
Sequence analysis

Starcode: sequence clustering based on

all-pairs search
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Abstract

Motivation: The increasing throughput of sequencing technologies offers new applications and

challenges for computational biology. In many of those applications, sequencing errors need to be

corrected. This is particularly important when sequencing reads from an unknown reference such

as random DNA barcodes. In this case, error correction can be done by performing a pairwise com-

parison of all the barcodes, which is a computationally complex problem.

Results: Here, we address this challenge and describe an exact algorithm to determine which pairs

of sequences lie within a given Levenshtein distance. For error correction or redundancy reduction

purposes, matched pairs are then merged into clusters of similar sequences. The efficiency of star-

code is attributable to the poucet search, a novel implementation of the Needleman–Wunsch algo-

rithm performed on the nodes of a trie. On the task of matching random barcodes, starcode outper-

forms sequence clustering algorithms in both speed and precision.

Availability and implementation: The C source code is available at http://github.com/gui11aume/

starcode.

Contact: guillaume.filion@gmail.com

1 Introduction

All sequencing technologies have a certain degree of imprecision.

For instance, the Illumina platform (Margulies et al., 2005) has a

1–2% error rate consisting of substitutions (Dohm et al., 2008;

Nakamura et al., 2011) and the PacBio platform has a 15% error

rate consisting of insertions and deletions (Eid et al., 2009). The

enormous throughput of such technologies has recently created add-

itional needs for developing efficient error correction algorithms.

Sequencing errors can be discovered by comparing the reads to a

reference genome. However, such a reference is not always available.

When the sequences are random or taken from an unknown source,

clustering is the main strategy to correct the errors. For instance, this

situation arises when using random barcodes to track cells or tran-

scripts (Akhtar et al., 2013; Schepers et al., 2008). Sequencing errors

will create erroneous (nonexistent) barcodes that have to be removed.

Sequence clustering can be viewed as a community detection

problem on graphs, where nodes represent sequences and edges

represent matches between related sequences. The process consists

of a matching phase (the most computationally intensive), where the

graph is constructed, and a clustering phase where communities are

identified.

Here, we describe a sequence clustering algorithm called

‘starcode’ in reference to clusters of random barcodes, which typic-

ally have a star shape. Starcode is based on all-pairs search, i.e. all

the pairs of sequences below a given Levenshtein distance are identi-

fied during the graph construction phase. Matching is carried out by

lossless filtration, followed by an exhaustive search on the branches

of a prefix trie. The novelty of the algorithm is the poucet strategy,

which uses the redundancy of alphabetically sorted sequences to

avoid unnecessary recomputations and gain speed.

In this article, we present and benchmark starcode. We show

that on real biological datasets, starcode is orders of magnitude

faster than existing sequence clustering software. Even though star-

code was designed for error correction, we also show that it can be
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used for other problems. As an illustration, we use it to identify en-

riched motifs in a bacterial genome and in protein–RNA interaction

experiments.

2 Methods

2.1 Inexact string matching using tries
The matching method of starcode is based on a variation of the

Needleman–Wunsch (NW) algorithm (Needleman and Wunsch,

1970). In the original algorithm (Fig. 1a), the Levenshtein distance

between two sequences is found by applying a recurrence relation

throughout a matrix of mn terms (the edit matrix), where m and n

are the respective sequence lengths. The complexity of this dynamic

programming approach is O(mn).

In many instances, the information of interest is to find out

whether the sequences are s-matches (i.e. their distance is less than

or equal to a fixed threshold s). In that case, the complexity can be

reduced to Oðsmin ðm; nÞÞ. Instead of computing all the terms of the

edit matrix, it is initialized as shown on Figure 1b and only the terms

around the diagonal are computed. If a diagonal term has a value

greater than s, the process is halted because the sequences are not s-
matches.

This method can be used to match sequences against a prefix

tree, also known as a trie (Ukkonen, 1995). The terms of the edit

matrix are updated row-wise, while a depth-first search traverses

the trie (Fig. 2). Every time a node is visited, a row is computed and

every time the search backtracks, a row is erased. If the threshold

value s is exceeded for a diagonal term, the Levenshtein distance for

all the downstream sequences is also necessarily greater than s.
Therefore, no more hits are to be discovered in this path and the

depth-first search backtracks to the parent node. When the process

halts, every tail node (corresponding to a sequence of the database)

on the path of this search is a s-match of the query. This method is

efficient because it eliminates large areas of the search space and

because the NW comparison of the query with each prefix of the

database is computed only once.

