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Interleukin-33 (IL-33), a member of the IL-1 superfamily, functions as a traditional

cytokine and nuclear factor. It is proposed to have an “alarmin” role. IL-33 mediates

biological effects by interacting with the ST2 receptor and IL-1 receptor accessory

protein, particularly in innate immune cells and T helper 2 cells. Recent articles have

described IL-33 as an emerging pro-fibrotic cytokine in the immune system as well as

a novel potential target for systemic sclerosis. Here, we review the available information

and focus on the pleiotropic expression and pathogenesis of IL-33 in systemic sclerosis,

as well as the feasibility of using IL-33 in clinical applications.
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INTRODUCTION

Systemic sclerosis (scleroderma, SSc) is a heterogeneous autoimmune disease of unknown etiology,
clinically characterized with obliterative microvasculopathy, inflammation, and extensive fibrosis
of the skin andmultiple organ systems and serologically characterized by the presence of circulating
specific autoantibodies. SSc has the highest cause-specific mortality among connective tissue
diseases (1, 2), and pulmonary artery hypertension and interstitial lung disease (ILD) are the
leading causes of death (3, 4). Therapeutic interventions for SSc mainly involve the comprehensive
administration of glucocorticoids and immunosuppressants and targeted treatment. To date, no
effective medical intervention has been developed to control and reverse the progression of this
fibrotic disease (5). Thus, effective and safe targeted therapies for SSc-related fibrosis are urgently
needed. In the pathogenesis of SSc, endothelial damage may be a primary event. SSc also exhibits
complex interactions during the transition from fibroblasts to myofibroblasts and non-infective
inflammation or autoimmunity.

Interleukin (IL)-33 belongs to the IL-1 superfamily and is widely expressed throughout the
human body. During cell damage or tissue injury, IL-33 is released into the extracellular space,
wherein it produces endogenous danger signals to alert adjacent cells. This function deems IL-33
as an alarmin. IL-33 also functions as a nuclear factor regulating gene transcription in cytokine-
expressing or cytokine-responsive cells (6). IL-33 is known to play crucial roles in inflammation.
However, recent studies indicated that IL-33 participates in the development and progression of
fibrotic diseases and SSc. Here, we review the profibrotic roles of IL-33 and its related mechanisms
and discuss its potential application in the treatment of SSc.

BIOLOGICAL CHARACTERISTICS OF IL-33

IL-33, also known as IL-1F11, is a member of the IL-1 superfamily (7) and exhibits dual
functionality (8). This cytokine was first identified as a nuclear factor in high endothelial venules
in 2003 (9) but was renamed as IL-33 when a study in 2005 demonstrated its role as a specific
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Graphical Abstract | Expression and Pathogenesis of interleukin (IL)-33 in Systemic sclerosis (SSc). IL-33-producing cells (mainly endothelial cells, epithelial cells,

fibroblasts, monocytes, macrophages, and erythroid progenitor cells) secrete IL-33 into the extracellular environment. Full-length IL-33 is transformed into mature

IL-33 through cleavage by inflammatory proteases (such as cathepsin-G and elastase). The formation of the IL-33/ST2 longer transmembrane form (ST2L)/IL-1

receptor accessory protein complex in ST2+ immune cell membranes results in the activation of nuclear factor-κB transcription factors through the MyD88,

IL-1R-associated kinase (IRAK), and tumor necrosis factor receptor associated factor 6 (TRAF6) signaling pathways, leading to the induction of inflammation and

profibrosis in pathological cells. IL-33 also functions as a nuclear factor to regulate gene transcription in cytokine-expressing or cytokine-responsive cells. Moreover,

sST2 acts as a decoy receptor for IL-33 (full-length IL-33 or mature IL-33), and CNTO-7160 (the first monoclonal anti-ST2 antibody) was designed as a new IL-33

inhibitor. Both of these molecules block the downstream signaling of IL-33.

extracellular ligand for the orphan IL-1 receptor family member
ST2 (also known as IL-1RL1, DER4, T1, and FIT-1). ST2
is a member of the Toll-like receptor (TLR)/IL-1 receptor
superfamily (10), which has two main isoforms, namely, a short
soluble form (sST2) and longer transmembrane form (ST2L),
with four isoforms in total, including ST2V and ST2LV (11). The
mRNA encoding sST2 is a secretory sequence that is generated
by alternative splicing and lacks the sequence encoding the
transmembrane domain of ST2L (12).

