic site residues. Thus, it is tempting

to predict that a ‘cation-p box’ is likely to contribute prominently to the structural underpinning of

PAPC selectivity that enables the release of arachidonic acid.

Notably, sequence alignment of the C2-domains of cPLA2a, cPLA2d, and three other isoforms

shows that the residues (Tyr96 and Asn65), which are so crucial for phosphorylcholine lipid head-

group selectivity by cPLA2a C2-domain are not conserved in cPLA2d and correspond to Ser97 and

Asp66, respectively (Figure 7). These residues are unable to undergo cation-p interaction with the -

N+(CH3)3 group or favorable polar interaction with the phosphoryl group of the PC headgroup.

cPLA2a is the only cPLA2 isoform that contains a residue (e.g. Tyr96) capable of strong cation-p

interaction with the -N+(CH3)3 group in PC. It is also noteworthy that Tyr96 is highly conserved

among eukaryotic C2-domains of the cPLA2a isoform (Figure 1A and Figure 1—figure supplement

1). These observations suggest that the structure of the C2-domain of cPLA2a contains design fea-

tures that promote PC selectivity.

Conclusions
Our findings support a function for cPLA2a Tyr96 [via cation-p interaction with -N+(CH3)3] as a key

specificity determinant for the phosphorylcholine headgroup of PC, whereas Asn65 tethers with the

lipid phosphate moiety and facilitates CaPC complexation. Notably, Ca4 also functions to tether the

PC phosphate moiety to the protein. Bridging by CaPC to the PC sn-2 chain ester linkage further

aids enzyme binding and ‘scooting’ on PC membranes. Further enhancement of C2-domain binding

to the membrane, via interaction with Arg59, Arg61 and His 62, is expected when PC-enriched

membranes also contain C1P. Taken together, the findings emphasize the unique design features

cPLA2α 56 SRKRTRHFNNDINPVWNETFEFILDPNQENVLEITLMDANYVMD-ETLGTATFTV 109

cPLA2δ 57 MKFKTKTLTDTSHPVWNEAFRFLIQSQVKNVLELSIYDEDSVTEDDICFKVLYDI 111

cPLA2β 45 HRLQTRTVKNSSSPVWNQSFHFRIHRQLKNVMELKVFDQDLVTGDDPVLSVLFDA  99

cPLA2ε 103 KKLRTRTISNCPNPEWNESFNFQIQSRVKNVLELSVCDEDTVTPDDHLLTVLYDL 157

cPLA2ζ 79 SPAQTRIVANCSDPEWNETFHYQIHGAVKNVLELTLYDKDILGS-DQLSLLLFDL 132

β3 β4 β5 β6

{ {CBL2 CBL3

Figure 7. C2-domain sequence alignment for five human cPLA2 isoforms showing the uniqueness of the Tyr96 residue in the cPLA2a C2-domain. b-

strand sequences (arrows) as well as CBL2 and CBL3 sequences (bracketed) are shown above the alignment. Green highlights represent identical

residues. Cyan highlights represent similar residues. The yellow highlights facilitate comparison of other isoform residues with N65 and Y96 (red) which

are key for PC selectivity by the cPLA2a C2-domain. Underlined black residues in cPLA2a (R59, R61, and H62) participate in C1P binding (Stahelin et al.,

2007; Ward et al., 2013). Sequence alignment was generated using Clustal Omega.
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associated with cPLA2a C2-domain structure and function, as well as the versatility of lipid recogni-

tion exhibited by different C2–domains. In cPLA2a, the C2-domain is structurally designed to target

PC-rich membrane regions in order to increase the enzymatic efficiency of the catalytic domain,

which prefers polyunsaturated PCs.