2.2 The poucet search algorithm
The search strategy can be further improved. If two consecutive

queries share a prefix of length k, the succession of computations up

to the kth row of the edit matrix will be exactly the same for both

queries. Therefore, computation intermediates can be stored in the

nodes of the trie, so that the next trie search can start at depth k.

However, storing the rows of the edit matrix in the nodes meets

some difficulty. Indeed, on the kth row, the terms on the right side

of the diagonal depend on characters that are not shared between

the two queries. This issue is solved by storing in each node a com-

bination of row and column terms that form an angle shape, looking

like a horizontally flipped L (Fig. 3). Using this structure, the com-

putation intermediates stored in a node at depth k depend only on

the first k characters of the query.

To take full advantage of this property, the input sequences are

sorted alphabetically, which maximize prefix sharing between con-

secutive queries. In the fairy tale ‘Le Petit Poucet’, the hero seeds

white pebbles for his older brothers to find their way home, which is

reminiscent of the way a smaller query (in alphabetical order) paves

the way for the next. We therefore called this search algorithm

‘poucet’.

2.3 Lossless filtration
When a query has no match, it is advantageous to omit the trie

search. To this end, starcode uses a partition approach similar to

that described by Wu and Manber (1992). The query is initially par-

titioned in sþ1 segments. Assuming that all the segments have

length at least s, then every s-match present in the database will con-

tain at least a verbatim copy of one of the query segments. Indeed,

(a) (b)

Fig. 1. NW sequence comparison. (a) Comparison of GTTGCA and GATCCA.

The margins of the edit matrix are initialized and the cells are computed

from left to right and from top to bottom by the NW dynamic programming

algorithm. E ½i; j �, the term of coordinates (i, j) is computed as

min ðE ½i � 1; j� þ 1;E ½i; j � 1� þ 1;E ½i � 1; j � 1� þ Dði; jÞÞ, where Dði ; jÞ ¼ 0 if

the ith symbol from the first sequence is the same as the jth symbol from

the second and Dði; jÞ ¼ 1 otherwise. The Levenshtein distance between the

two sequences is the value of the bottom right cell. (b) Lower complexity

algorithm to determine whether GTTGCA and GATCCA are 2-matches. The

values in the outer cells are set during initialization. The dynamic program-

ming algorithm proceeds as above, with the difference that it is aborted if

the value of a diagonal cell (bold borders) is larger than 2. The values in the

initialized cells may differ from the original NW scheme (arrow), but the val-

ues in the computed cells are nevertheless identical. The values of the

empty cells are never computed, which contributes to reducing the

complexity

Fig. 2. NW algorithm on tries. Each sequence of the index is a path in the trie.

The query GTTGCA is written at the top of the matrix, which is initialized as

shown on Figure 1b. The trie is traversed by a depth-first search (path ending

with an arrow). At each depth, the node added to the path is written on the

left of the edit matrix and the row is computed. Checkpoints from 1 to 4

(circled numbers) show the state of the edit matrix as the search proceeds.

The node labeled 3 is a leaf and thus corresponds to a 2-match of the query.

After discovering the hit, the search path backtracks to the node labeled 2 and

the last rows of the edit matrix are erased. The search path then goes to

the node labeled 4, in which case the newly computed diagonal cell exceeds

the threshold (circled). Even if this node has children, they are not visited

(crosses) because there is no 2-match to discover
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there are at most s editions between the query and the match to be

distributed in sþ1 regions, so at least one segment is unmodified.

Because of potential insertions and deletions in the preceding seg-

ments, the shared segment may be shifted up to s nucleotides on the

left (all insertions) or on the right (all deletions) from its original

position in the query.

These observations are the basis of a filtration method with

100% sensitivity. More precisely, the segments are defined as fol-

lows: the first s nucleotides of the sequence are removed, and the

rest of the sequence is partitioned in sþ1 segments of sizes differing

by at most 1 (the longer segments always in 3’ for consistency).

Every time a sequence is added to the trie, it is partitioned and its

segments are added to sþ1 different indexes. The first fragments

are added to the first index, the second fragments to the second

index, etc. Before the search, the query is partitioned in the same

way and its segments are looked up in the indexes. In case no match

is found, this query has no s-match in the current database, therefore

the trie search is omitted. Conversely, if at least one segment is

found, the trie search must be performed.

