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A B S T R A C T

Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level
selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between
residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with
millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free en-
ergies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of
coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional mo-
tions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient
and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical
framework highlights how evolutionary selection and optimization occur at the level of global interaction
network for a given protein fold impacting folding, function, and allosteric outputs.
1. Introduction

Protein sequence and structural evolution are driven by amultitude of
factors arising from requirements for efficient folding, function, stability,
regulation and inter-molecular interactions, to name a few. Every
random mutation that modulates the physico-chemical property of an
amino-acid could influence any of the biophysical selection factors, thus
influencing organismal fitness. Of these, foldability and stability are
critical as any mutation that reduces the folded population will quickly
be weeded out of the population via natural selection (Tokuriki and
Tawfik, 2009; Bershtein et al., 2017; Bastolla et al., 2017). Extant protein
structures are therefore the product of an uncountable number of such
selection and adaptation events along the evolutionary timeline. One of
the unique properties of proteins that make them robust to mutations (up
till a certain threshold) is the intra-molecular interaction network.
Intra-protein interaction networks are highly pliable with the ability to
adjust and accommodate substitutions while still maintaining the native
fold (Gassner et al., 1996; Riddle et al., 1997; Kurnik et al., 2012;
Ben-David et al., 2019). The pliability, a feature that is also likely
selected, enables proteins to navigate through the mutational space
contributing to the evolution of novel functions, drug resistance and
allostery. In fact, in directed evolution, ancestral sequence construction,
and deep mutagenesis based approaches, it is these interactions and
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forces that are modulated (through mutations) resulting in improved
catalytic efficiency, promiscuity or adaptability to a particular condition
(Dougherty and Arnold, 2009; Goldsmith and Tawfik, 2012; Risso et al.,
2018; Gupta and Varadarajan, 2018; Bolognesi et al., 2019; Hochberg
and Thornton, 2017).

While functional readouts of large-scale mutagenesis studies are
becoming increasingly possible, understanding the origins of functional
changes on mutations from the perspective of basic thermodynamic
factors will enable the targeted design of proteins with altered or specific
functionalities. To design natural-protein-like enzymes with marginal
stability and specific activity, it is necessary to understand how residues
in the native structure are ‘thermodynamically coupled’ to each other
and the magnitude of this coupling, which in turn determines epistasis or
context-dependence of mutations (Domingo et al., 2019; Horovitz et al.,
2019). The extent of thermodynamic coupling of a residue arises not
merely from the number of direct contacts but also via the second- or
third-shell effects through intervening residues and their interactions
(Yang et al., 2016; Rajasekaran et al., 2017a, 2017b). Importantly, the
statistical nature of the protein with numerous conformational states
lends itself to more subtle effects in coupling; specifically, if two residues
i and j are always folded in a sub-ensemble or a collection of states, it
contributes to a coupling free energy in the thermodynamic sense, even if
they are distant in the native structure, as perturbation of i will neces-
sarily influence j (Hilser et al., 1998).

Thermodynamic coupling free energies are, however, challenging to
estimate given the diversity and the weak non-covalent nature of the
numerous intra-molecular interactions in a protein, and the multitude of
conformational states in the native ensemble. One avenue to generate
ptember 2021
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Abbreviations

WSME Wako-Saitô-Mu~noz-Eaton
SSA single sequence approximation
DSA double sequence approximation
SCA statistical coupling analysis
NMR nuclear magnetic resonance
MD molecular dynamics
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this is via molecular simulations (coarse-grained or all-atom), where
conformations are accumulated as a function of time to construct a native
ensemble. However, sampling limitations and the long time-scales asso-
ciated with structural transitions in large proteins (milliseconds or
slower) would mean that a reasonable statistical description of a protein's
conformational space is not straightforward from this method. An
alternate possibility is to employ statistical mechanical treatments of
protein folding, wherein a fixed ensemble of conformational states is
constructed through physically reasonable assumptions thus enabling
access to the total partition function and hence the relative population of
states. In this regard, earlier attempts at estimating coupling free energies
from statistical treatments employed the COREX algorithm and empirical
energies derived from the accessible surface area of conformations
(Hilser et al., 1998, 2006). On the other hand, the Wako--
Saitô-Mu~noz-Eaton (WSME) model (Wako and Saito, 1978; Mu~noz and
Eaton, 1999) provides an attractive and alternate avenue to estimate
thermodynamic coupling free energies from just a single structure with
detailed energetic-entropic terms (Naganathan, 2012; Rajasekaran et al.,
2016). The WSME model explicitly accounts for the statistical nature of
the folding problem by a diverse collection of microstates employing an
Ising-like description and is arguably one of the most successful models of
protein folding despite its simplicity. It has been employed to study the
folding behavior of single-domain proteins (Naganathan, 2012; Rajase-
karan et al., 2016), multi-domain systems (Inanami et al., 2014) and
repeat proteins (Sivanandan and Naganathan, 2013; Hutton et al., 2015),
characterize experimental data at different levels of resolution and to
reproduce and understand phenomena such as cold denaturation
(Naganathan, 2016), allostery (Itoh and Sasai, 2011) and quinary effects
on folding-binding (Gopi and Naganathan, 2020; Munshi et al., 2018).
The model is also rigorous enough to capture folding pathway hetero-
geneity at a level comparable to all-atom MD simulations (Henry et al.,
2013; Gopi et al., 2017) and single-molecule force spectroscopy mea-
surements (Gopi et al., 2017). In addition, the energy-entropy terms of
the model are sufficiently detailed enough to reproduce changes in sta-
bility and folding mechanisms arising from mutations involving charged
residues (Naganathan, 2013), apolar residues (Rajasekaran et al.,
2017b), post-translational modifications (Gopi et al., 2015) and disor-
dered loop insertions (Gopi et al., 2015).

