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Abstract

In this work, we introduce new phenomenological neuronal models (eLIF and mAdExp) that

account for energy supply and demand in the cell as well as the inactivation of spike genera-

tion how these interact with subthreshold and spiking dynamics. Including these constraints,

the new models reproduce a broad range of biologically-relevant behaviors that are identi-

fied to be crucial in many neurological disorders, but were not captured by commonly used

phenomenological models. Because of their low dimensionality eLIF and mAdExp open the

possibility of future large-scale simulations for more realistic studies of brain circuits involved

in neuronal disorders. The new models enable both more accurate modeling and the possi-

bility to study energy-associated disorders over the whole time-course of disease progres-

sion instead of only comparing the initially healthy status with the final diseased state. These

models, therefore, provide new theoretical and computational methods to assess the oppor-

tunities of early diagnostics and the potential of energy-centered approaches to improve

therapies.

Author summary

Neurons, even “at rest”, require a constant supply of energy to function. They cannot sus-

tain high-frequency activity over long periods because of regulatory mechanisms, such as

adaptation or sodium channels inactivation, and metabolic limitations. These limitations

are especially severe in many neuronal disorders, where energy can become insufficient

and make the neuronal response change drastically, leading to increased burstiness, net-

work oscillations, or seizures. Capturing such behaviors and impact of energy constraints

on them is an essential prerequisite to study disorders such as Parkinson’s disease and

epilepsy. However, energy and spiking constraints are not present in any of the standard

neuronal models used in computational neuroscience. Here we introduce models that

provide a simple and scalable way to account for these features, enabling large-scale theo-

retical and computational studies of neurological disorders and activity patterns that

could not be captured by previously used models. These models provide a way to study
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energy-associated disorders over the whole time-course of disease progression, and they

enable a better assessment of energy-centered approaches to improve therapies.

1 Introduction

Brain metabolism, even in its resting state, constitutes a major source of energy consumption

in mammalian species. Indeed, cells—and especially excitable cells such as neurons—undergo

constant ion fluxes both along and against the concentration and electric gradients. To move

ions against these gradients, an active mechanism is required, which consumes energy in the

form of ATP. In cells, this work is mostly associated with the sodium-potassium pump (Na/K

pump or NKP) which moves 3 sodium ions out of the cell in exchange for 2 potassium ions

moving in for every hydrolyzed ATP molecule, thus creating a net electric current [1]. As a

result, Na/K pump is responsible for roughly 75% of the total energy consumption in neurons

[2], which arguably makes it one of the most important players in the cell: its action makes the

energy from the hydrolysis of ATP available to most other processes [3], allowing changes in

the membrane potential, regulation of the volume, or transport of nutrients inside the cell.

Thus the energy level, through the Na/K pump activity, modulates neuronal response and

directly influences information processing [4].

Though the Na/K pump has been thoroughly researched in the past decades [1, 3], surpris-

ingly few neuronal models include the pump and its electrogenic properties [5–7] and even

fewer account for its underlying energy substrate [8, 9]. A probable reason for this fact comes

from the significant focus of theoretical studies on cortical areas that generally display sparse

activity. Such conditions put little or no metabolic stress on the neurons and thus limit the

influence of the Na/K pump and energetic constraints on the dynamics. However, the story

changes drastically when energy-intensive behaviors such as bursting or fast pacemaking

dynamics are considered, or when studying neuronal disorders. Indeed, both situations can

place neurons under significant metabolic stress and induce fluctuation in the metabolite and

ion concentrations which, from NKP-driven coupling between metabolism and activity, can

then lead to major changes in the neuronal dynamics.

Outside of neuroscience, the influence of Na/K pump and energy consumption on activity

and disorders were investigated in the context of the cardiac electrophysiology [10–12]. How-

ever, awareness is now raising in the neuroscience community, including its most theoreti-

cally-oriented members, as an increasing number of publications start to stress the critical

influence of mitochondria [13, 14] and Na/K pump [15] and the intricate feedback loops

between activity and energetics. Some well-known works on energetics in computational neu-

roscience include the energy budgets from [16] and [2], as well as studies related to the link

between action potential shape and ATP consumption [17, 18]. Yet, these studies deal with

general budgets from the point of view of optimality theory and do not describe the local inter-

actions between energy levels and spike initiation.

The interactions between energetics and neuronal activity are most visible in neuronal dis-

orders such as epilepsy [19–21], Alzheimer [22], or Parkinson’s disease [23, 24]. It is therefore

in the context of neuronal diseases that one can find the few studies that really focused on

these interactions [8, 9, 25, 26]. Unfortunately, because such studies are still scarce and the

associated modeling frameworks are still limited, computational studies of neuronal disorders

currently suffer from at least one of the following issues: a) they do not account for energetic

constraints, b) the models do not reproduce important features of the relevant neuronal

PLOS COMPUTATIONAL BIOLOGY Simple models including energy and spike constraints to study neuronal disorders

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008503 December 21, 2020 2 / 22

implementation is freely available at https://github.

com/Silmathoron/elif-madexp and on ModelDB.