As mentioned above, segments shared between the query and a

s-match may be found shifted up to s nucleotides. For this reason,

shifted segments of the query are looked up in the indexes according

to the scheme of Figure 4, which ensures that no match can be

missed: the rightmost segment is looked up in the sþ1st index, the

second rightmost segment and the contiguous segments shifted by

one nucleotide are looked up in the sth index and so on, until the

first segment and its contiguous segments shifted by up to s nucleo-

tides are looked up in the first index.

2.4 Seek and construct
To reduce the size of the search space, starcode uses a dynamic ‘seek

and construct’ approach whereby queries are processed, meanwhile

the trie is built. In other words, each sequence is matched against the

trie before it is inserted. If A and B are mutual s-matches, either A

will be queried when B is in the trie or the converse. Either way, the

match A-B is discovered. This guarantees that every s-match is dis-

covered, while maintaining the trie as ‘thin’ as possible, thereby

reducing the search time. The whole matching process is summar-

ized in the pseudocode shown in Algorithms 1 and 2.

Algorithm 1 Starcode algorithm

1: Define: s
2: Variables: seed, start¼0, height, seq, trie, lastseq, k

3: Containers: hits, pebbles

4: READ sequence file

5: height DETERMINE maximum sequence length

6: PAD sequences up to height

7: SORT sequences alphabetically

8: k COMPUTE filter segment lengths

9: trie CREATE an empty trie of height height

10: INSERT root node of trie in pebbles at depth 0

11: for all sequences do

12: seq GET next sequence

13: if at least one k-mer of seq is in the filter index then

14: seed LENGTH of shared prefix between current and

next sequence

15: start LENGTH of shared prefix between seq and

lastseq

16: CLEAR hits

17: CLEAR pebbles at depth > start

18: for all pebbles at depth start do

19: node GET next node from pebbles

20: call POUCET(seq, node, seed, hits, pebbles)

21: end for

22: PROCESS hits and LINK matches to seq

23: lastseq seq

24: end if

25: INSERT seq path in trie

26: INSERT seq k-mers into the filter index

27: end for

Algorithm 2 Poucet search algorithm

1: procedure POUCET(query, node, seed, hits, pebbles):

2: COMPUTE node-specific column following NW 3 Figure 1

3: for all child nodes in node do

4: COMPUTE child-specific row following NW 3 Figure 1

5: COMPUTE center value using row and column 3 Figure 1

6: if center value > s then 3 Mismatches exceeded.

7: continue with next child

8: end if

9: if node depth¼height then 3 Hit found.

10: SAVE node sequence in hits

11: continue with next child

12: end if

13: if node depth �seed then

14: SAVE node in pebbles at current depth

15: end if

16: call poucet(query, child, seed, hits, pebbles)

17: end for

18: end procedure

2.5 Parallelization
Queries are sorted and partitioned in contiguous blocks. The match-

ing step then proceeds in two phases. In the build phase, a distinct

trie is built from the sequences of each block according to the algo-

rithm described above. In the second, all the sequence blocks are

queried against all the other tries. If the queries are partitioned in N

blocks, the first phase consists of N seek and construct jobs, whereas

Fig. 3. Poucet search algorithm. The algorithm proceeds with the same prin-

ciples as shown on Figure 2 with the difference that the edit matrix is not

updated row-wise but along a horizontally flipped L. As the depth-first search

proceeds, these values are stored in the nodes of the trie. As the values in the

vertical part of the flipped L are the same for every child of a node, they are

computed only once (arrow). The values in the gray cells will be computed as

the search path visits the node. Storing the intermediates in the nodes allows

the next query to restart at depth k if it shares a common prefix of length k

with the current query
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the second consists of NðN � 1Þ=2 query jobs. In each phase, the

jobs show no dependency on each other, so the matching algorithm

can be efficiently parallelized provided N is larger than the number

of independent threads.

2.6 Clustering
The default clustering algorithm of starcode is designed to correct

sequencing error. This method uses message passing (MacKay,

2002) to identify and count ‘canonical’ sequences (also referred to

as centroids in the clustering terminology). By default, each sequence

transfers its read count to its closest s-match provided the latter has

at least five times more counts. If the condition is not met, the trans-

fer does not take place. If the sequence has several equally close

s-matches, the counts are split equally among them. The process is

repeated recursively, starting from sequences with lowest read

count. The sequences with a positive read count at the end of the

process are considered canonical. Clusters consist of all the sequen-

ces transferring their read counts to the same canonical sequence

(sequence transferring their read counts to different canonicals are

discarded). Note that the radius of the clusters can be higher than

the maximum distance used for matching.