In this work, we show how the WSME model can be used to simul-
taneously generate native ensembles, understand folding mechanisms
and estimate thermodynamic coupling free energies employing a single
structure as an input. Our results highlight the robustness and tunability
of interaction network in proteins, and provide a complementary view-
point to sequence- and function-based methods with implications in
protein structural organization, design and allostery.

2. Methods

2.1. Wako-Saitô-Mu~noz-Eaton (WSME) model

The WSME model employs a binary treatment for the folded status of
residues with 1 and 0 representing folded and unfolded conformations,
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respectively. While many flavors of theWSMEmodel are available (Wako
and Saito, 1978; Mu~noz and Eaton, 1999; Naganathan, 2012; Gopi et al.,
2017; Henry and Eaton, 2004; Bruscolini and Naganathan, 2011), we
employ the bWSMEmodel (with b standing for block, a set of consecutive
residues (Gopi et al., 2019)) that partitions the protein's phase space into
single stretches of folded residues or blocks (single-sequence approxi-
mation, SSA), two stretches of folded residues or blocks (double--
sequence approximation, DSA) and DSA with interaction across the
folded islands even if the intervening residues or blocks are unfolded
(DSAw/L, i.e. DSA with loop). The block-size can vary from 1 to 5,
depending on the number of residues in the protein, to reduce the
number of microstates that can otherwise number in several hundreds of
millions (Fig. 1A and B). For example, generating the residue-level
conformational landscape of Kemp Eliminase (299 residues) would
require the algorithmic enumeration of more than 661 million states.
However, treating a set of 5 consecutive residues as a block reduces the
number of conformations to just over 2 million making the calculations
less intensive a coarse-graining that does not affect the conformational
landscape or the folding mechanism (Gopi et al., 2019).

The total partition function (Z) of the bWSME model is calculated as

Z¼
Xn
i¼1

expð�ΔGi =RTÞ (1)

where n is the total number of microstates considered in the model
framework (SSA, DSA and DSAw/L), R is the gas constant and T is the
temperature, which is set to 310 K. Free energy of microstates with folded
structure between and involving blocks p and q (p, q) is:

ΔGp;q ¼ΔGstab
p;q � TΔSconfp;q (2)

The stabilization free energy for the microstate (p, q) is written as,

ΔGstab
p;q ¼

Xq
i¼p

Xq
j�i

X
k¼LðiÞ

X
½l¼LðjÞ�>k

ΔGstab
k;l (3)

where L is the set of residues comprising the protein, L(i) and L(j)
represent the set of residues in blocks i and j, respectively, while also
accounting for interactions between residues within the same block. The
stabilization free energy ΔGstab

p;q includes contributions from van derWaals
interactions (a uniform interaction energy ξ for the vdW contacts iden-
tified from the native structure with a 5 Å cut-off; supporting Table S1),
charge-charge interactions without a distance cut-off via the Debye-
Hückel formalism (at a fixed ionic strength of 0.1 M, with an effective
dielectric constant of 29 for soluble proteins (Naganathan, 2012; Naga-
nathan, 2013) and 4 for membrane proteins) and contacts-scaled implicit
solvation term (Naganathan, 2012) (ΔGSolv, calculated as the heat ca-
pacity change per native contactΔCcont

p that is fixed to�0.36 J mol�1 K�1

per native contact). The entropic penalty associated with fixing all resi-
dues in the microstate (p, q) is given as,

ΔSconfp;q ¼
Xq
i¼p

X
j¼LðiÞ

ΔSconfj (4)

here, ΔSconfj is the entropic cost of fixing residue j in the native confor-
mation (set to �14.5 J mol�1 K�1 per residue), L(i) includes the set of
residues within block i. An excess entropic penalty (Rajasekaran et al.,
2016) (ΔΔS ¼ �6.1 J mol�1 K�1 per residue) is additionally assigned to
residues identified as unstructured (coil) by STRIDE (Heinig and Frish-
man, 2004) and glycine residues. The entropic penalty of fixing proline in
the native conformation is set to 0 J mol�1 K�1 per residue, owing to its
limited backbone flexibility. Partial partition functions are calculated by
lumping together microstates with a specific number of structured resi-
dues from which the one-dimensional free energy profiles are generated.



