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microRNAs are noncoding RNAs which downregulate a large number of target mRNAs
and modulate cell activity. Despite continued progress, bioinformatics prediction of
microRNA targets remains a challenge since available software still suffer from a lack of
accuracy and sensitivity. Moreover, these tools show fairly inconsistent results from one
another. Thus, in an attempt to circumvent these difficulties, we aggregated all human
results of four important prediction algorithms (miRanda, PITA, SVmicrO, and TargetScan)
showing additional characteristics in order to rerank them into a single list. Instead of
deciding which prediction tool to use, our method clearly helps biologists getting the best
microRNA target predictions from all aggregated databases. The resulting database is
freely available through a webtool called miRabel

1

which can take either a list of miRNAs,
genes, or signaling pathways as search inputs. Receiver operating characteristic curves
and precision-recall curves analysis carried out using experimentally validated data and
very large data sets show that miRabel significantly improves the prediction of miRNA
targets compared to the four algorithms used separately. Moreover, using the same
analytical methods, miRabel shows significantly better predictions than other popular
algorithms such as MBSTAR, miRWalk, ExprTarget and miRMap. Interestingly, an F-
score analysis revealed that miRabel also significantly improves the relevance of the top
results. The aggregation of results from different databases is therefore a powerful and
generalizable approach to many other species to improve miRNA target predictions.
Thus, miRabel is an efficient tool to guide biologists in their search for miRNA targets and
integrate them into a biological context.

Keywords: microRNA, prediction, target mRNA, aggregation, database, receiver operating characteristic, precision
and recall, F-score
1http://bioinfo.univ-rouen.fr/mirabel/
Abbreviations: AUC, area under curve; PR, precision and recall; ROC, receiver operating characeristic.
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INTRODUCTION

Mature microRNAs (miRNAs) are small endogenous noncoding
single strand RNAs. They regulate gene expression in eukaryotic
organisms at the posttranscriptional level. Since their discovery in
1993 (Lee et al., 1993), it has been clearly established that miRNAs
act as key regulators of several cell processes such as proliferation,
differentiation, metabolism, and apoptosis (Krol et al., 2010;
Shenoy and Blelloch, 2014); it is therefore not surprising to find
them involved in numerous pathophysiological processes (Qu
et al., 2014; Hommers et al., 2015; Reddy, 2015). To date, 2,654
mature human miRNAs are referenced in miRBase

2

but several
recent studies suggest that there may be a larger number
(Friedlander et al., 2014; Jha et al., 2015; Londin et al., 2015;
McCall et al., 2017). Each of them has the ability to potentially
regulate several hundred of mRNAs and each targeted mRNA can
be regulated by tens of miRNAs (Selbach et al., 2008; Friedman
et al., 2009), thus creating a large and complex regulation network
of gene expression unsuspected before. The bioinformatics
identification of miRNA targets remains a challenge because
mammalian miRNAs are characterized by a poor homology
toward their target sequence except in the conserved “seed”
region that comprises nucleotides 2–7 of the miRNA (Shin
et al., 2010; Bartel, 2018). Nevertheless, several algorithms have
been developed to include a set of features known to modulate the
interaction between miRNA and their cognate mRNA in addition
to the essential Watson-Crick pairings (Peterson et al., 2014).
Among them, the most relevant are the free energy of the
miRNA::mRNA system (Yue et al., 2009), the conservation of
sequences among species (Brennecke et al., 2005) and the
accessibility of binding sites (Long et al., 2007). This resulted in
the creation of more than 187 target prediction tools (as of
September 2019, from OMICtools' database (Henry et al.,
2014)), all of which have their strengths and weaknesses
(Marbach et al., 2012; Le et al., 2015). These tools are useful to
reduce the number of potential targets in order to streamline the
experimental validations (Witkos et al., 2011). However, their
predictions suffer from a poor accuracy and sensitivity as revealed
by experimental data (Thomas et al., 2010; Pinzon et al., 2017)
and are very divergent from one tool to another (Min and Yoon,
2010). So far, no single method consistently outperforms others,
thus supporting the idea that databases content combination is an
efficient way to improve prediction relevance. Assuming that an
interaction predicted by more than one algorithm is more likely
to be functional, databases such as miRWalk (Dweep et al., 2011;
Dweep and Gretz, 2015; Sticht et al., 2018), miRSystem (Lu et al.,
2012), miRGator (Nam et al., 2008) or, more recently,
Tools4miRs (Lukasik et al., 2016), store and/or compare results
predicted by several popular tools using statistics and mRNA/
protein expression data. Interestingly, it has been demonstrated
that targets resulting from the intersection of two lists of
predictions are not more likely to be present in the intersection
of two other lists (Ritchie et al., 2009). Therefore, intersecting
results does not increase the probability of retaining true positives
and it may lead to decreased sensitivity because of possibly
2http://www.mirbase.org/, release 22.1
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omitting valid interactions (Sethupathy et al., 2006; Oliveira
et al., 2017). In order to circumvent these limitations, we
computed a new score based on the aggregation of the
interaction ranks taken from other well-known prediction
algorithms. The goal being to give all available predicted
interaction to the biologist for a given miRNA while
highlighting the most relevant ones. To test our hypothesis, we
aggregated four prediction algorithm results which enabled us to
show that this new score significantly improves miRNA targets
prediction compared to other prediction tools. To allow a more
comprehensive analysis, the results of this aggregation were
eventually linked to their respective cellular pathways using
KEGG database, and implemented in a web tool named miRabel.
MATERIALS AND METHODS