As no sequencing technology has an error rate higher than 20%,

it is expected that sequences appearing from sequencing errors will

always have five times or lower read count than the canonical se-

quence. Otherwise, sequences are more likely unrelated or both are

derived from the same canonical sequence. This behavior can be

modified with the command-line option cluster-ratio to allow for a

more flexible or more strict clustering, e.g. to cluster unique input

sequences together, cluster-ratio must be set to 1.

For other sequence clustering problems, starcode implements a

multi-purpose algorithm called ‘sphere clustering’. In sphere cluster-

ing, sequences are sorted by frequency of occurrence. Starting from

the most frequent, each sequence becomes canonical and claims all

its s-matches, which forms a cluster of radius s (hence the name).

Claimed sequences are immediately removed, so that they can be-

long to only one cluster.

2.7 Benchmark conditions
All the tests were performed on a 16-core dual-processor Intel Xeon

E5-2687W v2 system with 256 GB of DDR3-RAM at 1866 Mhz.

Command-line parameters were set equivalently in all softwares to

run in single-core mode allowing up to three mismatches for input

sequences of length 50. Tables 1 and 2 summarize the execution op-

tions used in simulation and real datasets, respectively.

3 Results

3.1 Presentation and basic performance
Starcode is a general purpose DNA sequence clustering tool with a

strong focus on error correction. Errors are assumed to be mis-

matches, insertions or deletions (the implementation presented here

matches sequences with up to eight errors). The input sequences can

be single or paired-end reads, with an upper limit of 1024 nucleo-

tides (512 for paired end). Sequences may be of variable length, they

may be trimmed and filtered for quality or not. File formats compat-

ible with starcode are raw sequence, raw sequence with count,

FASTA or FASTQ (in which case starcode ignores the quality).

Starcode either returns detailed information of the clustering results,

i.e. canonical sequences, cluster sizes and the complete list of their

constituent sequences. Alternatively, only the canonical sequences

are printed, which is useful to filter out redundant sequences from

input files. By default, clustering is performed under the assumption

that divergence occurs from experimental errors (sequencing errors,

polymerase chain reaction mutations, etc.) and a more general algo-

rithm is also available for other clustering problems (an example of

which is given in Section 3.3).

We show the basic performance and scalability of starcode on a

dataset of pseudorandom sequences (Fig. 5). The standard configur-

ation is a set of 1 000 000 sequences of length 40, running on one

thread and with a maximum Levenshtein distance of 3. In each test,

only one parameter is modified, while the others are kept constant.

As the clustering step does not require additional memory allocation

and is significantly faster than all-pairs search, the performance re-

sults presented in Sections 3.1 and 3.2 apply for both message-pass-

ing and spheres clustering algorithms.

Figure 5a shows the running time of starcode as a function of the

number of input sequences n. In double logarithmic scale, the trend

is a straight line with slope 1.5, suggesting that the running time

complexity of starcode is lower than quadratic (the naive implemen-

tation of all-pairs search). Note that the sequences of this dataset

have no match, see Section 3.2 for an evaluation of the performance

on more realistic datasets. Figure 5b shows that the running time

grows exponentially as a function of the maximum Levenshtein dis-

tance used for clustering. The reason is that the trie fans out

Table 1. Software execution options used in simulation benchmark

Software Command-line options

Starcode-1.0 starcode -d3

Slidesort-2 slidesort_v2 -d 3 -t E -c DNA

Cd-hit-est-4.6.1 cd-hit-est -n 9 -c 0.9 -M 0 -r 0

Seed-1.4.1 SEED –mismatch 3

Fig. 4. Lossless filtration illustrated by an example sequence of length 20 with

s¼3. The last s nucleotides of the query are removed and the rest is divided

into four series of contiguous segments. Each series is queried against a dif-

ferent index numbered I–IV. For instance, the only segment queried against

index I is GTTG, whereas those queried against index II are GCAA, CAAT and

AATA. If any of the segments is found in the appropriate index, the trie search

is performed, otherwise it is omitted as there can be no s-match. Regardless

of the result, segments labeled I–IV are then added to the corresponding re-

spective index (i.e. only one segment is added to each index)