Funding: TF was awarded a Humboldt Research

Fellowship for Postdoctoral Researchers and AL

was awarded a a Sofja Kovalevskaja Award from

the Alexander von Humboldt Foundation: https://

www.humboldt-foundation.de. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008503
https://github.com/Silmathoron/elif-madexp
https://github.com/Silmathoron/elif-madexp
https://www.humboldt-foundation.de
https://www.humboldt-foundation.de


behaviors, or c) the size of the simulated networks is extremely small (notably due to the use of

complex conductance-based models).

Here we present new models to help tackle these issues through theoretical descriptions of

neuronal dynamics that a) account for energy levels and their influence on neuronal behavior,

b) are able to reproduce most relevant neuronal dynamics in the context of disorders such as

seizures or Parkinson’s disease, and c) can be used in simulation of networks up to several mil-

lion neurons.

2 Methods

In the following, we describe the implementation of the new models. We discuss the biological

mechanisms that gave rise to the variables and equations in our models and list the associated

properties that an energetic model should satisfy. Two major biological components consid-

ered in the models are the pumps that degrade ATP into ADP to maintain ion gradients (most

notably the Na/K and calcium pumps), and ATP-gated potassium (K-ATP) channels that

open or close depending on the ATP/ADP ratio. When ATP concentration or the ATP/ADP

ratio decreases, the pump’s effectiveness decreases, resulting in a rise of sodium concentration,

thus increasing membrane potential and sometimes excitability. Conversely, a decrease in the

ATP/ADP ratio tends to open K-ATP channels, allowing potassium to flow out of the cell and

decrease membrane potential and excitability. These mechanisms directly or indirectly influ-

ence a neuron’s excitability and its ability to generate action potentials. Depending on their rel-

ative importance, a neuron can, therefore, end up in a depolarized or hyperpolarized state

when energy levels decrease.

Based on these main mechanisms, the models were design to meet several conditions that

can be split into 1) behavioral requirements, associated to the type of responses and biological

situations that the models can account for, and 2) practical constraints associated to the

computational cost and theoretical complexity of the model. As energetic constraints are espe-

cially relevant for behaviors associated with diseased or hypoxic state, we designed our models

so that they would be able to provide meaningful behaviors in such conditions.

Regarding behavioral requirements, we took care of reproducing the effects ATP/ADP

changes on pumps and K-ATP channels so that the models could account for three major

observations:

• as mitochondrial health or metabolic resources decrease (e.g. during hypoxia), the excitabil-

ity and resting potential of the neuron can increase [25, 27], notably due to insufficient activ-

ity of the Na/K pump,

• decrease in metabolic resources is also associated with an increase in calcium levels [27] due

to insufficient activity of the pumps,

• during seizures, or when submitted to excessive excitation, neurons undergo depolarization

blocks characterized by “superthreshold” membrane potential without spike emission [28]

that is caused by sodium-channel inactivation as the Na/K pump cannot move sodium out

quickly enough.

In addition, the specific form of the equation was chosen to allow two specific behaviors to

be switched on or off depending on the parameters used:

• neuronal bistability, observed in several brain regions [29, 30], is involved in important

mechanisms such as up-and-down states and could also explain discontinuities in the pro-

gression of neurodegenerative diseases [31],
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• adaptation currents and bursting or rebound activities that are major players in neuronal

disorders [32, 33].

Our central goal is to develop models that do not only reproduce important behaviors, but

also allow for large-scale event-based simulations. To achieve this, the computational cost and

complexity of the models should be minimal. Thus, we decided to use hybrid models based on

the integrate-and-fire paradigm.

We established that models including an adaptation current, such as the Quadratic Inte-

grate-and-Fire and the AdExp neurons [34, 35], were able to provide most of the required

dynamics such as bursting and rebound activity [36, 37]. The missing requirements—depolari-

zation block and bistability—as well as the inclusion of metabolic resources would thus come

from the addition of dynamic resource availability (broadly called energy in the following), as

shown on Fig 1. This purpose of this variable is to represent the ATP/ADP ratio in biological

neurons, though the phenomenological nature of the models implies that there are limits to

this analogy.

For applications where bursting behavior and adaptation do not play an important role, a

simple model that accounts only for energy dynamics is provided: the eLIF neuron. It intro-

duces energy dynamics as an addition to the simpler leaky integrate-and-fire (LIF) model and

enables us to analyze the consequences of these constrains in a more straightforward and visual

manner. The behavior of this model can also be fully investigated analytically compared to the

3-dimensional system that arises in a second time when both energy and adaptation dynamics

are considered. This second model, called mAdExp, is built upon the AdExp equations and

Fig 1. Variables and interactions that must be present in the models to capture all relevant behaviors, the main molecules

associated to each of the variables are also displayed. The type of interaction is marked on the arrow. For instance, w modulates

(M) V as it influences the intrinsic dynamics of V but does not usually cause it directly. On the other hand, as changes in the

membrane potential are the main cause of variations in w, V is said to drive (D) w. Eventually, all mechanisms consume (C) energy.

https://doi.org/10.1371/journal.pcbi.1008503.g001
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cam reproduce all desired behaviors. Though analytical analysis of this model can prove chal-

lenging, most of its dynamics can be understood from the complementary analyses of the eLIF

and AdExp models.