Aggregated Databases
Computationally predicted human miRNA::mRNA interaction
databases generated by miRanda (Betel et al., 2010), PITA
(Kertesz et al., 2007), SVMicrO (Liu et al., 2010) and
TargetScan (Agarwal et al., 2015) were used. These publicly
available online algorithms have been chosen because each of
them uses different and complementary features of miRNA::
mRNA interactions such as seed match, interspecies
conservation, free energy, site accessibility and target-site
abundance (Table S1) (Peterson et al. , 2014). Only
precomputed data were used since this is what is mostly
accessible online to biologists. The ranks of each predicted
interaction retrieved from one or more of these databases have
been aggregated using the R package RobustRankAggreg (RRA,
v1.1) (Kolde et al., 2012) with R (v3.2.0). Briefly, this method
normalizes ranks with the maximal value of 1. The selected
function (Mean, Default, Geometric mean, Median, Min, Stuart)
is then used for lists aggregation. Finally, a probabilistic model is
used to makes the algorithm parameter free and robust to
outliers, noise, and errors. Missing values are replaced by the
maximum relative rank value. The new score resulting from
the aggregation is used to rerank each interaction and indicates
the significativity of the proposed rank in miRabel.

Testing Data Sets
Two types of testing data sets were used for each of the
comparisons described in this paper. First, to compare the
different aggregation methods, we used one million randomly
selected interactions within aggregated data. Validated
interactions accounted for 5% of the testing data set. The use of
all common interactions between compared databases resulted in
extremely large data sets (>500,000 interactions) which reduced
the amount of possible analysis due to computation time (several
weeks). This led us to design a second type of data sets of 50,000
interactions randomly picked from the corresponding larger
data set. For each large data set, 10 smaller ones were created
(Figure 1). The amount of experimentally validated interactions
within these randomly picked ones was set so as to remain close
in proportion to the main, larger data set. These smaller data sets
January 2020 | Volume 10 | Article 1330
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allowed us to increase the relevance and statistical significance of
performance results.

Performance Analysis Methods
On each data set, a receiver operating characteristic (ROC)
analysis was done using the area under curve (ROC_AUC) as
implemented in the R package pROC (Robin et al., 2011). To
analyze top prediction results, a specificity of 90% was set as a
threshold in order to compute partial ROC (pROC90%) and the
corresponding AUC (ROC_pAUC90%) and sensitivity. To focus
on which classifier better identifies true positive interactions,
data sets were further compared with precision and recall (PR)
curves using R programming as well. For the same purpose as
with the pAUC of the ROC analysis, we calculated the harmonic
mean between the precision and the recall (F-score) for different
percentages of the top interactions.

Statistics
Statistical analysis of results obtained with ten random data sets
containing 50,000 interactions were done with R (version 3.4.0)
Frontiers in Genetics | www.frontiersin.org 3
using either a Repeated Measures One Way ANOVA with
Dunnett's post-test or a Student t-test depending on the
number of compared groups. Adjusted p-values are considered
significant when <0.05.
RESULTS

Mirabel Overview
miRabel: A Database for Microrna Target Predictions
The database was designed with MySQL