Table 2. Software execution options used in real data benchmark

Software Command-line options

Starcode-1.0 starcode -d3

Slidesort-2 slidesort_v2 -d 3 -u -t E -c DNA

Cd-hit-est-4.6.1 cd-hit-est -n 8 -c 0.94 -M 0

Seed-1.4.1 SEED –mismatch 3 –shift 3

Rainbow-2.0.3 rainbow cluster -m 3
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exponentially and the search bails out at a greater depth as the max-

imum distance increases. As a function of the sequence length, the

running time first increases but then plummets and stays low

(Fig. 5c). Beyond a threshold length, the filtering algorithm starts to

be efficient, and most of the queries are resolved without searching

the trie. Finally, we show the scalability of starcode with increasing

number of threads in Figure 5d. The search algorithm is fully parallel

and the relative performance increases linearly up to 12 threads. The

bending observed thereafter has two sources; the first is that the in-

put reading and clustering steps are brief but not parallel, the second

is due to hardware limitations, i.e. there is insufficient memory band-

width to satisfy the increased demand of parallel memory accesses.

3.2 Benchmark
We benchmarked starcode against the sequence clustering algo-

rithms slidesort (Shimizu and Tsuda, 2011), seed (Bao et al., 2011),

rainbow (Chong et al., 2012) and cd-hit (Fu et al., 2012). Even

though slidesort is an all-pairs search algorithm, it was included in

the benchmark because sequence comparison is the most computa-

tionally intensive step of the sequence clustering problem. Rainbow

runs exclusively on paired-end reads, whereas the other tools run on

single reads, for this reason all the tools could not be run on the

same dataset.

The performance of sequence clustering algorithms can be sensi-

tive to the size of the clusters in the dataset, which in many applica-

tions is not known a priori. We therefore set up a benchmark on

artificial datasets to test the accuracy and the scaling of the tools on

a known cluster structure. We generated four datasets of 1 million

50-mers arranged in 1 to 1000 clusters. Each cluster consisted of

100 repeats of the same centroid sequence, plus satellites derived

from the centroid by incorporating three errors including at most

one indel. The number of satellites per cluster ranged from 999 900

to 900. Rainbow was not tested on this benchmark because the gen-

erated data are single reads. In addition, evaluating the exactness of

slidesort was problematic because the number of 3-matches in each

dataset is not known (pairs of satellites in the same cluster may be 3-

matches or not). For this reason, we only compared the number of

pairs found by starcode with the number of pairs found by slidesort.

The outcome of the test is summarized in Figure 6.

Although starcode achieves perfect clustering on all four data-

sets, the clustering achieved by seed and cd-hit is incomplete. Both

tools identify approximately 40 false clusters per true cluster on all

the datasets (Fig. 6a). We also observed that slidesort found 5–10%

less 3-matches than starcode on all the datasets (Fig. 6b). We were

surprised by this result because slidesort is claimed to be an exact al-

gorithm. However, this was clearly not the case when we ran add-

itional tests on smaller datasets where naive pairwise comparisons

are feasible (more information is available on the starcode reposi-

tory, see http://github.com/gui11aume/starcode/tree/master/misc).

The running time of the different tools as a function of the size

of the clusters is shown on Figure 6c. The running time of slidesort

and starcode show linear and sub-linear trends, respectively. Seed

and cd-hit run approximately in constant time regardless of the clus-

ter size. In spite of this result, the performance of starcode remains

competitive, even for clusters of 1 million sequences. The memory

usage is shown in Figure 6c. The smallest memory footprint is

achieved by slidesort and cd-hit, with a maximum difference of an

order of magnitude with respect to the other tools. Note that the

comparison with slidesort is not completely fair since it does not

hold in memory the full graph necessary for clustering. The memory

usage of starcode is the highest for clusters of size 1000, but it de-

creases and becomes lower than the memory usage of seed as the

size of the cluster increases. In conclusion, starcode was the only

tool to achieve perfect precision on these datasets at a price of

increased memory footprint. Considering the exactness of the
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Fig. 5. Scalability. (a) Logarithm of the running time versus the logarithm of

the number of sequences to be clustered. (b) Running time as a function of

the clustering distance. (c) Running time versus length of the input se-

quences. (d) Relative performance increase for different number of parallel

threads
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Fig. 6. Benchmark results on artificial datasets of known cluster structure (see

main text). (a) Accuracy measured by the number of identified clusters.