Materials and methods

Key resources table

Reagent (species)
or resource Designation Source or reference Identifiers

Additional
information

Strain,
strain
background
(Escherichia coli)

BL21 (DE)
Star
competent
cells

ThermoFisher
Scientific

SKU# C6010-03 Cells for protein
expression

Transfected
construct
(E. coli)

pET SUMO Snapgene https://www.snapgene.
com/resources/
plasmid-files/?set=ta_
and_gc_cloning
_vectors&
plasmid=pET
_SUMO
_(linearized)

Protein expression
vector

Commercial
assay or kit

JCSG Core Suites Qiagen https://www.qiagen.
com/us/shop/sample
-technologies/protein
/crystallization/
the-jcsg-core-suites/#
orderinginformation

Protein
crystallization;
crystallization
screening kit

Chemical
compound, drug

1,2-dihexanoyl
-sn-
glycero-3-
phosphocholine

Avanti
Polar Lipids

https://avantilipids.
com/product/850305/

DHPC

Chemical
compound, drug

1-palmitoyl-2-
oleoyl-
glycero-3-
phosphocholine

Avanti
Polar Lipids

https://avantilipids.
com/product/850457/

POPC

Chemical
compound, drug

1-palmitoyl-2-
oleoyl-sn
-glycero-
3-phospho
-L-serine

Avanti
Polar Lipids

https://avantilipids.
com/product/840034/

POPS

Chemical
compound, drug

1-palmitoyl-2-
oleoyl-sn-
glycero-
3-phospho
ethanolamine

Avanti
Polar Lipids

https://avantilipids
.com/product/850757

POPE

Chemical
compound, drug

1-palmitoyl-2-
oleoyl-sn-
glycero-
3-phosphate

Avanti
Polar Lipids

https://avantilipids.
com/product/840857

POPA

Chemical
compound, drug

1-palmitoyl-2-
oleoyl-sn-
glycero-
3-phospho-
(1’-rac-glycerol)

Avanti
Polar Lipids

https://avantilipids.
com/product/840457

POPG

Chemical
compound, drug

N-oleoyl-D-
erythro-
sphingosyl
phospho
rylcholine

Avanti
Polar Lipids

https://avantilipids.
com/product/860587

18:1 SM

Continued on next page
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Continued

Reagent (species)
or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

1,2-dioleoyl-sn-
glycero-3-
phospho
ethano
lamine-N-
(7-nitro-2–1,3-
benzoxadiazol-4-yl)

Avanti
Polar Lipids

https://avantilipids.
com/product/810145

NBD-PE

Software,
algorithm

GeneCards http://genecards.org RRID:SCR_002773 Orthologs; retrieval of
protein sequences for
human, mouse, and
chicken proteins

Software,
algorithm

UniProtKB http://www.uniprot.
org/help/uniprotkb

RRID:SCR_004426 C2-domain sequences
for various proteins
and organisms

Software,
algorithm

NCBI Protein http://www.ncbi.
nlm.nih.gov/protein

RRID:SCR_003257 Protein sequences for
human, mouse, and
chicken proteins

Software,
algorithm

Clustal Omega http://www.ebi.ac
.uk/Tools/msa/clustalo/

RRID:SCR_001591 Software package for
multiple sequence
alignment

Software,
algorithm

Clustal W2 http://www.ebi.ac.
uk/Tools/
msa/clustalw2/

RRID:SCR_002909 Multiple sequence
alignment program
for DNA or proteins.

Software,
algorithm

UCSF Chimera http://plato.cgl.
ucsf.edu/chimera/

RRID:SCR_004097 Program for
interactive
visualization and
analysis of
molecular
structures

Software,
algorithm

Protein Data
Bank (PDB)

http://www.wwpdb.org/ RRID:SCR_006555 Macromolecular
structure archive
that oversees and
reviews deposition
and processing data

Software,
algorithm

Coot http://www2.mrc-
lmb.cam.ac.uk/
personal/pemsley
/coot/

RRID:SCR_014222 Software for
macromolecular
model building,
completion and
validation,
and protein
modeling using
X-ray data