3

using InnoDB motor
and includes predictions from miRanda (Betel et al., 2010), PITA
(v.6.0) (Kertesz et al., 2007), SVMicrO (Liu et al., 2010), and
TargetScan (Agarwal et al., 2015). It contains tables for 2,587
human miRNAs which have target mRNAs, 19,799 genes and
FIGURE 1 | Testing data sets design and databases performance analysis methodology. A large data set containing all common interactions between compared
databases is created. For ease of use, 10 smaller data sets of 50,000 interactions were randomly picked from all common ones. Predictions performance are then
compared using receiver operating characteristic (ROC) and a precision and recall (PR) analysis on all data sets.
January 2020 | Volume 10 | Article 1330
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275 pathways. This represents more than 14.7 million predicted
interactions from which 351,298 are experimentally established.
These experimentally validated interactions are annoted using
miRTarBase (v.6.0) (Hsu et al., 2011) and miRecords (Xiao et al.,
2009), whereas 5'UTR and CDS predictions were identified with
miRWalk database (v.2.0) (Dweep et al., 2011). Genes and
pathways information as well as their relationships were
retrieved from KEGG's database while miRNA data were from
miRBase (release 22.1) and linked with miRNA target
predictions. Since the annotation of miRNAs has changed over
the years, a tool was developed to convert the names of miRNA
queries in the latest version used by miRBase. In order to
standardize gene names from the different tools, they were
converted to the NCBI gene ID and a table containing their
synonyms has been built. Potential interactions between
miRNAs and genes were obtained with our prediction method
represented as shown in Figure 2A. Pathways linked to the
resulting interactions can be retrieved and ranked according to
the proportion of its interactions regulated by a given miRNA.
For each pathway, the number of validated interactions for this
miRNA is also indicated.

The Web Interface
The web interface was designed with PHP

4

and CSS
5

. It enables
users to query the system directly by miRNA, gene or pathway
name (Figure 2B). Multiple queries are allowed in order to
identify common prediction results. Queries by pathways are
easily made thanks to asynchronous database queries and name
completion. The results are visualized by using the DataTable
plugin of the JQuery framework which allows to create tables
that can be easily filtered and sorted. Results can be copied,
printed or exported in tabulated-separated or pdf formats. An
online documentation is also provided. miRabel is
freely available

6

.

Evaluating Aggregation Methods
The performances of the aggregation methods (Mean, Default,
Geometric mean, Median, Min, Stuart) provided by RRA have
been compared to each other (except for the Stuart method
due to extensive computation time). ROC and PR analysis
show that the mean of the ranks provides the best result
(ROC_AUCMean = 0.6888 ± 0.0030, PR_AUCMean = 0.0289 ±
0.0006) (Figures 3A–D). Interestingly, the F-score for all
interactions (F-score = 0.0585 ± 0.0010) indicates that the
mean method is also the most consistent in promoting
validated interactions (Figures 3E, F). When looking at top
predictions only, the mean method remains significantly better
than other compared methods (Table S2). These results led us to
use the mean method to aggregate the ranks of miRanda, PITA,
SVMicrO, and TargetScan which has been subsequently
implemented in miRabel.
4http://www.php.net
5http://www.cssflow.com/
6http://bioinfo.univ-rouen.fr/mirabel/
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Comparison to Aggregated Methods
In order to test whether any improvement was gained with our
aggregation method, the performances of each aggregated
algorithms were compared to miRabel using ROC and PR
analysis as well. These comparisons were done with 1,204,591
predicted interactions that are common to miRanda, PITA,
SVMicrO, and TargetScan. Within these predictions, 59,743
are experimentally validated ones (Figure 1). ROC curve
analysis shows that miRabel significantly improves the
prediction of validated miRNA::mRNA interactions
(ROC_AUC = 0.5842 ± 0.0019) compared to miRanda, PITA,
SVMicrO, and TargetScan (Figures 4A, B). This improvement is
even visuable with the PR analysis (PR_AUC = 0.0652 ± 0.0005)
(Figures 4C, D) and the consistency of miRabel superior F-score
throughout the data set (Figures 4E, F). A significant
improvement was also manifest for the aggregated predictions
for the top ranked interactions (ROC_pAUC90% = 0.0096 ±
0.0001; F-score20% = 0.1006±0.004) compared to PITA,
SVMicrO and TargetScan (Table S3).

Comparison to Other Prediction Tools
Even though they are not aggregation methods, we also
compared miRabel to four efficient, up-to-date and/or widely
used prediction web tools (Fan and Kurgan, 2015): MBSTAR
(Bandyopadhyay et al., 2015), miRWalk (v.2.0) (Dweep et al.,
2011), miRmap (Vejnar and Zdobnov, 2012), and ExprTarget
(Gamazon et al., 2010). ROC and PR curves analysis shows that
our prediction data significantly improves the overall prediction
of miRNA targets when compared to MBSTAR (Figure 5 and
Table S4) and miRWalk (Figure 6 and Table S5). However, even
though miRabel performs slightly better than miRmap (Figures
7A, B) and ExprTarget (Figures 8A, B), they seem fairly equal
for true positives identification (Figures 7C–F and 8C–F).
Partial specificity and sensitivity (ROC_pAUC90%) of our
aggregated data are also higher than those of MBSTAR (Table
S4) and miRWalk (Table S5) whereas these parameters are
significantly better for miRmap and ExprTarget (Tables S6
and S7).
DISCUSSION

The prediction of miRNA targets is a bioinformatic challenge.
Actually, each algorithm incorporates its own characteristics and
the comparison of their results highlights important
contradictions in their respective predictions (Shirdel et al.,
2011; Fan and Kurgan, 2015). We therefore hypothesized that
the aggregation of the predictions of several algorithms would
improve the relevance and the robustness of the prediction of
miRNA targets.