Fig. 1. Steps involved in the calculation of thermodynamic coupling free energies from the WSME model. The native protein structure is considered as either residues
or blocks (panel A) from which the ensemble is constructed (panel B) with 0 and 1 representing unfolded and folded residue (block) status, respectively. Since the
WSME model is structure-centric, the energetics can be directly derived from the interactions present in the native state (vdW interactions, electrostatics, solvation free
energy) while the entropic penalties are invoked based on the secondary-structure type identified in the PDB, following which the statistical weights and probabilities
of every microstate are calculated. The resulting ensemble is partitioned into four sub-ensembles depending on the conditional folded status of residue j with respect to
residue i (panel C). Positive, negative and effective thermodynamic coupling free energies are estimated (panel D) that can either be represented as a coupling matrix
(panel E) or as vectors as a function of protein sequence index (panel F). In addition to this, the effective coupling free energies are mapped on to the structure, and
those residues exhibiting strong coupling (Z-score > 1) are shown as dots (panel G). The arrow in panel G points to the direction in which the ligand binds.
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3. Results

3.1. Thermodynamic coupling free energies

The steps involved in calculating the extent of thermodynamic
coupling of protein residues from the perspective of the bWSME model
are outlined in Fig. 1. The model description, ensemble generation and
parameterization are discussed in the Methods section. In the current
work, we adjusted the van der Waals interaction energy (ξ) of every
protein to generate a folding free-energy profile such that the native
ensemble is 30 kJ mol�1 more stable than the unfolded ensemble. Fixing
the relative stability of the native ensemble, in turn, fixes the probability
(p) of every microstate following which four sub-ensembles are gener-
ated (Liu et al., 2006) for every residue i taking into consideration the
folded status of any other residue j – both i and j are folded (

P
pif jf ), both i

and j are unfolded (
P

piuju ), i is folded and j is unfolded (
P

pif ju ), and i is
unfolded and j is folded (

P
piujf ) – with the summation running over all

microstates that fit the criteria (Fig. 1C). Positive (ΔGþ) and negative
(ΔG�) thermodynamic coupling free energies for a residue i, adapted
from Chowdhury and Chanda (2010), are defined as (Fig. 1D),

ΔGþ ¼RTlnðKþÞ ¼ RTln

 P
pif jfP
piujf

!
(5)

ΔG� ¼RTlnðK�Þ ¼ RTln

 P
pif juP
piuju

!
(6)

Note that in the definition of Kþ and K�, the (un)folded status of all
other residues is held fixed while that of i varies; this referencing fa-
cilitates the calculation of the true degree of coupling of i with j (also
see Fig. 1C). Specifically, if residues i and j interact strongly – through
direct interactions, via spatially intervening residues, or if they display
little change in folding probability on perturbations amongst a collec-
tion of microstates – then the equilibrium constant Kþ will be signifi-
cantly greater than 1 as the total probability of microstates in which
both residues are folded (numerator in equation (5)) will be higher than
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those in which i is unfolded and j is folded (denominator in equation
(5)), and hence ΔGþ > 0. On the other hand, if i and j do not interact
directly or through mediated interactions K� will be greater than 1 as
the probability of both residues being unfolded is infinitesimally low
(under folding conditions), and thus ΔG� > 0. The coupling free en-
ergies (equations (5) and (6)) can be calculated for every residue i with
respect to every other residue j. The resulting matrix is not symmetric
since the impact of residue i on j is not the same as j on i due to dif-
ferences in residue environments, and can be symmetrized by averaging
the effects.

The balance between positive and negative coupling free energy of a
residue will in turn determine the effective coupling free energy between
different residues in the native ensemble:

ΔGc ¼RTln
�
Kþ
K�

�
¼ ΔGþ � ΔG� (7)

The resulting two-dimensional (2D) matrices (Supporting Fig. S1) can
be averaged as a function of residue index to calculate the mean coupling
free energies < ΔGþ >, < ΔG� > and < ΔGc > (Fig. 1E and F). Intui-
tively, the effective thermodynamic coupling free energies are a measure
of the extent to which local stabilities and hence the conformational
status of individual residues are connected to other residues. Strong
effective coupling between a pair of residues will mean that they exhibit
similar behavior on perturbations and are correlated at the ensemble
level, while weak effective coupling would translate to little correlation
and by extension larger dynamics. The connection to dynamics can be
explicitly made for weakly coupled residues as they are not held in place
by multiple stabilizing interactions and thus enabling relatively unin-
hibited structural movements. It is important to note that changes in
protein stability would redistribute the populations, which would in turn
alter the magnitude of coupling free energies. However, as long as the
calculations are performed under conditions in which the native state is
more stable than the unfolded state with finite populations of partially
structured states (ΔGþ > 0 and ΔG� > 0 at T < Tm), the rank ordering of
coupling free energy magnitudes are insensitive to the choices of vdW
interaction energies or stabilities (Fig. S2).