2.1 Introducing energy: The eLIF model

The first proposed model is a straightforward modification of the standard Leaky Integrate-

and-Fire (LIF) model [38]. In order to provide an intuitive and analytically tractable imple-

mentation that would illustrate the consequences of energy dynamics and the constraints it

places on spike-emission, we developed a two-dimensional dynamical system describing the

evolution of a) the membrane potential V of a point neuron and b) the available amount of

energy � that the neuron can access. To make the equations more readable and the parameters

easy to interpret, the model is displayed using three equations; however, it can be easily simpli-

fied to a system of two equations only.

if V < Vth or � < �c

Cm
_V ¼ gLðEL � VÞ þ Isyn þ Ie

te _� ¼ 1 �
�

a�0

� �3

�
V � Ef

Ed � Ef

EL ¼ E0 þ Eu � E0ð Þ 1 �
�

�0

� �

else
V  Vr

�  � � d

(

8
>>>>>>><

>>>>>>>:

ð1Þ

As in other standard integrate-and-fire models, the neuron possesses a leak potential EL, a

membrane capacitance Cm, and a leak conductance gL, the combination of the last two defin-

ing the membrane timescale τm = Cm/gL. Input from other neurons are represented by Isyn

while external input currents are associated to Ie. When either of these inputs brings the neu-

ron above its threshold potential Vth, provided that there is enough energy (� > �c) a spike is

emitted and the voltage is instantaneously reset to Vr.

The available energy � is introduced as a proxy for the ATP/ADP ratio in biological neu-

rons. Its value varies with a typical timescale τe and is regulated by an interplay of the energy

production (which tries to maintain it close to the typical energy value defined by the energetic

health α�0) and two consumption mechanisms. The production term reflects mostly the oxida-

tive phosphorylation performed in mitochondria [39] that enables a tight regulation of ATP

levels in the cell.

The first consumption mechanism is associated with the fluctuations of the membrane

potential and accounts for the ATP consumed by the Na/K pump to maintain ion homeostasis

[3]. Since there is no available information about the functional form of the relationship

between membrane potential and energy consumption, we have almost no constraints on the

choice of the functional class. We selected a function allowing for a wide range of behaviors as

observed in experiments while remaining as simple as possible: a 3rd order polynomial (see

Fig 2, red line). Indeed, this is the simplest nonlinearity that can, depending on parameter val-

ues, either lead to a behavior that is qualitatively equivalent to a linear relationship or to the

presence of a bistability, making it possible to asses the influence of bistable states on neurons’

and network dynamics. The parameters defining the shape of the nullcline are: the flex poten-

tial Ef (that corresponds to the inflection point, or flex, of the curve) and the energy-depletion

potential Ed, that is a potential at which �-nullcline crosses the x-axis—Ed thus corresponds to

the lowest voltage-clamp potential that will lead to complete energy depletion and therefore

neuronal death.

The second source of energy consumption is the energetic cost δ of the spike generation

mechanisms. Though the biological reason for this energy consumption is the same as the
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first term (ionic transfer by the Na/K pump), a separate term is necessary because of the

reset mechanism of integrate-and-fire neurons: in such models, part of the spike duration is

compressed into an instantaneous jump; δ thus accounts for the energy consumed during

this compressed period. The normal energy level that the neuron is able to maintain

depends on its “energetic health” described by the α parameter: a healthy neuron would

have a value of α equal to one, while diseased neuron would see their α parameter decrease

towards zero.

Contrary to most previous models, the leak potential is not constant, as it depends on the

energy level of the neuron. The steady-state value EL of the membrane potential thus varies lin-

early, starting from Eu when the energy is zero and decreasing as � increases, crossing the

potential E0 for � = �0 (see Fig 2) for details). Biologically, this account for the fact that a

decrease in energy availability inhibits the function of the Na/K pump, leading to sodium accu-

mulation inside the cell and thus to a depolarization.

The behavior of the standard LIF is recovered when Eu = E0 and δ = 0.

Fig 2. Phase space of the eLIF model in bistable parameter regime. V-nullcline is given by the blue line, �-nullcline by the red curve. Fixed

points (FPs) are shown by the circles (filled for stable and empty for unstable) and the cross marks the inflection point of the �-nullcline. Dashed

lines represent the shifts in the V-nullcline which lead to the disappearance of the unstable fixed point and of one of the stable fixed points

(saddle-node bifurcation via the external current Ie). The super-threshold region, where spikes are elicited upon entrance, is marked by the light

grey shading; the energy-limiting region (� < �c) is marked by the grey shading and overlaps with the super-threshold region in the dark grey

area, where energy limitations prevent spiking though the neuron is above threshold.

https://doi.org/10.1371/journal.pcbi.1008503.g002
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2.2 Adaptation and bursting: mAdExp model

In order to model the whole range of biologically-relevant behaviors that can be observed in

neuronal disorders such as epilepsy or Parkinson’s disease, it is necessary to include a modula-

tory mechanism to account for cellular and spike-driven adaptation. This second dynamical

system keeps the basic properties introduced in the eLIF model and extends them to accom-

modate the cellular adaptation and spike initiation mechanisms of the adaptive Exponential