In order to validate this concept, we aggregated the
predictions of four algorithms, miRanda, PITA, SVMicrO, and
TargetScan, because they use different but complementary
information. The results they provide are different both in
terms of probability of interaction (i.e., their ranking) and of
number of targets (Fan and Kurgan, 2015). Thus, only 8.1% of
January 2020 | Volume 10 | Article 1330
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total interactions (1,204,591 / 14.7 million) are common to each
other. The example of hsa-miR-16 (Figure 2B) also illustrates
very well these divergences of predictions. Moreover, because
some of these algorithms have not been updated recently, some
Frontiers in Genetics | www.frontiersin.org 5
more refined features found in recent prediction approaches
such as TarPmiR (Ding et al., 2016), are not emphasized in our
aggregated results if not at all present. Only human miRNAs
were used initially to limit the amount of data as well as the
FIGURE 2 | Overview of miRabel. Predictions results from miRanda, PITA, SVMicrO, and TargetScan for 3'UTR are aggregated using Robust Rank Aggreg. 5'UTR
and CDS predictions are retrieved from miRWalk database. Experimentally validated interactions are identified using miRTarBase and miRecords. Links between
predictions and pathways are established based on KEGG information (A). An example of miRabel web interface is shown using predictions for hsa-miR-16.
Predicted targets are ranked according to miRabel's score. Rank found for this interaction in each database are indicated as well as its experimental validation status
and sub-localization in the mRNA (5'UTR and CDS) (B).
January 2020 | Volume 10 | Article 1330
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FIGURE 3 | Performances comparison of aggregation methods. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and the
specificity for five aggregation methods from the RobustRankAggreg (RRA) R package, and their respective area under curves (AUC, B) have been calculated using
the pROC R package on ten random data sets containing 50,000 interactions. Using the same data set, PR analysis (C) with PR_AUC (D) has been carried out. The
cumulative harmonic mean between precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported
for all interactions (F). The higher are the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested method. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13306
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FIGURE 4 | Performances comparison of aggregated prediction algorithms. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and
the specificity for miRabel, miRanda, PITA, SVMicrO, and TargetScan, and their respective AUC (B) have been calculated using the pROC R package on 1,204,591
common interactions. Using the same data set, a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried. The cumulative harmonic mean between
precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported for all interactions (F). The higher are
the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested algorithm. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13307
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FIGURE 5 | Performances comparison of miRabel and MBSTAR. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and the
specificity for miRabel and MBSTAR, and their respective area under curves (AUC) (B) have been calculated using the pROC R package on 82,867 common
interactions. Using the same data set, a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out. The cumulative harmonic mean between
precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported for all interactions (F). The higher are
the ROC_AUC, PR_AUC, and F-score, the better are the performances of the tested algorithm. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13308
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FIGURE 6 | Performances comparison of miRabel and miRWalk. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and the
specificity for miRabel and miRWalk, and their respective area under curves (AUC) (B) have been calculated using the pROC R package on 761,354 common
interactions. Using the same data set, a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out. The cumulative harmonic mean between
precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported for all interactions (F). The higher are
the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested algorithm. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13309
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FIGURE 7 | Performances comparison of miRabel and miRmap. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and the
specificity for miRabel and miRmap, and their respective area under curves (AUC) (B) have been calculated using the pROC R package on 1,160,781 common
interactions. Using the same data set, a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out. The cumulative harmonic mean between
precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported for all interactions (F). The higher are
the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested algorithm. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 133010
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FIGURE 8 | Performances comparison of miRabel and ExprTarget. Receiver operating characteristic (ROC) curve analysis (A), showing the sensitivity and the
specificity for miRabel and ExprTarget, and their respective area under curves (AUC) (B) have been calculated using the pROC R package on 105,122 common
interactions. Using the same data set, a precision and recall (PR) analysis (C) with PR_AUC (D) has been carried out. The cumulative harmonic mean between
precision and recall (F-score) was also plotted (E) for each ranked interaction of this data set. The average F-score is reported for all interactions (F). The higher are
the ROC_AUC, PR_AUC and F-score, the better are the performances of the tested algorithm. Highest values are in bold font.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 133011
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associated computation times, but our approach is generalizable
to miRNAs of all origins. Although there is so far a high
prevalence of miRNA interaction sites found in the 3'UTR,
recent papers have shown that some miRNAs can also regulate
mRNAs by binding with the 5'UTR and CDS region of their
targets (Moretti et al., 2010; Qu et al., 2016). Even though the
value of these sites is not yet clearly established in the literature,
this information remains important to get an integrated view of
the predicted miRNA interaction sites on the mRNA. Since the
score generated by the RRA package is also representative of the
significativity of the ranking (the lower the score, the better) for a
given interaction, we suggest to use miRabel with a threshold of
0.05. However, further analyses are required to really define an
optimal threshold for miRabel. Finally, the choice of algorithms
is also limited by the free availability of their database. To further
improve predictions, it would therefore be interesting to include
promising tools such as ComiR (Coronnello and Benos, 2013)
whose prediction algorithm have been shown to perform well
(Fan and Kurgan, 2015). RNAHybrid (Rehmsmeier et al., 2004)
and rna22 (Miranda et al., 2006) are also of particular interest
because they allow the prediction of targets in CDS and 5'UTRs
and have been used successfully in predicting targets that were
later validated experimentally.