Abbreviations: ST2L, ST2 longer transmembrane form; sST2, soluble ST2; ILC2,

type 2 innate lymphoid cell; Treg, regulatory T cell; DC, dendritic cell; Th1, T

helper 1 cell; CD8+ T cell, CD8-positive T cell; iNK T cell, invariant natural killer

T cell; NK cell, natural killer cell; SSc, systemic sclerosis; IRAK, IL-1R-associated

kinase; TRAF6, tumor necrosis factor receptor associated factor 6; IL, interleukin;

ILD, interstitial lung disease; IL-1RAcP, IL-1 receptor accessory protein; NF-

κB, nuclear factor-κB; MAPK, mitogen-activated protein kinase; IPF, idiopathic

pulmonary fibrosis; TGF, transforming growth factor; TLR, Toll-like receptor; IFN,

interferon; IRF-7, IFN regulatory factor 7.

The IL-33 gene is located on human chromosome 9 (or
chromosome 19 in mice) and is transcribed from seven coding
exons. The protein is synthesized as a 31-kDa pro-IL-331−−270

(full-length IL-33). Following synthesis, IL-33 is transported
into the nucleus as a nuclear factor. Similar to the IL-1 family
members IL-1β and IL-18, IL-33 lacks the classic signal sequence
necessary for the transport by the endoplasmic reticulum/Golgi
secretion pathway (13). Upon natural secretion from pathological

cells undergoing necrosis or necroptosis, the full-length IL-33 is
cleaved by caspase-3 and caspase-7 to activate apoptotic pathways
in the cytoplasm, followed by its release into the extracellular
environment (14). Once released into the extracellular matrix,
full-length IL-33 is further processed by serine proteases (such
as cathepsin-G and elastase) into the 18-kDa IL-33112−−270

(mature IL-33) with increased activity (15, 16), forming a soluble
recombinant cytokine in circulation. However, both full-length
and mature IL-33 bind to ST2L in ST2+ immune cell membranes
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and interact with IL-1 receptor accessory protein (IL-1RAcP),
eventually leading to the formation of an IL-33/ST2L/IL-1RAcP
complex. This complex induces signaling pathways through
MyD88, IL-1R-associated kinase (IRAK), and tumor necrosis
factor receptor associated factor 6 (TRAF6) and activates the
canonical nuclear factor-κB (NF-κB) and mitogen-activated
protein kinase (MAPK) pathways (17).

IL-33 is principally produced by stromal cells, including
epithelial cells, endothelial cells, fibroblast-like cells, and
myofibroblasts of lymphoid as well as non-lymphoid organs,
under both steady state and inflammation conditions (18–20).
In erythroid progenitor cells, IL-33 is produced during the
maturation of red blood cells and released upon haemolysis
(21). Innate immune cells expressing ST2 mainly include
dendritic cells (DCs), natural killer (NK) cells, eosinophils,
basophils, macrophages, and neutrophils (12). Full-length IL-
33 predominantly remains inside the cell and regulates the
expression of genes, which induce pulmonary inflammation and
fibrosis. In contrast, mature IL-33 promotes asthma as well as
allergic and anti-parasitic responses through the ST2 receptor
and Th2 mechanisms (22).

Mechanisms such as inactivation by oxidation of cysteine
residues, nuclear localization or sequestration, and proteolytic
processing, and receptor antagonists as well as sST2 have
evolved to regulate the expression and activities of IL-33 (12,
14, 15, 23, 24). sST2 is constitutively expressed in the human
serum, wherein it acts as a decoy receptor for IL-33 and is
not involved in signaling (25, 26). sST2, induced during tissue
damage, may restrict the deleterious effects of increased IL-
33 level. A novel mechanism for the rapid inactivation of
IL-33 protein released from the cell in vivo was reported,
wherein an oxidation-driven conformational change involving
the formation of two disulphide bonds was observed, resulting
in the elimination of ST2-dependent activity and reduction of
inflammation, consistent with themechanism of many other IL-1
family members (23).