Software,
algorithm

PHENIX https://www.phenix-
online.org/

RRID:SCR_014224 Python-based
software
suite for
determination
of X-ray
crystallographic
molecular
structures

Software,
algorithm

PyMol http://www.pymol.org/ RRID:SCR_000305 Data processing,
3D visualization
and rendering
software

Software,
algorithm

PDBeFold http://pdbe.org/fold/ RRID:SCR_004312 Co-alignment of
compared structures

Peptide,
recombinant
protein

Cytosolic
phospholipase A2

https://www.unipro
t.org/uniprot/P47712

Human cPLA2 sequence

Continued on next page
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Continued

Reagent (species)
or resource Designation Source or reference Identifiers

Additional
information

Peptide,
recombinant
protein

Cytosolic
phospholipase A2

https://www.uniprot
.org/uniprot/P47713

Mouse cPLA2 sequence

Peptide,
recombinant
protein

Cytosolic
phospholipase A2

https://www.uniprot
.org/uniprot/P49147

Chicken cPLA2 sequence

Strategy employed to achieve a soluble cPLA2a C2-domain
The C2-domain sequence used to achieve solubility during expression and to avoid the need for pro-

tein refolding was developed by consideration of the original lipid-free, Ca2+-bound crystal structure

(Perisic et al., 1998) that used a truncated C2-domain (residues 17–141) from human cPLA2a. How-

ever, we did not introduce the C-terminal C139A and C141S substitutions that were implemented to

eliminate possible refolding complications induced by Cys residues, because our goal was to recover

soluble protein after expression in Escherichia coli. In our constructs, the BamHI and SalI restriction

sites were used for open reading frame (ORF) ligation into a modified pET-28-SUMO vector (kana-

mycin-resistance). Prior to insertion, the open reading frames were mutated to remove a single

BamHI restriction site within the C2-domain ORF without changing the protein sequence. The com-

plete protein sequences for cPLA2a from human, mouse, and chicken are provided in Figure 1—fig-

ure supplement 1. The constructs, which were verified by DNA sequencing, enabled the expression

of proteins containing Ulp1-cleavable, N-terminal 6xHis-SUMO tags. Testing for their solubility and

SUMO-tag cleavability revealed the following:

Human

. C2-domain1–140 or C2-domain15–140 expression resulted in mostly insoluble protein located in
inclusion bodies.

. C2-domain17–140 expression resulted in soluble protein but with a SUMO tag that was inacces-
sible to cleavage.

. Expression of C2-domain17–140 with an inserted Gly or Met residue at the N-terminus (C2-
domain Gly/Met-17–140) resulted in good expression of soluble protein and cleavage of the
SUMO tag.

Chicken

. Expression of C2-domain16–140 resulted in good expression of soluble protein and cleavage of
the SUMO tag.

Protein expression and purification
Protein expression was performed at 20˚C in Luria-Bertani medium containing 0.1 mM isopropyl-b-

D-thiogalactopyranoside. Cells expressing the C2-domain were harvested, suspended in 20 mM

Tris-HCl buffer (pH 8.0) containing 500 mM NaCl and disrupted by French press. After ultracentrifu-

gation, the supernatant was applied onto a Ni-NTA resin (Qiagen) and treated with Ulp1 to remove

the N-terminal His6-SUMO tag. Eluted proteins were further purified by anion exchange (HiTrap Q

HP, GE Healthcare) and gel filtration (Superdex 75 pg, GE Healthcare) chromatography. Purified

protein was concentrated up to 20 mg/mL in 20 mM MES-NaOH buffer (pH 6.0) containing 100 mM

NaCl and 2.5 mM CaCl2 and stored at �80˚C until use.