Integrate-and-Fire model (aEIF or AdExp) by [35]. This leads to a 3D model with three

dynamical state variables which are the membrane potential V, the energy level � (as for the

eLIF model), and an adaptation current w:

if V < Vpeak

Cm
_V ¼ gL EL � Vð Þ þ gLDT

� � �c

�0

exp
V � Vth

DT

� �

� wþ Isyn þ Ie

te _� ¼ 1 �
�

a�0

� �3

�
V � Ef

Ed � Ef
�

w
g

tw _w ¼ a V � ELð Þ � wþ
�c

�c þ 2�
IKATP

EL ¼ E0 þ Eu � E0ð Þ 1 �
�

�0

� �

else

V  Vr

w  wþ b

�  � � d

8
>>><

>>>:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð2Þ

Compared to the eLIF implementation, the presence of the spike initiation mechanism

through the exponential function removes the necessity of a hard threshold for spike preven-

tion due to energy limitation: the (� − �c)/�0 factor suppresses the exponential divergence as

soon as the amount of available energy goes below �c.

The dynamics of the � variable remains mostly unchanged except for the addition of a new

consumption term associated with the adaptation current w: biologically γ−1 corresponds to

the energetic cost of bringing back the potassium ions which exited the cell (through calcium-

gated potassium channels) per pA unit of the adaptation current. The model thus clearly sepa-

rates the contributions of the energy (�) and of the calcium-gated adaptation (w).

Compared to the original AdExp model, the w dynamics includes an additional term,
�c

�cþ2�
IKATP, to account for ATP-sensitive potassium channels that trigger potassium outflow

when the ATP/ADP ratio becomes small, with a typical activation-threshold depending on the

ADP/ATP ratio [40]. IKATP is thus the maximum current at zero energy. Because of the numer-

ous calcium exchangers in neuronal cells [41, 42], the term responsible for the exponential

decay of the adaptation current with timescale τw is considered to be energy-independent.

Thus, only EL and K-ATP induce energy-dependent changes in the adaptation current.

2.3 Numerical implementations

Implementations of the models are available for three major simulation platforms: NEST [43],

through the NESTML language [44], BRIAN [45], and NEURON [46]. Models are available on

ModelDB and on GitHub (https://github.com/Silmathoron/elif-madexp), together with code

to reproduce the figures. Networks were generated using NNGT 2.0 [47] and simulated using

NEST 2.20 [43]. Benchmarks have been performed with NEST and can be found in S1 Table.

2.4 Fitting procedure

To reproduce experimental recordings, we could set some of the model parameters directly

from the data. The rest had to be manually adjusted. The following parameters can be

informed from the data: a) EL was obtained by measuring the median resting value b) the
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membrane timescale τm was measured from the initial slope of the membrane dynamics in

response to hyperpolarizing currents c) the sum gL + a was obtained through a linear regres-

sion from the difference between resting EL and steady-state Ess potentials in response to

depolarizing currents as DV ¼ Ess � EL ¼
I

aþgL
. These properties were used to constrain the fol-

lowing parameters: Cm, gL, a, EL, E0, Eu. All other parameters were then manually adjusted to

minimize the discrepancy between subthreshold dynamics, number and time of spikes. Fur-

ther research would be necessary to find how to automate this procedure using a proper dis-

tance function in optimization toolboxes.

3 Results

The new eLIF and mAdExp models enable us to obtain a variety of new dynamics such as

rebound spiking, depolarization block, cellular bistability and up-and-down states, as well as

biologically relevant transitions from a healthy to a diseased state.

For hybrid models, most of the neuronal dynamics can be understood through two main

concepts: a) fixed points (FPs), which are equilibrium states of the model, and b) bifurcations,

which are sudden changes in the number or stability of the fixed points, and which make the

neuron change its behavior, for instance from resting to spiking.

This section details the aforementioned behaviors and their mechanistic origins through

the theory of dynamical systems, using fixed points and bifurcations.

3.1 Behaviors and bifurcations of the eLIF model

The eLIF model, like the integrate-and-fire (LIF) neuron, has only two dynamical states: quies-

cent or active (spiking). Due to the energetic constraints, the model has two possible quiescent

states which are the “normal” resting state, with a membrane potential located below thresh-

old, and a super-threshold state where depleted energy levels prevent spike emission. The finite

energy resources also imply that, contrary to the LIF neuron, the active state can be transient,

as the neuron transits from its resting state to a quiescent, super-threshold state through an

active period.

In the language of dynamical systems, the quiescent states are associated to FPs inside the

continuous region (if either VFP < Vth or �FP < �c), whereas the active state is associated to the

absence of a stable FP that can be accessed continuously in the region of phase-space where

the neuron lies—see Fig 3.

We will focus here on the situation that is most relevant for the study of neuronal disorders,

i.e. the case where Eu > E0, meaning that decrease in energy levels leads to increase in mem-

brane potential. This situation leads to a neuronal behavior which is that of an integrator;

another type of behavior, closer to that of a resonator, with dampened oscillations is also possi-

ble for Eu < E0 and is discussed in section 3.4 and in S1 Text.

In this situation, due to the nonlinearity of the �-nullcline, the biophysically acceptable

domain for steady states (�� 0 and V in a reasonable range of potential) can contain either

zero, one, or three FPs. In the case of a single, necessarily stable FP, it corresponds to a stan-

dard neuron with a single resting state. For certain combinations of the neuronal parameters,

the V-nullcline can intersect the �-nullcline three times, leading to two stable FPs and one

unstable point. This situation corresponds to a bistable cell, where two distinct resting states

are possible: an up-state, characterized by lower energy levels and high membrane potential,

and a down-state, associated to higher energy and hyperpolarized membrane potential.