Starcode identifies the correct number of clusters, whereas seed and cd-hit

identify about 40 false positives per true positive. The first bisector is plotted

and indicates perfect results. (b) Accuracy measured by the number of identi-

fied pairs. Slidesort identifies 5–10% less pairs than starcode. The horizontal

line indicates a ratio of 1. (c) Running time of the different tools. As the size of

the clusters, the running time of starcode increases but remains competitive.

(d) Memory usage of the different tools. The memory usage of starcode

decreases as the size of the cluster increases.
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output, starcode maintains a competitive performance in terms of

running time.

The performance on artificial data is not always in agreement

with the performance on experimental datasets. Typical experiments

present additional difficulties. For instance, the sizes of the clusters

may be uneven and the reads may contain near constant regions that

usually degrade the performance of filter-based algorithms. We

benchmarked sequence clustering algorithms on the problem of clus-

tering thousands of reporters integrated in parallel (TRIP) barcodes

(Akhtar et al., 2013). Briefly, the principle of TRIP is to tag reporter

transcripts with random barcodes and measure the abundance of

barcodes in the RNA as a proxy for gene expression. There is no

reference to match aberrant barcodes against, because the tagging

sequences are unknown.

The basic properties of the datasets used for benchmarking are

summarized in Table 3. Dataset 1 (SRR950457) has been pre-pro-

cessed to extract the barcode and remove the constant part of the

reads. Only barcodes between 15 and 17 nucleotides were included

in the file. Dataset 2 (PRJEB7686) consists of raw Illumina single

reads. These datasets differ by the read size, the total read count

and the empirical cluster sizes. According to the output of starcode,

the largest clusters of dataset 1 contain approximately 70 000

sequences, whereas dataset 2 contains four clusters with more

than 1 million sequences. Dataset 3 (SRR950477) has been included

to benchmark starcode against rainbow in paired-end clustering

mode.

The running times of starcode, seed, slidesort, rainbow and cd-

hit are summarized in Table 4. We accommodated the distance

threshold for the first dataset to compensate for the reduced se-

quence length. Both starcode and slidesort were executed with the

option ‘-d 2’ and the identity for cd-hit was set to ‘-c 0.85’. We

were not able to run seed on dataset 1 due to limitations on the min-

imum sequence length. Starcode was significantly faster than the

other tools on all the datasets. Seed and cd-hit came in second pos-

ition with a running time approximately 35 and 20 times greater on

datasets 1 and 2, respectively. Rainbow was nearly an order of mag-

nitude slower in the job of clustering paired-end reads. We did not

record the exact running times past 10 days since this is several

orders of magnitude higher than the running time of starcode.

The memory footprint of the different tools on the same datasets

is presented in Table 5. The values represent the peak memory usage

throughout the run on the datasets described above. On short reads

(dataset 1), starcode outperforms the other tools taking advantage

of the trie compaction. On dataset 3, starcode had a significantly

larger memory usage than rainbow. Starcode and cd-hit used similar

amount of memory on dataset 2. Both needed twice as much mem-

ory as slidesort, which has the advantage of not storing the complete

graph during the all-pair comparison.

3.3 Identifying enriched sequence motifs
As a sequence clustering algorithm, starcode can also be used for

other applications, such as the identification of enriched motifs.

Sequence motifs are thought to play an important role in DNA me-

tabolism. Key regulators, such as transcription factors, nucleosomes

and non coding RNAs have sequence preferences targeting them to

the sites where they act. Identifying those sequences is a way to pin-

point the regulators and the mechanisms they are involved in.

However, the sequence motifs are not strictly identical at different

sites, hence they are better identified by inexact matching. This

problem becomes computationally difficult for long motifs (above

12–13 nucleotides) because of the combinatorial scaling.

We set up a test based on the meningitis-causing agent Neisseria

meningitidis. The genome of this bacterium is interspersed with a

frequent 12 bp sequence known as DNA uptake sequence (Smith et

al., 1999). We extracted the 12-mers from both orientations of the

2.19 Mb genome, yielding 4.39 million 12-mers, consisting of 2.77

million unique sequences. Clustering the 12-mers with starcode

within a Levenshtein distance of 2, we identified the known DNA

uptake sequence of N.meningitidis (ATGCCGTCTGAA) as the

most abundant 12-mer, with 1466 exact and 2096 inexact hits. This

result testifies to the fact that starcode can be used to identify bio-

logically relevant motifs in bacterial genomes.