Fig. 2. Representative examples of coupling free energy calculations on Ank4, Villin and Barstar. Shown are the one-dimensional free energy profiles (panels A, D, G),
effective coupling free energy matrices (panels B, E, H) and the structural maps (panels C, F, I). The parameters n, fc and σ indicate the total number of microstates, the
fraction of strongly coupled residues and the standard deviation in effective coupling free energy, respectively. The arrow in panel B signals the weak coupling
between 2nd and 4th repeat residues in Ank4 while the white block in panel E shows near-zero coupling between helices 1–2 and 3 in Villin. The green arrow in panel I
represents the binding surface on Barstar. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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As a representative example, consider the Ankyrin repeat protein
(Ank4, the first four repeats of the full-length domain, Table S1). The
WSME model representation of Ank4 with more than a million micro-
states captures the expected multi-state folding in the one-dimensional
(1D) free energy profile (Fig. 2A). The ΔGcmatrix exhibits strong effec-
tive coupling close to the main diagonal, as repeat domains are primarily
stabilized by nearest neighbor interactions, and weak effective coupling
for off-diagonal elements (Fig. 2B). The mean effective coupling, when
mapped on to the structure, reveals that 18% of Ank4 residues are very
strongly coupled (fc) to the rest of the structure (Z-score of < ΔGc >

greater than 1) while the rest of the structure is only weakly (Z-score of<
ΔGc > less than�1) or moderately coupled (Z-scored< ΔGc > between 1
and -1) with an overall standard deviation (σ) in the effective coupling
free energy of 3.5 kJ mol�1 (Fig. 2C). It is interesting to note that some
off-diagonal regions exhibit finite coupling despite making no direct in-
teractions in the structure. For example, the arrow in Fig. 2B points to a
moderate effective coupling of ~5 kJ mol�1 between residues A40 and
L120 located in the 2nd and 4th repeats, respectively, but separated by
21 Å (Cα-Cα distance). The residues do not interact directly but are still
‘thermodynamically coupled’ via interactions mediated through the third
repeat and due to the high intrinsic stability of the second repeat.

We further tested our approach on the popular model system, villin
head piece domain. The model predicts a folding free energy profile with
a shallow intermediate like state at ~18 structured residues (Fig. 2D).
The constructed ΔGcmatrix reveals a strong coupling between the first
two helices (residues 1–20) while the third helix is only weakly coupled
to the first two (white rectangle in Fig. 2E). This weak coupling likely
contributes to the population of a partially structured state wherein the
third helix samples conformations independent of the first two helices
(Fig. S3), in good agreement with triplet-triplet energy transfer
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experiments (Reiner et al., 2010). The fraction of strongly coupled resi-
dues is estimated to be 14% with a smaller standard deviation (just
1.4 kJ mol�1) compared to the Ank4 protein, which is likely to do with
the smaller size of the protein (Fig. 2F).

3.2. Functional connect of marginally coupled residues

The simpler helical architecture of Ank4 and Villin allows for a
straightforward interpretation of the effective coupling matrix. In
contrast, most proteins exhibit a complex topology with an intricate
distribution of energetics. We therefore constructed the native ensemble
for Barstar, the inhibitor of Barnase, which not only exhibits a complex
α-β topology but also displays a multi-state folding mechanism (Sarkar
et al., 2013). The current version of the model captures the multi-state
nature of Barstar folding with at least 3 intermediates or partially
structured states in the native side of the folding barrier (Fig. 2G) in
agreement with an earlier work (Naganathan et al., 2015). The effective
coupling matrix derived from the native ensemble shows a non-intuitive
grouping of strong positive and strong negative effective coupling with
no apparent trend (Fig. 2H). However, when mapped on to the structure,
the majority of strongly coupled residues cluster together and more
importantly form a strong ‘base’ to enable binding of Barnase via the
weakly coupled helices 2 and 4 (green arrow in Fig. 2I that points to the
direction of Barnase binding). In other words, functional sites are only
marginally coupled (either weakly or moderately coupled) to the rest of
the structure and appear to be supported by the strongly coupled
residues.

To explore this feature further, we constructed the native ensembles,
coupling matrices and average coupling free energies of three domains:
(a) Cnu, a protein that acts as a sensor of environmental changes in



Fig. 3. Functional connect of marginally coupled residues. Free energy profiles of Cnu, RNase H, T4 lysozyme and PDZ (panels A, D, G, J), the effective coupling free
energies with the strongly coupled residues in red and functional residues in yellow (panels B, E, H, K), and the structural map of the effective coupling free energies
(panels C, F, I, L). The green arrows in panels C, F and I represent the binding surface. The black arrow in panel K signals the weak coupling of the C-terminal hairpin in
PDZ to the rest of the structure, while the spheres in panel L represent ‘sector’ residues. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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uropathogenic E. coli, (b) RNase H, an enzyme that cleaves DNA-RNA
hybrids, and (c) T4 lysozyme, an enzyme that breaks down peptido-
glycan in bacterial cell walls. The free energy profiles range from
downhill to multi-state (Fig. 3A, D, 3G) while being consistent with ex-
periments, as shown in earlier works (Rajasekaran et al., 2017b; Narayan
et al., 2017; Cecconi et al., 2005; Narayan and Naganathan, 2014; Llin�as
et al., 1999). Specifically, the C-terminal helix of Cnu is observed
partially structured at 310 K (note the low positive coupling for residues
60–71 in Figs. 3B and 1E) (Narayan et al., 2017), the RNase H folding
pathway agrees with the order of formation observed in HX experiments
(Narayan and Naganathan, 2014), while the C-terminal half of the
structure is predicted to fold first for T4 lysozyme again in accordance
with experiments (Rajasekaran et al., 2017b). In each of the three cases,
the number of strongly coupled residues that form a part of the binding or
catalytic site are 4/14, 3/12 and 7/31, respectively (red in Fig. 3B, E,
3H). Thus, more than 70% of the strongly coupled residues do not
contribute to function directly. However, structural mapping points to a
clustering of the strongly coupled residues while placing them right next
to the ligand binding site and forming a base to support binding and
catalysis (green arrow in Fig. 3C, F and 3I point to the direction of ligand
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binding), similar to the observation in Barstar. The fraction of strongly
coupled residues ranges between 8 and 20% for the four proteins with a
standard deviation of ~3–6 kJ mol�1.