EXPRESSION OF IL-33 AND ST2 IN SSC

According to recent studies, increased IL-33 and sST2 levels
have been observed in patients with infections, cardiovascular
disorders, allergic diseases, and rheumatic diseases such as
systemic lupus erythematosus, rheumatoid arthritis (RA),
Wegener’s granulomatosis, and Behcet’s disease (27–31). The
serum levels of sST2 and synovial fluid of IL-33 were higher
in patients with RA than in healthy controls and patients
with osteoarthritis (27). Furthermore, serum sST2 levels were
higher in patients with active, newly diagnosed, anti-neutrophil
cytoplasmic antibody-associated vasculitis than in patients
in remission, indicative of the marker role for sST2 (32).
Furthermore, ST2 and IL-33 were highly expressed around
ectopic germinal centers in salivary glands from patients with
IgG4-related disease, whereas IL-33 was expressed only in
epithelial cells in patients with Sjögren’s syndrome and controls
(33). Interestingly, the exposure of mice in vivo or human
skin samples ex vivo to inflammatory doses of ultraviolet B

irradiation induced IL-33 expression within the epidermal and
dermal skin layers (34). Proteomic analysis used to determine the
extracellular and intracellular roles of IL-33 in primary human
endothelial cells revealed the induction of inflammation-related
protein expression of the exogenous extracellular IL-33, whereas
the knockdown of the endogenous nuclear IL-33 expression had
no reproducible effect on the endothelial cell proteome (35).

The results described above support that the expression level
and biological role of IL-33 are similar to those of ST2. In general,
IL-33 expression is upregulated in inflamed tissues following pro-
inflammatory stimulation, and the role of IL-33 in cells may vary
under different pathophysiological conditions. In SSc, with an
exception during tissue inflammation, the authors proposed that
IL-33 commonly responds to tissue injury and typically affects
rapid tissue repair and regeneration (36–38).

In patients with SSc, serum levels of IL-33 and sST2
were elevated (39) and positively correlated with the extent
of skin sclerosis (higher in diffused cutaneous SSc than
in limited cutaneous SSc), severity of pulmonary interstitial
fibrosis, and vascular involvement in SSc development (40–
44). In the lesion skin tissues, IL-33 expression is altered
depending on the disease stage. IL-33 is downregulated in most
endothelial cells in early SSc but not in late SSc (45). IL-
33 produced by activated dermal fibroblasts/myofibroblasts has
been implicated in the fibrotic pathology associated with SSc,
which is profoundly increased by hypertrophic and mechanical
stress (46, 47).

The expression of IL-33 mRNA is reported to increase in the
primary pulmonary fibroblasts from patients with SSc-ILD as
well as in those from patients with idiopathic pulmonary fibrosis
(IPF). The elevated levels of IL-33 in bronchoalveolar lavage
fluids may be useful in differentiating IPF from other chronic
ILDs (48). In patients with IPF and SSc-ILD, the expression of
full-length IL-33 was elevated in the affected lungs, consistent
with the observation reported in a bleomycin-induced mouse
model. Under the conditions of ST2 gene deficiency, the full-
length IL-33 could stimulate the expression of several non-Th2
cytokines and heat shock protein 70. On the other hand, the
matured form of IL-33 was unaffected and instead activated Th2
responses (49). In contrast, the expression of the matured form
of IL-33 was enhanced but that of the full-length counterpart
reduced in the macrophages of bleomycin-induced mouse lung
tissues (50). These findings suggest that the full-length IL-33
may serve as a synergistic pro-inflammatory and pro-fibrotic
regulator in the lungs.

PATHOGENESIS OF IL-33/ST2 IN SSC

Fibrosis, a prominent pathological characteristic of SSc (38),
is characterized with a deregulated and uncontrolled repair
process. Many molecular and signaling pathways involved in
the fibrosis of SSc (51, 52), including transforming growth
factor (TGF)-β, TLR4, and interferons (IFNs), are well-
studied. TGF-β is responsible for both physiological and
pathological matrix remodeling (53) as well as fibroblast-
myofibroblast transformation (54). TLR4 induces pro-fibrotic
responses by activating NF-κB signaling through MyD88, IRAK,
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and TRAF6. The TLR/NF-κB signaling pathways enhance the
TGF-β-dependent fibrotic process (55, 56). IFNs generally
act as negative regulators of collagen synthesis and TGF-β-
mediated fibrotic responses, while the mechanism of type I IFN
signaling in SSc-promoted fibrosis remains unclear (37, 57).
The role of IL-33 in SSc was recently evaluated. In pediatric
patients with limited cutaneous SSc, high levels of IL-33 and
IFN-γ positively correlated with anti-histone and anti-ssDNA
antibodies, indicating that the co-expression of IL-33 and IFN-
γ may contribute to the pathogenesis of SSc (58). Subcutaneous
injection of IL-33 in mice resulted in the development
of cutaneous fibrosis, similar to that observed in patients
with SSc, including dermal mast cells and skin-infiltrating
neutrophils through the suppression of Th1-mediated contact
hypersensitivity responses (59). This observation highlights the
important roles of IL-33 in SSc. However, the exact mechanisms
require further investigation.