To test starcode on another application, we used the

RNA–protein interaction data produced by RNAcompete (Ray et

al., 2009). The mammalian splicing factor SRSF1 is known to bind

RNA GA-rich motifs, but there is some disagreement about the

motif that it recognizes (Pandit et al., 2013). For each replicate of

the human SRSF1 in the RNAcompete dataset, we replaced the

microarray signals by their rank and extracted the 10-mers from

the microarray probes. The 10-mers were given a score equal to the

rank of the probe they belong, and enriched motifs were found using

the sphere clustering of starcode with maximum Levenshtein dis-

tance 2. The score of the most enriched 10-mer is thus the sum of

the ranks of all 10-mers within this distance. Among the six repli-

cates, the most enriched 10-mers were AGGACACGGA,

AGGACACGGA, AGGACGGAGG, AGGACGGAGG, AGGAC

ACGGA and AGGATACAGG. Except for the last replicate, the

motifs consist of AGGAC and GGA, with a spacer of variable

length. This suggests that the binding of SRSF1 to RNA may involve

a spacer sequence, which would explain the disagreement between

the motifs derived from 6-mers or 7-mers.

Table 3. Summary of the biological datasets used for

benchmarking

Dataset Read count Read length Type

SRR950457 6 542 309 16 6 1 Single

PRJEB7686 127 675 537 50 Single

SRR950477 2 460 226 100þ 100 Paired end

All the datasets are Illumina reads.

Table 4. Running time (in seconds) of the software on three biolo-

gical datasets

Software SRR950457 PRJEB7686 SRR950477

Starcode 5 2898 44

Seed — 60 374 —

Slidesort 4055 >10 days —

Rainbow — — 306

Cd-hit-est 170 512 591 —

Exact running time was not recorded past 10 days. A dash indicates that

the software cannot be used for this dataset.

Table 5. Memory usage (in GB)

Software SRR950457 PRJEB7686 SRR950477

Starcode 0.65 30.9 5.2

Seed — 53.9 —

Slidesort 1.30 13.9 —

Rainbow — — 0.5

Cd-hit-est 0.80 28.5 —
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4 Discussion and conclusion

Starcode is a solid algorithm for sequence clustering based on all-

pairs matching. It achieves high precision, and on experimental

datasets it can be faster than popular heuristics. By design, starcode

is tailored to process high throughput sequencing data on multi-core

platforms with sufficient amount of memory. Because of its superior

precision and faster running time, it fills a gap among available soft-

ware, by allowing to take full advantage of middle to high end

hardware.

It is somewhat surprising that starcode is significantly faster

than competing tools on experimental datasets, whereas seed and

cd-hit are faster on artificial datasets. Starcode was de-

veloped ground up from TRIP experimental datasets and the pou-

cet search was selected for giving the best empirical results. We

speculate that the trie structure benefits from the entropy deficit

that is typically observed in experimental data versus pseudoran-

dom reads.

The speed and precision of starcode also makes it useful for other

clustering tasks, such as identifying enriched motifs in microbial

genomes and in experimental data. Here, we have given two ex-

amples of such applications. In the first, we recover a known en-

riched 12-mer in the genome of N.meningitidis. In the second, we

recover the motif of the human RNA binding protein SRSF1 and no-

tice that it seems to consist of two halves separated by a linker. This

hypothesis is consistent with the fact that SRSF1 binds RNA

through two consecutive RNA-recognition motifs that are known to

bind 3–4 nucleotides in a row (Daubner et al., 2013). The

Levenshtein distance, which incorporates insertions and deletions, is

more likely to capture bi-partite binding motifs than position weight

matrix representations. The use of a clustering method to tackle this

problem is unusual, but it illustrates the potential advantages of dis-

tance-based approaches.

One of the reasons why starcode appears to be faster than alter-

native tools is that it is designed to cluster relatively similar

sequences. When clustering related sequences, the Levenshtein dis-

tance will have to be increased, leading to exponentially longer run-

ning times (Fig. 5b). However, for the important practical case of

correcting errors introduced by sequencing, starcode illustrates that

there is still room for developing algorithms that are both faster and

more accurate than the current state of the art.
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