Functional sites induce strong co-evolution of residues around them
even up till the second and third shell to maintain activity above a certain
threshold (Lockless and Ranganathan, 1999). The physical origins of
such ‘sectors’ around the active site have remained elusive. Since ther-
modynamic coupling analysis provides an alternate avenue to study
long-range correlations, we generated the native conformational
ensemble of PDZ, a popular model system for allostery and in which the
concept of sector was first established (Lockless and Ranganathan, 1999).
The free-energy profile of PDZ points to a two-state-like system (Fig. 3J)
with a native ensemble in which the C-terminal hairpin only partially
folded (arrow in Fig. 3K). Strongly coupled residues constitute only 15%
of the total number and again cluster together in the region between the
ligand binding site and the C-terminal hairpin (dots in Figure 3L).
Remarkably, none of the strongly coupled residues, except for I31 (I336
in the PDB numbering scheme), fall within the sector region (Fig. 3K). In
other words, sector residues are only marginally coupled to the rest of the
structure, a feature that is likely driven by the requirement of dynamics
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to function, and in this case, to accommodate the ligand. In fact, MD
simulations point to the ligand binding regions (all of which form a part
of the sector) exhibiting large dynamics in the native ensemble (Bozovic
et al., 2020; Kumawat and Chakrabarty, 2020) consistent with our ob-
servations of marginal coupling. A similar observation can also be made
in the enzyme dihydrofolate reductase (DHFR) where the strongly
coupled residues constitute one face of the protein acting as a base while
the marginally coupled residues are involved in ligand-cofactor binding
and catalysis (Fig. S4). Only 20% of the sector residues in DHFR (Rey-
nolds et al., 2011) (7 out of 36) form a part of the strongly coupled
residues subset (32 residues), again highlighting that sector residues
identified around the ligand binding site are predominantly character-
ized by marginal thermodynamic coupling to the rest of the protein.
3.3. Marginal coupling and structural transitions

The marginal thermodynamic coupling of specific helices in both
Villin and Cnu manifest as conformational changes in equilibrium. Do
larger proteins exhibit a similar distribution of coupling energies favor-
ing conformational transitions?

To test this, we studied the 253-residue ligand binding domain of
glucocorticoid receptor (grLBD) that binds multiple ligands (both small
molecules and proteins). The WSME model predicts a broad native well
for this domain indicative of numerous conformations in equilibrium
(Fig. 4A, left column) mirroring experimental observations (K€ohler et al.,
2020; Suren et al., 2018). Mapping the effective thermodynamic
coupling free energies onto the structure reveal a feature similar to the
smaller domains presented earlier – strongly coupled residues are phys-
ically close in space (Fig. 4B and C). The experimentally observed
Fig. 4. Larger proteins display a similar anisotropic distribution of coupling free en
corticoid receptor (panels A, B, C), adenylate kinase (panels D, E, F) and beta-2 adrene
figure legend, the reader is referred to the Web version of this article.)
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diversity in ligand binding is exclusively driven by marginally coupled
residues that constitute a remarkable 89% of residues (225 of the 253
residues). The N-terminal lid (1–25 residues) and C-terminal helix that
undergo conformational transitions to enable binding are weakly
coupled (< ΔGc >~5 kJ mol�1 or less; Fig. 4B, Fig. S5A), consistent with
the experimentally observed partially structured states involving these
segments (K€ohler et al., 2020; Suren et al., 2018).

Adenylate Kinase is another protein that undergoes a dramatic ‘open’
to ‘close’ transition on binding AMP (Schrank et al., 2009; Aviram et al.,
2018) whose conformational features are not directly evident from the
one-dimensional free energy profile (Fig. 4D). However, the residue-level
effective thermodynamic coupling free energy constructed from the
native ensemble displays strong positive < ΔGc > in the N-terminal half
of the structure (close to the regions where AMP binds), while the ‘LID
Domain’ that undergoes a large conformational transition is negative
coupled (Fig. 4E). The strong negative coupling arises when the folding
status of specific residues are not correlated to others due to weaker in-
teractions and partial unfolding resulting in < ΔG� > dominating over <
ΔGþ > (Fig. S5B). Mapping of effective coupling free energies onto to the
structure provides a clear view of the demarcation of the two domains
from a structural-functional viewpoint and their anisotropic distribution
(Fig. 4F).