Known as a master regulator of pathological fibrosis,
TGF-β may be produced by IL-33-induced cells. During the
amplification of the alternatively activated M2 macrophage
polarization, the IL-33/ST2 pathway was shown to play a
significant role (60). IL-33 polarizedM2macrophages to produce
IL-13 and TGF-β1 and induced the expansion of type 2 innate
lymphoid cells (ILC2s) for the production of IL-13 in vitro and in
vivo. ST2 may protect ILC2s from IL-33 stimulation by reducing
the production of IL-5 and IL-13 (61). IL-13 is a well-known
profibrotic cytokine downstream of IL-33 in the immune system
(51).

IFN-γ may play regulatory roles in physiological processes
involving IL-33. In type 2 immune responses, IL-33 and
ILC2s are central mediators that promote tissue and metabolic
homeostasis, whereas IFN-γ suppresses this pathway and
promotes inflammatory responses (62). In vivo, the co-expression
of IL-33 and IFN-γ in pulmonary fibroblast culture and
lungs resulted in the attenuation of IL-33 protein levels (63).
IFN-regulated genes may regulate IL-33 gene expression. In
both human monocytes and macrophages from C57BL/6 mice,
transcriptional activation of the IL-33 gene stimulated by the
acute-phase protein serum amyloid A, a TLR2 ligand, may be
regulated by IFN regulatory factor 7 (IRF-7) recruited to the IL-
33 promoter. Silencing of IRF-7 expression may result in the
abrogation of the expression of IL-33 induced by serum amyloid
A (64).

In fibrosis, DCs elevated the expression of IL-33 via TLR/NF-
κB signaling pathways in response to allergic inflammation,
resulting in an increase in the expression levels of MyD88, NF-
κB1, NF-κB2, and RelA accompanied with NF-κB p65 nuclear
translocation, possibly through a potential autocrine regulation.
These elevations may be blocked with a TLR5 antibody or
NF-κB inhibitor quinazoline and thought to be decreased
in DCs from MyD88-knockout mice (65). The deficiency in
the NF-κB negative feedback regulator A20 in hyperactive
mast cells may result in amplified pro-inflammatory responses
downstream of IgE/FcεRI, TLRs, IL-1R, and IL-33R (ST2),
thereby exacerbating inflammatory disorders (66). In addition,
Th2-stimulated (allergen-specific IgG immune complexes and
house dust mites) signaling occurs through FcRγ-associated

receptors on DCs to upregulate IL-33 production and induce
Th2-mediated allergic airway inflammation (67).

In conclusion, IL-33 functions as a pro-fibrogenic cytokine
in the development of SSc. IL-33 may enhance the TGF-β-
dependent fibrotic process by increasing the production of
TGF-β and activate TLR/NF-κB-dependent fibrosis signaling
pathways, which are regulated by IFN-γ (Table 1).

To determine whether IL-33 is a useful therapeutic target,
Locksley et al. described the complexity of using IL-33 and
therapeutic strategies for altering IL-33 activities in vivo (68).
The framework of IL-33 biology was described as a stepwise
process. First, the focal cellular necrosis or other signals induce
the release of IL-33 from the nucleus to maintain homeostasis;
IL-33 acts on tissue-resident ST2-expressing effector cells such
as ILC2s, regulatory T cells (Tregs), and mast cells to create
a tissue environment that limits inflammation and promotes a
reparative state characterized by tolerance. Second, amplification
occurs upon exposure to chronic stimuli such as allergens and
repetitive tissue damage, wherein excess extracellular IL-33 leads
to multiple self-stimulating cycles of release to promote chronic
allergic pathology, fibrosis, and excess stores of IL-33 in the
circulation and tissues. The third step is conversion, wherein
the activated inflammatory cells and cytokines responsive to
the IL-33/ST2 axis play various roles such as killing pathogens,
mounting anticancer immune responses, increasing tissue
damage, and repressing the type 2-associated immune regulation
responses. In patients with SSc, repetitive tissue damage by other
pro-fibrotic mediators in fibroblasts and endothelial cells likely
suppresses the IL-33 pool increases and regulatory mechanisms.
Next, inflammation is amplified, fibrosis occurs, and tissue IL-
33 levels increase, ultimately contributing to tissue fibrosis and
sclerosis.