Responses of the bistable neuron to the different step-currents are illustrated in Fig 3. Depend-

ing on initial state and the input the neuron transitions between the up- and down-states.

Finally, the situation without FPs in the biophysical domain is unsustainable and will lead to
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rapid neuronal death. Possible reasons for transitions between these states will be detailed in

the following section.

We use the transitions in the number of FPs, called bifurcations, to predict the behavior of

the neuron. The bifurcations can have two separate kinds of consequences, that can potentially

happen simultaneously: a) a change in the steady-state behavior of the neuron such as the

switch from a unistable to a bistable state or vice-versa, b) a transition from a quiescent to an

active state.

Let us discuss these bifurcations in response to an external stimulation associated to an

applied current Ie. The consequence of Ie is to shift the V-nullcline horizontally (towards more

negative potentials if Ie < 0, or towards more positive if Ie > 0), which can lead to transition

between the unistable and bistable states as one stable FP either splits into one stable and one

unstable FP or, on the contrary, merges with the unstable FP and disappears. This type of tran-

sition is called a saddle-node bifurcation and occurs for:

I�e� ¼ gL Ef � Eu þ aðEu � E0Þ 1�
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðEu � E0Þ

3ðEd � Ef Þ

s !" #

ð3Þ

Depending on the value of Ie, the neuron can thus display either a single or two stable FPs

—see Fig 3 and S1 Text for the analytic derivation of the FPs and S1 Fig for the I − f curves.

As Ie increases, the transition from three FPs to one FP can also lead the neuron to fire,

either transiently if the remaining FP is located in the continuous region (if either VFP < Vth

or �FP < �c) or continuously (if VFP� Vth and �FP > �c).

Fig 3. Dynamics of the eLIF model as timeseries (A) and in phase-space (B) in the bistable regime. A. The behavior of the model is shown in

response to four different inputs, shown in grey on the V subplot: a low depolarizing current (a: 10 pA), a stronger depolarizing current (b: 30 pA),

a large depolarization (c: 80 pA), and a hyperpolarizing current (d: -60 pA). For visualization purposes, action potentials are made visible by setting

the voltage to -50 mV at spike time. B. Corresponding behavior in phase-space is shown, each subplot corresponding to one of the four domains

separated by the grey dashed lines on panel A. The black curves mark the resting nullclines and the light grey line marks the input-driven V-

nullcline; resting fixed points (FPs) are marked by the large black circles while input-driven FPs are show by the small grey circles and spike

emissions are marked by empty left triangles while reset positions are marked by blue dots. The neuron displays the following behaviors: (a)

subthreshold dynamics, where the neuron temporarily leaves the high-energy FP, associated to the down-state, then goes back towards it, (b)

transition from the initial high-energy FP to the low-energy FP (up-state) through a spiking period, (c) transition from the up-state to a

depolarization block via a spiking period before returning towards the up-state, (d) transition from up- to down-state. See S2 Table for detailed

parameters.

https://doi.org/10.1371/journal.pcbi.1008503.g003
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3.2 Transition from health to disease

As energy availability decreases, either due to disease [25] or hypoxia [27], neurons often dis-

play a parallel increase in their resting membrane potential and excitability, which can lead to

highly active periods before the neuron ends up in a highly depolarized yet completely non-

responsive state also called depolarization block. Biologically, this low-energy state—(d) and

below on Fig 4—would be associated to deregulation of calcium levels and accumulation of

oxidizing agents which eventually lead to cell death (occuring when α reaches zero in the

model).

Due to the interaction between energy and membrane potential in the eLIF neuron, the

model can reproduce this kind of dynamics through the evolution of one or more parameters.

The most straightforward way to model this transition is through the α parameter which repre-

sents the energetic health of the neuron—see Fig 4. The progressive decrease in the value of α,

from values close to 1 for a healthy neuron to values that tend towards zero for a diseased cell,

leads to progressive changes in the membrane potential and excitability of the neuron. The

Fig 4. One possible pathway for the transition between healthy and diseased state in the eLIF model. In the model, progressive decrease in the

“energetic health” factor α, from 1 to 0.3, leads to a succession of changes in both the number of fixed points (FPs) and in their properties. The middle

panel shows the evolution of the FPs’ energy levels—filled circles for stable FPS, empty for unstable FPs—with the grey line marking �c. Four stages of

the disease progression are also illustrated in phase-space: (a) healthy neuron with a single FP. (b) bifurcation to a 3 FPs state without major changes in

the dynamical properties (susceptible but potentially “asymptomatic” cell). (c) bifurcation to a single low-energy FP associated to an extremely excitable

state (diseased cell). (d) further decrease of the energetic health brings the FP below the energy threshold �c, leading the neuron to become

unresponsive. In stages (a) and (b), the neuron lies in its resting state in the absence of input; however, at stages (c) and (d), the two insets on the upper

panel show the membrane dynamics of the neuron for a hypothetical “accelerated evolution” of the disease, where the neuron respectively enters

(35-second simulation) and leaves (45-second simulation) the “hyperactive” region where usually subthreshold inputs (here modeled by a Poisson

noise) are sufficient to trigger uncontrolled spiking. See S2 Table for detailed parameters.

https://doi.org/10.1371/journal.pcbi.1008503.g004
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typical behavior of the model, illustrated on Fig 4, consists of a slow increase of the resting

membrane potential, and thus of the excitability, until the background noise or external input

is sufficient to trigger spike emission from the neuron. Once that happens, the cell enters a

highly active state in which it remains until the progressive decrease of α brings the target

energy below �c, at which point spike emission stops and the neurons enters a highly depolar-

ized and non-responsive state.