The observation that only <30% of protein residues are strongly
coupled to the rest of the structure also holds true for a collection of 12
domains that span all three classes of structure (Fig. S6). Surprisingly,
such anisotropic distribution is also seen in the membrane protein, the
β2-adrenergic receptor, a GPCR (G-Protein Coupled Receptor) involved
in various physiological processes. Activation of the β2-adrenergic re-
ceptor has been shown to cause major structural changes on the
ergies. The color code is maintained the same as Fig. 3 for the proteins gluco-
rgic receptor (panels G, H, I). (For interpretation of the references to color in this
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intracellular side of the GPCR involving movements in transmembrane
(TM) helices 5, 6, and 7. TM6, in particular, undergoes a 14 Å movement
away from the center of the helical bundle (Latorraca et al., 2017). The
free energy profile generated from an ensemble of ~1.5 million micro-
states signals a complex foldingmechanism (Fig. 4G). Interestingly, the<
ΔGc > values point to zero or negative coupling in TM5 and TM6
indicative of partially structured states in equilibrium involving residues
in these helices (Fig. 4H, Fig. S5C). The strongly coupled residues are
distributed across the structure but still form a spatially contiguous set
accounting for 16% of the residues (Fig. 4H and I). Except for D85 in
TM2, all other residues that form the binding pocket for partial inverse
agonist carazolol exhibit marginal thermodynamic coupling.

3.4. Natural vs. designed and extant vs. ancient proteins

In this section, we showcase the advantages of the WSME-model
derived thermodynamic coupling free energies from the perspective of
protein design, evolution and function. One of the earliest designed
proteins is Top7 from the group of Baker and co-workers who identified
that it folds via multi-phasic kinetics while concluding that designed
proteins are likely characterized by a ‘rough’ folding landscape as they do
not go through the process of evolution to weed out conflicting in-
teractions (Walters et al., 2007). Here, we compare two proteins of
Fig. 5. Insights into structural partitioning of coupling free energies in designed pro
(panel A) for S6 and the designed protein Top7 together with their free energy profi
heights between the two proteins. (C, D) Structural mapping of the coupling free ener
their corresponding free energy profiles (panel D). The red arrow signals the more ‘d
designed Kemp Eliminases HG3 and HG3.17. The red arrow signals the large differ
towards the folded state (black). (F) The difference in coupling free energies betwe
HG3.17 are shown in green circles while the red arrows displays the non-intuitive
Mapping of the coupling free energy differences onto the structure. The transition sta
figure legend, the reader is referred to the Web version of this article.)
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similar topology S6 and Top7 (Fig. 5A), with the former being a natural
protein, to explore differences in coupling patterns, if any. S6 displays a
two-state-like folding behavior in contrast to Top7 whose profile appears
multi-state-like with a significantly lower free-energy barrier (Fig. 5B),
consistent with experiments (Olofsson et al., 2007) and coarse-grained
simulations (Zhang and Chan, 2010). Mapping the < ΔGc > onto the
structure, we find that Top7 has a larger fraction of strongly coupled
residues with a smaller standard deviation compared to S6 (Fig. 5A).
Importantly, the strongly coupled residues are more uniformly distrib-
uted in Top7 compared to S6 suggesting that the differences in folding
behaviors could also be a consequence of energy functions in design al-
gorithms that excessively stabilize pockets of structure locally to build up
higher order structures, thus ensuring their high stability.

At the other end of the spectrum are ancient or ‘resurrected’ proteins
whose sequences are generated via ancestral sequence reconstruction
methods (Hochberg and Thornton, 2017). Structures of thioredoxins
(Trxs), conserved oxidoreductases in cells, are available for both extant
and ancient proteins (Ingles-Prieto et al., 2013) allowing for a direct
comparison of coupling behaviors and hence their design principles.
Though the extant and ancient Trxs from the bacterial branch display no
specific structural differences (Fig. 5C), the ancient proteins that are
supposed to have existed 4 billion years ago (LBCA, the last bacterial
common ancestor, for example) display an order of magnitude faster
teins and enzymes. (A, B) Mapping of coupling free energies onto the structure
les (panel B). The red arrow in panel B indicates the large difference in barrier
gies of thioredoxins from E. coli and the resurrected LBCA ancestor (panel C), and
isordered’ native ensemble for the LBCA ancestor. (E) Free energy profiles of the
ence in barrier heights between the two and the overall tilting of the HG3.17
en the two variants HG3 and HG3.17. The positions of additional mutations in
changes in coupling free energies at positions far from the mutated sites. (G)
te analog is shown in cyan. (For interpretation of the references to color in this
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disulfide bond reduction rate (Perez-Jimenez et al., 2011). The native
ensemble of the LBCA Trx is predicted to be less structured than the
extant counterpart from E. coli (arrow in Fig. 5D) with the latter exhib-
iting strong coupling across the entire structure (with a larger fc) in
contrast to the ancient cousin that is weakly coupled (with a smaller fc)
(Fig. 5C). This observation is in line with earlier computational treat-
ments that point to ancient proteins being more flexible (a consequence
of weak coupling) that in turn contribute to their rapid catalytic turnover
and even promiscuity (Zou et al., 2015; Del Galdo et al., 2019).