Crystallization and data collection
All lipids used in this study were obtained from Avanti Polar Lipids and dissolved in ethanol. Crystalli-

zation conditions were initially screened using a Mosquito crystallization robot (TTP Labtech) with

commercial crystallization solution kits, JCSG Core Suite I-IV and PACT Suite (QIAGEN). Despite

extensive crystallization trials with human C2-domainGly-17–140, the only resulting protein crystals
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contained two bound Ca2+ but no bound lipid. Successful crystallization of C2-domain containing

bound DHPC and three bound Ca2+ions was obtained with the chicken C2-domain16–140. The best

crystal complexes were obtained from solutions containing 1 mM protein, 5 mM DHPC and reservoir

solution containing 100 mM HEPES-NaOH buffer (pH 7.0), 1.4 M MgCl2 and 0.6 M NaCl at 20˚C.

Crystal complexes were transferred into a cryoprotective solution containing saturated NaCl and

flash-cooled at 100 K. X-ray diffraction data were collected at 100 K on 24-ID-C beamline at the

Advanced Photon Source. Data were processed and scaled using HKL-2000 (Otwinowski and

Minor, 1997). The crystal data and refinement statistics are summarized in Table 5 and are depos-

ited in the Protein Data Bank (accession code 6IEJ).

Structure determination and refinement
The structure of the crystal complex was determined by a molecular replacement method using

the lipid-free structure of the human cPLA2a C2-domain (PDB: 1RLW) as a starting model. The built

model was refined using alternating cycles of the Coot (Emsley and Cowtan, 2004) and PHENIX

programs (Adams et al., 2002). The model was refined to 2.2 Å resolution. Refinement statistics are

summarized in Table 5.

Table 5. X-ray data collection statistics.

Native

Data collection

Space group C222

Cell dimensions

a, b, c (Å) 108.3, 187.4, 68.8

Wavelength (Å) 1.00000

Resolution (Å) * 50–2.20 (2.24–2.20)

Rsym* 5.9 (36.3)

I/sI* 30.9 (1.9)

Completeness (%)* 99.5 (97.7)

Redundancy* 7.7 (6.6)

Refinement

Resolution (Å) 47–2.2

No. reflections 35,185

Rwork/Rfree (%) 22.4/24.9

No. atoms

Protein 2998

Water 82

Ion 11

Ligand 75

B-factor (Å2)

Protein 59.9

Water 56.6

Ion 54.2

Ligand 81.3

R.m.s. deviations

Bond lengths (Å) 0.008

Bond angles (˚) 1.117

One crystal was used for each data set.
*Highest resolution shell is shown in parenthesis.
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Electron density mapping of the lipid ligand involved consideration of the chemical structures of

both DHPC and MES because MES was included in our crystallization buffer. The omit map

(Figure 1D) clearly traced density corresponding to the -N+(CH3)3 and phosphate groups of

the DHPC head group, as well as extra density corresponding to the ester groups of fatty acid chains

rather than to the morpholino and sulfate groups of MES. When we tried to place the MES molecule

at this position, the extra strong density corresponding to fatty acid chains stood out. Thus, we iden-

tified our structure as DHPC bound to C2–domain.

Structure and sequence comparison
Multiple sequence alignment was performed by CLUSTALW (Emsley and Cowtan, 2004). Pairwise

structural comparisons were performed using Ca-atom positions by the PDBeFold (Adams et al.,

2002) in conjunction with SSM (Krissinel and Henrick, 2004) and structure figures were prepared

using the PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC (http://www.pymol.org/)

and UCSF Chimera 1.11.2 (http://www.cgl.ucsf.edu/chimera/).