When it comes to collective dynamics, a decrease in neuronal health can go unnoticed espe-

cially if the homeostatic regulation adjusts excitability of individual neurons. It happens, for

instance, in excitatory and inhibitory networks displaying asynchronous-irregular (AI) activity

with low firing rates—see Fig 5.

Without external input, the distribution of firing rates as well as the average properties of

the activity (cross-correlations and coefficients of variation) can remain stable despite neuro-

nal health decrease (Fig 5B and 5C). This happens because compensatory mechanisms enable

neurons to maintain firing rate homeostasis by means of synaptic scaling and regulation of cell

excitability, that we modeled numerically by a decrease of excitatory synaptic weights and an

increase of Vth—see S1 Text and S5 Table for more details.

However, the response to an external input can be drastically modified (Fig 5A), transition-

ing from an almost continuous tonic response (top), to an intermittent, bursty dynamics (bot-

tom). This example demonstrates how, depending on the homeostatic capabilities of the brain

Fig 5. Decrease in health can be partly compensated by homeostatic mechanisms and be invisible from the statistical properties of background activity, as

shown by the behavior on an excitatory and inhibitory population with N = 1000 neurons in the asynchronous irregular (AI) state. A. For such a network,

changes in the neuronal health, modeled by a decrease in the α parameter, do not appear in the background activity of the raster (non-grayed areas), where the activity

of both excitatory (red circles) and inhibitory (gray triangles) neurons remain very similar. To see the actual consequences of the decrease in health, one must look at

the response of the network to an additional input, which is shown in the grayed areas on panel A. In response to a threefold increase in the rate of Poisson input

between 1400 and 1650 ms, the activity of 100 excitatory neurons (marked by the orange area) progressively switches from continuous tonic firing (top) to well-

separated bursts (bottom). B. More quantitative analyses also confirm that the background activity remains close to Poissonian, with coefficients of variation (CVs)

around 0.7–0.8, and asynchronous, with an average cross-correlation (CC) smaller than 1=
ffiffiffiffi
N
p

. C. The distributions of firing rates over 5 seconds remain almost

identical and centered around 2 Hz; dotted and dashed lines respectively denote the quartiles and medians.

https://doi.org/10.1371/journal.pcbi.1008503.g005
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region of study and the recording protocol, the effect of energetic constraints can be either

masked or clearly visible in the neuronal responses. There are multiple ways in which the ener-

getic health can influence the information processing capabilities. Using our models these

mechanisms can be studied further in large recurrent networks.

3.3 Dynamics of the mAdExp model, biologically-relevant behaviors

Despite the multiple interesting features of the eLIF model, several important dynamics such

as bursting or adaptation cannot be reproduced within the model. In order to recover all rele-

vant behaviors, we added a spike-generation mechanism as well as an adaptation current to

the eLIF model to obtain the mAdExp model (modified AdExp with energy dependency).

This 3-dimensional model is then able to provide all the features of the eLIF and AdExp

models while bringing the dynamics closer to biological observations, especially in large-input

or stress-inducing situations. Fig 6 shows several standard neuronal responses reproduced by

Fig 6. Typical dynamics of the mAdExp model with different parameter settings in response to current steps given by the scale bars—500 ms for all entries—In

yellow to mark lower excitation, red to mark higher excitation, blue bar and asterisk on IR to mark inhibitory current. The behaviors include regular spiking (RS),

adaptive spiking (AS), initial burst (IB), regular bursting (RB), transient spiking (TS), delayed bursting (DB), and delayed accelerating (DA). Similar responses to the

lower (yellow) currents can be achieved by the original AdExp model. However, each of these dynamics now comes with an “energy-depleted” state for high input

current (red), associated to a depolarization block (responses associated to red bars), that cannot be captured by AdExp model. In addition to these standard behaviors,

dynamical repertoire of the mAdExp neuron also includes a different mechanism for post-inhibitory rebound spiking (IR), and can display post-excitatory rebound

(ER) or intermittent spiking dynamics (IS). See S3 Table for detailed parameters.

https://doi.org/10.1371/journal.pcbi.1008503.g006
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the model, as well as how these responses evolve as the input intensity increases up to values

where the neuron cannot sustain continuous activity.

Though the theoretical analysis of the model becomes more complex, “standard” resting

states—meaning that VFP is several ΔT smaller than Vth � DT ln
Eu � E0

DT

� �
—for healthy neurons

can be very well approximated by the fixed point of the eLIF model because the adaptation cur-

rent is usually close to zero at rest. Furthermore, their response to low-intensity stimuli can be

accurately predicted by the AdExp model with the same common parameters and the corre-

sponding EL value—see S1 Text for detailed calculations. Most healthy neurons thus share the

bifurcations associated to the AdExp model [36, 48], with the notable addition of a new bifur-

cation for rebound spiking which will be developed in the next section.