An alternate approach to enhance enzyme activity involves ‘directed
evolution’ that has been exploited to improve the activity of many en-
zymes (Arnold, 2015). Particularly, the activity of Kemp Eliminase that
catalyzes the deprotonation and ring opening of 5-nitrobenzisoxazole
resulting in 4-nitro-2- cyanophenol has been improved by several or-
ders of magnitude starting from the original de novo design (Khersonsky
et al., 2010; R€othlisberger et al., 2008; Broom et al., 2020). Here, we
compare two of the representative enzymes, HG2 S265T (HG3) and
HG3.17 E47N/N300D (HG3.17) with the latter being the evolved
variant, that differ in their catalytic activity by nearly 700-fold due to
accumulation of additional mutations closer and far from the active site.
We find that these additional mutations tilt the folding landscape to-
wards the folded state by enabling the population of more partially
structured states in the native ensemble, visible from the lower free en-
ergies of states all along the reaction coordinate and with the folding
transition state ensemble being more stable by 15 kJ mol�1 in the
evolved variant (Fig. 5E). The population of partially structured states
translates to weaker coupling free energies in the evolved variant and this
can be observed via the positive < ΔΔGc > values (< ΔGc>HG3 � <

ΔGc>HG3:17) across nearly the entire structure (Fig. 5F and G). It is
interesting to note that the differences are not concentrated around the
mutated site, but can span different regions of protein (arrows in Fig. 5F)
including the second- and third-shells around the ligand binding site
(Fig. 5G).

3.5. Insights into allostery from thermodynamic coupling free energies

The results above signal that mutational effects can contribute to non-
intuitive variations in coupling free energies across the structure, hinting
at the origins of epistatic effects. Moreover, since coupling estimates
explicitly account for populations of various substates in the native
Fig. 6. Coupling of experimentally known sites to active site residues in PDZ (Y92; p
and E, the star and the shaded block highlight the position in consideration, i.e. the
coupled with itself and hence no coupling free energy value is shown). The yellow circ
allosteric quartet in CheY. Coupling free energies mapped on to the respective struc
sponding active site residues in panel B and D, and the allosteric quartet in panel F.
referred to the Web version of this article.)
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ensemble and their thermodynamic interconnectivity, they provide an
alternate framework to understand and address allostery as originally
proposed by Freire, Hilser and co-workers (Hilser et al., 1998, 2006; Liu
et al., 2006). In this section, we explore the extent to which different
residues are coupled in proteins from the perspective of the WSMEmodel
and without explicitly introducing mutations or modeling ligand binding
effects.

The protein PDZ is also a popular model system to study allostery
given its small size (100 residues), α-β topology and its ability to bind a
peptide ligand derived from its binding partner CRIPT. NMR experiments
show that truncation of the C-terminal helical region, which also harbors
a phosphorylation site on Y92 (Y307 in the PDB numbering) and that
does not directly interact with the binding site, reduces the binding af-
finity of the peptide by ~8 kJ mol�1 (Petit et al., 2009). To understand
the origins of such long-range coupling, we extracted the per-residue
coupling free energies of Y92 with all other residues in the protein.
Fig. 6A shows that Y92 is positively coupled to the binding site residues
with a mean coupling free energy of ~6 kJ mol�1. Mapping the pair-wise
coupling free energy (and not the average) on to the structure reveals that
the entire protein is differentially coupled to the C-terminal helix
(Fig. 6B). This observation signals the likely origins of pervasive chemical
shift perturbations and order parameter variations in the entire PDZ
domain on phosphorylation, truncation of C-terminal helix, ligand
binding and mutations (Petit et al., 2009; Gautier et al., 2018; Chi et al.,
2008; Hultqvist et al., 2013).

CypA, a peptidyl-prolyl isomerase, is another popular model enzyme
that has been extensively employed to study allostery (Doshi et al., 2016;
Holliday et al., 2017). The mapping of effective coupling matrix on to the
structure reveals that the first 40 residues of CypA are more strongly
coupled to the rest of the structure (Fig. 6C and D). This observation is
also consistent with MD simulations that point to a strongly coupled
network in this region of the protein (Doshi et al., 2016). This region also
harbors one of the hotspot residues V29, the mutation of which to
Leucine reduces the isomerization activity by 30% despite being far from
the active site. Extracting only the contribution of V29, we find that it is
differentially coupled to different protein regions (as in PDZ) and more
coupled to a farther active site residue (R55, ~25 Å) than H126 that is
closer (~13 Å) (Fig. 6C). Similarly, CheY, a regulator of chemotaxis in
E. coli displays an allosteric behavior wherein the phosphorylation of D56
regulates the binding of the flagellar motor protein FliM at a site ~10 Å
anels A, B), CypA (V29; panels C, D) and CheY (D56; panels E, F). In panels A, C,
residue whose coupling with other residues is considered (a residue is infinitely
les are the active site residues in panels A and C, while they represent the known
tures are shown in panels B, D, and F with the spheres representing the corre-
(For interpretation of the references to color in this figure legend, the reader is
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away (McDonald et al., 2013). We find that Y105, a part of the binding
site, is moderately coupled (~7 kJ mol�1) to D56 emphasizing its role as
an allosteric site (green arrow in Fig. 6E and F). (Itoh and Sasai, 2011;
Amor et al., 2016) However, as observed in Fig. 6F, it need not be the
only site that is connected to D56 as any mutation or perturbation around
it (even distant) will invariably perturb the interaction energetics and
hence the coupling.