Point-mutant analyses of C2-domain translocation to PC model
membranes
Partitioning of C2-domain and various point mutants to PC model membranes was monitored by

FRET and SPR. FRET measurements were performed using Trp/Tyr emission of C2-domain as energy

donor and dansyl-PE-POPC-DHPC (5:45:50) bicelle-dilution vesicles as energy acceptors. Bicelle-dilu-

tion vesicles were formed by mixing the POPC, dansyl-PE and DHPC in chloroform, drying under a

stream of nitrogen and placing under vacuum for ~2 hr, before resuspending in buffer (20 mM Tris,

pH 7.5, 150 mM NaCl and 50 mM CaCl2). Unilamellar POPC vesicle preparation by POPC/DHPC

bicelle mix dilution is detailed in Gao et al., 2020; Gao et al., 2021. Binding reactions included C2-

domain (0.5 mM) and various amounts of bicelle-dilution vesicles (PC concentration 0.44 to 20 mM) in

2.5 ml of buffer. In binding reactions assessing calcium dependence (2.5 ml total volume), the pro-

tein and bicelle dilution-vesicle concentrations (0.5 mM and 4 mM, respectively) were held constant

while the Ca2+ was varied. FRET measurements were performed at 25˚C in a temperature-controled

(±0.1˚C) cuvette (NesLab RTE-111, ThermoFisher) using a SPEX FluoroLog-3 spectrofluorimeter

(Horiba Scientific). Excitation and emission wavelengths were 284 nm and 520 nm, with band-pass

settings of 5 and 10 nm, respectively. Inner filter effects were avoided by using low protein concen-

tration (optical density @ 295 nm <0.1). Relative FRET was calculated as (Iobs – Imin) / (Imax – Imin),

where Imin is the dansyl emission in the absence of Ca2+ and Imax is the maximal energy transfer

obtained from the binding curve. FRET fluorescence data were plotted as the relative fluorescence

signal versus PC concentration and fitted to the equation described by Rao et al. (2005).

SPR measurements were performed using a Biacore T200 system (GE Healthcare Bio-Sciences

Corp) at 25˚C under previously described conditions (Stahelin et al., 2007; Ward et al., 2012;

Ward et al., 2013; Zhai et al., 2017; Ochoa-Lizarralde et al., 2018). An uncoated flow channel was

used as a control surface. POPC vesicles (1 mM), prepared by sonication and centrifugation, were

captured to a final surface density of 4000–6000 response units on a L1 Sensor Chip to establish the

baseline. Each lipid layer was stabilized by injecting 10 ml of 50 mM NaOH three times. Then 100 ml

of protein in 10 mM HEPES (pH 7.4), 0.16 M KCl and 50 mM CaCl2 was injected at 5 ml/min flow rate

and protein adsorption was monitored. After 20 min, a switch to buffer lacking protein occurred

(Figure 4—figure supplement 2) but the strong adsorption of the C2-domain required washing

with 10 ml of 50 mM NaOH to regenerate the lipid surface. Complete cleaning of the sensor chip

could be accomplished by washing with 20 mM CHAPS detergent. The normalized saturation

response Req was plotted versus protein concentration (C), and Kd values were determined by non-

linear least-squares fitting using the equation: Req = Rmax/(1 + Kd/C). Each data set was repeated

three times to calculate a standard deviation value.

cPLA2 activity measurements
A mixed micelle was utilized to measure PAPC hydrolysis by cPLA2 as previously reported

(Wijesinghe et al., 2009). Briefly 4x assay buffer (2 ml) was made using 320 mM HEPES, 600 mM

NaCl, 19.42 mM CaCl2 (10 mM free Ca2+), 10 mM EGTA, 4 mM DTT, and 2.39% H2O. For K0.5 analysis,

micelles were created by drying down ten separate concentrations of PAPC by nitrogen and

Hirano, Gao, et al. eLife 2019;8:e44760. DOI: https://doi.org/10.7554/eLife.44760 21 of 28

Research article Structural Biology and Molecular Biophysics

http://www.pymol.org/
http://www.cgl.ucsf.edu/chimera/
https://doi.org/10.7554/eLife.44760


then reconstituting in 8 mM Triton-X100. Micelle concentrations are as follows: 50 mM PC (2.4% mol

PC), 100 mM PC (4.7% mol PC), 150 mM PC (6.9% mol PC), 200 mM PC (9.1% mol PC), 300 mM PC

(13% mol PC), 400 mM PC (16.6% mol PC), 500 mM PC (20% mol PC), 800 mM PC (28.6% mol PC),

1200 mM PC (37.5% mol PC), and 1600 mM PC (44.4% mol PC). For KsA analysis, all six concentra-

tions of micelles were created by first making a 1600 mM PC micelle by drying down PAPC and

reconstituting in Triton-X100. The 1200 mM, 800 mM, 500 mM, 300 mM, and 100 mM PC micelles were

made via serial dilution of the 1600 mM micelle with LCMS-grade H2O.