3.4 Rebound spiking mechanisms in the different models

Rebound spiking is a common property in neurons, with is potentially significant in epilepsy

[49] and for information processing, be it in the striatum [50], the thalamocortical loop [51],

or in auditory processing [52] and grid cells response generation [53, 54].

This mechanism, though already available in several models such as AdExp [35], strongly

restricts the responses of the neuron such that only a fraction of the typical dynamics of

rebound-spiking neurons can be recovered. The reason is that, in the AdExp model, rebound

bursting is always associated to a sag and significant adaptation—see conditions in [48] and S1

Text—and therefore cannot reproduce either non-sag subthreshold responses or some spiking

behaviors associated to excitatory inputs, cf. Fig 7.

The mAdExp model provides two new ways of extending the variety of rebound behaviors

that can be modeled: a) by introducing a new mechanism for rebound spike generation with-

out inhibitory sag and b) through the energy dynamics, leading to less significant sags and

lower excitability compared to the adaptation mechanism—see also S2 Fig.

Fig 7. Voltage traces for two cell types (566978098 and 570896413 in Allen Brain Atlas) and associated fits with mAdExp and AdExp

neuron models. Fourth row represents the input current. Additional or missed spikes are marked in parentheses on the left of the associated

spike train. Activities in the rectangles are expanded in the lower panels. A. Cell presenting little to no sag upon hyperpolarization and adaptive

spiking behavior (A.1); expanded activity (A.2) enables to see the discrepancies between the AdExp model (green) and the data (thin black line)

while mAdExp (blue) matches the dynamics much more precisely. B. Cell presenting significant sag upon hyperpolarization and almost

immediate depolarization block upon depolarizing input (B.1). Both AdExp and mAdExp match the rebound dynamics; however, AdExp

cannot reproduce the depolarization block as shown in the expanded dynamics (B.2). See 5 for detailed parameters.

https://doi.org/10.1371/journal.pcbi.1008503.g007
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Rebound spiking in mAdExp can occur through a new bifurcation for Eu − E0 < ΔT and

Vth sufficiently low (see S1 Text for details) which leads to the positive divergence of the V-

nullcline before Vth and thus to the existence of a stable fixed point such that Vth > VFP > V�,
with

V� ¼ Vth þ DT ln
Eu � E0

DT

� �

< Vth:

Fig 7 shows how the mAdExp model can successfully reproduce complex behaviors found

in the Allen Cell Types Database (available from: celltypes.brain-map.org) such as rebound

bursting with little to no sag (cell ID 566978098 shown in Fig 7A.2) or cells displaying both

rebound spiking and rapid depolarization block (cell ID 570896413 shown on Fig 7B.2). Due

to the mAdExp properties, the possibility of rebound dynamics is thus extended compared to

the AdExp model and can be obtained with or without sag, as well as with or without spike

adaptation.

4 Discussion

4.1 Choices underlying the models

The eLIF and mAdExp models where chosen as integrate-and-fire models because of the ana-

lytic simplicity of such equations and their computational efficiency compared to conduc-

tance-based models. Indeed, the straightforward detection of spike times in such models

makes them especially suited for simulations of large scale neuronal networks using standard

spike-based simulators and their discontinuous dynamics makes bursting possible with only

two equations instead of three for continuous models like the Hindmarsh–Rose neuron [55]

or general conductance-based models.

Though our models are almost completely phenomenological, their parameters can be

directly related to biological phenomena, often even in a quantitative manner, enabling precise

predictions from their theoretical analysis. The objective of obtaining single-neuron models

where the variables can be interpreted and mapped in a straightforward manner also pre-

vented us from working with previous models such as the Epileptors [56, 57] or Model 2 from

[26]—see discussion below.

To obtain a model capable of reproducing all the behaviors that we deemed necessary, the

mAdExp model was derived from the AdExp neuron [35] and not from other well known

implementations such as the QIF, first proposed by Izhikevich in his seminal paper [34]. This

choice was made because, despite some obvious drawbacks regarding the more complex ana-

lytics and slightly slower integration of its exponential term, the AdExp model best reproduces

the I-V curve of neurons and the dynamics of spike initiation [58], and is exempt of some of

the mathematical shortcomings of the QIF model [59].

The � variable was designed to qualitatively reproduce biological mechanisms and behav-

iors associated to neuronal metabolism. However, the complexity of these mechanisms led us

to choose a strongly reductionist approach to reproduce some of the features that came out of

previous studies using more detailed conductance-based or multicompartmental models [9,

25, 26, 60]. Therefore, though it can be qualitatively mapped to some specific mechanisms, �

cannot be quantitatively related to any biological measurement.