4. Discussion

We find that residue environmental effects, from a combination of
energetic heterogeneity and conformational diversity, could be
condensed into effective thermodynamic coupling free energies
providing a unique picture on the structural-thermodynamic design
principles of proteins. It is important to emphasize here that such residue
level effective thermodynamic coupling free energies arise from differ-
ences in positive and negative coupling free energies that are in turn
related to the distribution of states in the native ensemble. Strongly
coupled residues cluster to specific regions, independent of protein to-
pology, size or secondary structure content, revealing that protein sta-
bility determinants are distributed in an anisotropic manner.
Remarkably, only ~8–24% of the residues are strongly coupled to the
rest of the structure, i.e. nearly 70% of the protein residues are available
to perform functional roles including ligand binding and catalysis. The
strongly coupled residues are observed to form a structural ‘base’ with
minimal fluctuations on average (a consequence of strong coupling) to
‘present’ the active site and binding residues that by necessity should be
dynamic (moderate or weak coupling) to accommodate the ligand, at
least in the systems studied in the current work. This is consistent with
the marginal stability and minimal cooperativity of proteins (Malhotra
and Udgaonkar, 2016; Mu~noz et al., 2016) (as only a small fraction of
residues exhibit strong long-range coupling) and the expected selection
for large flexibility in functional sites (Petrovic et al., 2018; Wand, 2013;
Henzler-Wildman et al., 2007). It should be possible to test this obser-
vation of differential dynamics by performing long time-scale MD sim-
ulations and checking for the correlated folded status of every residue
versus every other residue that could, in principle, be directly related to
the coupling free energies we extract. However, the challenges are that
the conformational sampling should be extensive (not restricted to a local
minimum) and estimates of pairwise folded status in the unfolded min-
imum should also be known, so as to enable precise quantification of
coupling free energies.

It is of interest to note that the earliest works employing the COREX
ensemble model found a similar contiguous stretch of coupled residues
(Hilser et al., 1998) and structural-functional connection (Freire, 1999)
(from the residue-level stability constants without accounting for the
folded status of other residues), further underscoring the robustness of
our observations. However, it is still possible that some proteins present a
rigid surface for binding with the binding partner being selected for
larger dynamics on the binding site, an aspect that can be studied only on
a case-by-case basis. An understanding of such co-evolving coupling free
energies across two binding partners would therefore be the next
important step towards rationalizing the anisotropic distribution of
protein stabilities across the structure. We also present here the elusive
physical basis for the presence of ‘sectors’ in proteins. More than 80% of
sector residues in both PDZ and DHFR exhibit marginal thermodynamic
coupling despite forming a near-contiguous pattern around the binding
site residues. Therefore, the selection for dynamics likely contributes to
the co-evolution of sector-like functional regions while highlighting the
power of sequence-based approaches to infer dynamical patterns without
explicitly considering them.

The activity and substrate specificity of proteins can be manipulated
via an array of high-throughput approaches with the endpoint being a
mutation or a collection of mutations that meet the set criteria. Func-
tional studies also show that multiple combinations of mutations (and
just not one set) could rescue non-functional variants (Leander et al.,
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2020) and context-dependence contributes to varied allosteric outcomes
(Tang and Fenton, 2017; Wang et al., 2020). But it is still not clear as to
how the identified mutations affect the folding conformational landscape
and hence, the interaction work or the distribution of conformational
states to modulate activities. We provide a plausible answer to this by
comparing the folding landscapes of diverse but related pairs of proteins
and find significant differences in coupling free energies despite very
little changes in the overall structure; importantly, the differences are not
localized to the mutated site but are distributed throughout the structure.
Moreover, experimental and computational works show that even
single-point mutations and perturbations involving ligand binding can
contribute to widespread changes in hydrogen-exchange protection fac-
tors, NMR order parameters, chemical shifts (Petit et al., 2009; Hen-
zler-Wildman et al., 2007; Roche et al., 2013; Whitley et al., 2008;
Naganathan, 2019; Tzeng and Kalodimos, 2012; Kumar et al., 2018;
Boehr et al., 2006) and structural measures of connectivity in a variety of
systems (Zheng et al., 2006; Atilgan et al., 2010; Rajasekaran and
Naganathan, 2017; Guarnera and Berezovsky, 2019). Taken together
with the results of the current work, it can be concluded that the majority
of residues in a protein are thermodynamically coupled to different ex-
tents contributing to non-intuitive context-dependence of mutations and
allosteric effects. Thus, natural selection works at the level of global
interaction network with mutations in the second- or third-shell (or even
distant) around the active site fine tuning the catalytic activity and
specificity, the likely outcome of which is the observed long-range
evolutionary coupling of active site residues (Jack et al., 2016).

To summarize, the thermodynamic framework of the WSME model
provides information on not just the folding mechanism and relative
barrier heights, but also the extent of native ensemble heterogeneity that
manifests as a hierarchy of coupling free energies. The results presented
here are consistent with the alternate thermodynamic treatments of
Freire and Hilser, and provide a structural viewpoint on proteins that is
complementary to sequence- and function-based approaches. In addition,
given our observation that the majority of protein residues are coupled to
each other in a given protein, it is necessary to think of selection at the
level of the global interaction network to understand not just allostery
but also in the evolution of enzymatic activity and selectivity; these
features can be studied in the proposed model framework by introducing
mutations and exploring the extent to which coupling free energies are
modulated. The current methodology can also be extended to study the
impact of disease-causing mutations even in large systems and in the
absence of structural information on the mutant by merely generating
coupling free energy maps.
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