Therefore, IL-33 from different sources can be up- or
downregulated to exert pleiotropic roles in SSc. Zhao et al.
proposed that these apparently contradictory results indicate the
presence of an extremely complex process of IL-33 processing
and secretion (69). The functional properties of recombinant
IL-33 used in previous studies are becoming well-characterized,
whereas the cellular sources of IL-33 in natural and stimulated
expression remain largely unknown. Additional studies are
warranted to explain the differences between in vitro and in vivo
results.

CLINICAL APPLICATIONS OF IL-33 IN SSC

Various aspects of the clinical applications of IL-33 have been
examined. However, few studies have evaluated these effects in
patients with SSc. Thus, information may be obtained from
studies of other diseases that may be applicable to SSc.

IL-33-responsive ILC2s may promote the restoration of
injured skin, lung, and gut cells (70). During the regeneration
of injured muscles, fibro-adipogenic progenitor cells are the
only known source of IL-33 in muscles. The low level of IL-33
expression in older, injured muscle reduces the recruitment and
proliferation effects of non-increasedmuscle-resident Tregs; after
the administration of IL-33, the Treg population increases and
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TABLE 1 | Targets/pathways involved in IL-33-dependent fibrosis process.

Targets/Pathways Effector cells Mediators Role of IL-33 References

TGF-β M2 macrophages and ILC2s IL-13, IL-5 IL-33 induced cells to produce TGF-β (61)

IFN-γ ILC2s, pulmonary fibroblast,

and lungs

IL-33 was inhibited by IFN-γ (62, 63)

Monocytes and

macrophages

IRF-7 IRF-7 promoted the expression of

IL-33

(64)

TLR/NF-κB signaling pathways Dendritic cells MyD88, NF-κB1, NF-κB2, and

RelA

IL-33 or ST2 was regulated by

TLR/NF-κB signaling pathways

(65, 67)

Mast cells NF-κB negative feedback

regulator A20

(66)

TGF-β, transforming growth factor-β; ILC2s, type-2 innate lymphoid cells; IFN, interferon; IRF-7, IFN regulatory factor 7; TLR, Toll-like receptor; NF-κB, nuclear factor-κB; IL, interleukin.

regeneration is enhanced (71, 72). Furthermore, the upstream
and downstream regulation of the IL-33 gene may promote the
remodeling of tissues such as nerves and tendons (73, 74).

In general, studies of IL-33 in patients with SSc have indicated
that IL-33 is a novel and important pro-fibrogenic cytokine and
a potential biomarker for monitoring disease activity (40–45).
Genetic polymorphisms in the IL-33 gene may be useful for the
prediction of the risk of various diseases. The IL-33 rs7044343
CC genotype was suggested to be associated with an increased
risk of developing SSc and a decreased risk of developing RA; the
T allele may be a susceptibility marker for premature coronary
artery disease and central obesity and possibly involved in the
regulation of IL-33 production (53, 75–77). The first monoclonal
anti-ST2 antibody, CNTO-7160, was recently designed as a new
IL-33 inhibitor; this antibody is being evaluated in phase I clinical
trials for the treatment of severe asthma and atopic dermatitis,
but no data have been published to date (78).

PROSPECTS

The alarmin IL-33 has dual functions of a cytokine and nuclear
factor. However, differences in the levels of IL-33 and systemic
sST2 indicate intra-individual and inter-individual biological
variation, reference changes, and sex-specific differences (79).
Moreover, the evaluation of the circulating concentrations of
sST2, full-length IL-33, mature IL-33, and complexes of sST2 and
IL-33 in the same patients is interesting; measurement of these

four analytes and their ratios may increase the understanding of
IL-33-related pathophysiology in various diseases (80).

Recent investigations suggested that IL-33 is a novel pro-
fibrogenic cytokine in the development of SSc, mainly because
it affects the TLR/NF-κB signaling pathways, and TGF-β1
expression is also regulated by IFN-γ. These effects are crucial
for the early diagnosis of pulmonary fibrosis. Whether IL-33
is involved in fibroblast activation alone or in combination
with other factors is unclear; however, this molecule is likely
a potential biomarker and novel therapy target for managing
fibrosis in patients with SSc. Furthermore, the inhibitor of IL-33
(CNTO-7160), currently being examined in clinical trials, may
possibly be developed as a new therapy for fibrosis in patients
with SSc (78).
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