We chose the RRA package for its ability to handle
incomplete rankings and its robustness to noise due to
divergent lists (Kolde et al., 2012). Comparing five of the
aggregation methods included in the RRA package shows that
the “mean” method is best for aggregating miRNA prediction
lists (Figure 3, Table S2). However, although statistically
significant, these values are relatively close to one another.
These results are similar to those obtained in studies designed
to compare the performance of several rank aggregation methods
(Burkovski et al., 2012; Wald et al., 2012; Dittman et al., 2013).
Among other aggregation methods, Cross Entropy Monte-Carlo
has been found to be inadequate for our study due to too
extensive computation times with large lists of items (Lin,
2010). Another method that could be evaluated is the Borda
count algorithm (Dwork et al., 2001) which has already been
used to aggregate cancer expression microarrays and proteomics
data sets into a single optimal list (Jurman et al., 2008).

MiRabel performs better than each of the individual
aggregated algorithms (Figure 4). Prediction improvement is
also visible in the top ranked interactions (Table S3), thus
showing that our aggregation moves validated interactions up
in ranking. This is in line with multiple studies that combine data
to obtain the most relevant interactions (Shirdel et al., 2011;
Marbach et al., 2012; Friedman et al., 2014; Andres-Leon et al.,
2015; Sedaghat et al., 2018). A recent study in particular shows
that the union of the predictions of three tools among four
(TargetScan, miRanda-mirSVR, RNA22) increases the
performance of the analyses (Oliveira et al., 2017). However,
our work goes further since prediction lists were aggregated and
reranked in a unique list. The performance of their method was
evaluated using only ten miRNAs and 1,400 genes but not the
entire database. In order to avoid selection bias of the data sets,
we analyzed all 1,204,591 interactions common to miRabel and
the four aggregated algorithms, which represent 514 miRNAs
Frontiers in Genetics | www.frontiersin.org 12
and 15,343 genes. Furthermore, even though miRabel aggregates
mostly older databases, it shows equal (vs. miRmap) or better (vs.
MBSTAR and miRWalk) performances than up-to-date
algorithms, thus clearly establishing that our method, even
though simple, has a great potential. Interestingly, from all
evaluations done with our data sets and methodology, we
found other algorithm performances to be quite different from
what was originally described in their respective original
publications. This is in agreement with previous studies that
highlighted the importance of testing prediction results on
multiple, independent data sets and with a standardized
evaluation protocol (Fan and Kurgan, 2015; Sedaghat et al.,
2018). This is also one of the strengths of our study. Indeed,
throughout all comparisons, miRabel was tested on 66 different
data sets, which gives more robustness to the performance values
calculated for our method.

As a conclusion, miRabel is a new efficient tool for the
prediction of miRNA target mRNAs and their associated
biological functions. Using an aggregation method, we
improved the relevance of the predictions of three available
algorithms. This promising approach can easily be extended to
all publicly available databases or to other species. Moreover, the
integrated biological pathways provide a more comprehensive
view into the complex regulatory network of miRNAs.
Eventually, there is no doubt that this method will greatly
contribute in helping biologists gather all available predictions
for a given miRNA and to highlight the most relevant
potential interactions.
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