To prepare for enzyme for assays, cPLA2a (250 ng) was mixed with 30% glycerol and 80 mM

HEPES. Assay buffer (25 mL) was then combined with micelles (25 mL), followed by protein mix (50

mL) to produce a final reaction volume of 100 mL. A total of five reactions were prepared for each of

the ten concentrations. Immediately following enzyme addition to the micelle – assay buffer mixture,

a timer was started and mixtures were placed into a 37˚C bead bath. At 15, 30, 45, and 60 min, a

100 mL aliquot was pipetted from each concentration into 500 mL of MeOH containing 10 ng of

arachidonic acid-d8 (AAd8) to quench the reaction. Samples then were assessed for PAPC hydrolysis

via UPLC-LC/MS. Kinetic and statistical analyses were performed using GraphPad Prism 6 (GraphPad

Software Inc).

AA and AAd8 were purchased from Cayman Chemicals and analyzed using an adapted method

from our previous report (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951269/). AA and AAd8

were separated with an Acentis Express C18 HPLC Column 10 cm x 2.1 mm, 2.7 mm via UPLC using

a Shimadzu 2-D UPLC Nexera System in conjunction with a QTRAP 5500 Mass Spectrometer

(AbSciex). Mass spectrometry parameters were: Polarity, Negative; Ion Source, Electrospray; Q1

Resolution, Unit; Q3 Resolution, Unit; Curtain Gas, 30; Collision Gas, Medium; IonSpray Voltage,

�4500; Temperature, 500; Ion Source Gas 1, 40; Ion Source Gas 2, 60; Entrance Potential, �13.

MRM transitions with corresponding declustering potentials (DP), collision energies (CE), and colli-

sion cell exit potentials (CXP) were: AA Q1 Mass (da), 303.2; Q3 Mass (da), 259.2; DP, �150 volts;

CE, �17 volts; CXP, �14 volts. AAd8 Q1 Mass (da), 311.2; Q3 Mass (da), 267.3; DP, �150 volts; CE,

�18 volts; and CXP, �16 volts.

UPLC conditions were: Pumping Mode, Binary Flow; Total Flow, 0.7000 mL/min; Injection Vol-

ume, 10 mL; Column Oven, 60 ˚C. The solvents used for reverse phase UPLC separation across a 6

min run were: Solvent A – 60:40 acetonitrile/water with 0.1% formic acid and 10 mM ammonium for-

mate; and Solvent B – 10:90 acetonitrile/isopropanol with 0.1% formic acid and 10 mM ammonium

formate. Solvent conditions for UPLC separation were: 10% Solvent B from 0 to 1 min, linear

increase from 10–100% Solvent B from 1 to 4 min; constant 100% Solvent B from 4 to 5 min; at 5

min, a drop from 100–10% solvent B; from 5 to 6 min, 10% constant solvent B; and at 6.1 min, Con-

troller Stop. Because membranes are allosteric activators of cPLA2a in vitro (Mouchlis et al., 2015),

both kinetic curves were fit using a non-linear regression allosteric sigmoidal best-fit approach. Sta-

tistical analyses were a single ANOVA with a Tukey HSD post-hoc test with p<0.01 considered

significant.

Accession number
The atomic coordinates and structure factors for chicken cPLA2a C2-domain bound to DHPC are

deposited in Protein Data Bank under accession code 6IEJ.
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