4.2 Novelty and biological relevance

The eLIF and mAdExp neurons are the first integrate-and-fire models to provide an unambig-

uous description of energy dynamics, enabling to investigate its consequences in single-cell or
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in recurrent-network configurations. Indeed, contrary to previous models where slow vari-

ables were usually introduced to model adaptation from calcium-gated potassium and burst-

ing—this is notably the case for the z variable in the Hindmarsh–Rose model, the u and w

variables in the Izhikevich and AdExp models, or adaptive-threshold models—the eLIF and

mAdExp models provide the � variable as a way to explicitly model energy-related and spike-

initiation constraints. Though other implementations of models including slow variables

might be able to reproduce some of the behaviors examined here, to the best of our knowledge,

the eLIF and mAdExp are the only phenomenological models that permit the investigation of

feedback loops between energy levels, neuronal excitability, and spike emission. The fact that

the model’s variable are interpretable and directly linked to biological mechanisms enabled us

to extend the AdExp model in a straightforward manner; this will also let others expand the

models if they need to capture additional mechanisms or external interactions, e.g. with glial

cells.

The only other examples of models with an explicit variable representing energy levels we

found were developed in [61] and in Model 2 from [26]. While the former is quite simple and

not connected to any specific biological mechanism, the latter explicitly presents the second

variable as a proxy for the ATP concentration in the neuron. In Model 2, the interpretation of

A as a proxy for ATP level notably stems from the fact that it was designed as a simplification

of the more detailed Model 1, a conductance-based model that included K-ATP channels,

where the A variable was defined as the ATP concentration. The model provides interesting

dynamical properties and enabled the authors to develop a new way of modeling the neuro-

glio-vascular system. However, if one’s purpose is to investigate dynamics where both cal-

cium-gated potassium adaptation and energetic constraints are involved, then one would not

be able to use Model 2 as it does not provide a clear distinction between these two mechanisms.

Indeed, the newly introduced A variable only influences the value of the threshold and is there-

fore quite close to a GLIF model [62], which makes it impossible to separate effects that would

biologically stem from “standard” adaptation mechanisms, associated to calcium-gated potas-

sium currents, and effects that would be specific to ATP-related dynamics.

The implementation chosen in the mAdExp model solves this issue by establishing a clear

separation between the retroactions associated to adaptation and those related to changes in

energy levels. In this model, the effects of � and w on the membrane potential can be opposite

and occur (in general) on different timescales. The � variable also regulates the spike initiation

mechanism of the neuron, meaning that, contrary to previous models, energy depletion may

render a neuron totally unresponsive regardless of the input strength. In addition, our models

consider all sources of energy consumption including spikes and subthreshold ion currents.

Thus, over long timescales, the � parameter qualitatively accounts for energy availability as

the ATP/ADP ratio to which pumps and channels are sensitive [39, 63], with this sensitivity

summarized in the IKATP parameter of the mAdExp model. Contrary to slow current variables

that can vary arbitrarily into the positive and negative realm, � represents an energy stock that

must remain positive for the neuron to survive: if the neurons encounter conditions where �

reaches zero with V� Vd, the models provide an explicit condition for neuronal death.

Over shorter timescales, sharp decreases in � following spike emission can lead to depolari-

zation block. This phenomenon is mostly associated with sodium channel inactivation in neu-

rons, and is caused by a sodium accumulation that is too quick to be compensated by the Na/K

pump. Though it is not directly related to energetic constraints, we consider that having this

mechanism associated to the “energy” variable makes sense because the timescale of sodium

channel inactivation depends on the resting sodium levels, which in turn depend on the ener-

getic health of the neuron: a neuron with a very active pump would be able to sustain more
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spikes than one with a defective pump. This mechanism is related to the δ and �c parameters in

the models.

Finally, as � represents the ATP/ADP ratio, the α parameter quantifies the metabolic and

mitochondrial state of the neuron and can be used to investigate the transition from health to

disease as exemplified in the Results. A decrease of the α parameter can be related to metabolic

insults associated to either mitochondrial defects [64, 65], a decrease of oxygen or glucose

availability, or the buildup of various molecules such as reactive oxygen species (ROS) [66, 67]

that prevent proper metabolic homeostasis.

4.3 Consequences of the V/� relationship

One of the major features of the model is the interaction between the energy level and the rest-

ing potential of the neuron. This interaction can lead to a transition from “healthy” or “opti-

mally responsive” neurons to “diseased”, non-responsive neurons. Interestingly the neuron

may go through a hyper-excitable state during this transition, meaning that disease progres-

sion can be marked by a broad range of neuronal dynamics and properties.

Because changes in the energy level affect the neuronal excitability, the synchronizability

and information processing properties of the neurons change significantly as their available

energy decreases. This property of the model matches observations in various neurodegenera-

tive diseases. Synchronizability notably changes in Parkinson’s disease (PD), for instance,

where oscillations in the beta range (13–30 Hz) become predominant and are thought to be

involved in some motor symptoms. Though known variations in the connectivity strongly

influence this dynamical change, modification of intrinsic neuronal properties due to meta-

bolic insult are also likely to contribute to the transition towards more synchronized activity

[32, 68]. Even more obvious, epileptic seizure are characterized by excessive or hypersynchro-

nous neuronal activity and their onset and termination are likely to be related to the metabolic

state of the neurons [19, 20, 69]. Finally, the transition through an hyperactive phase before

entering the non-responsive depolarized state has also be proposed for diseases such as ALS

[25].

From an information transfer perspective, the positive retroaction between depolariza-

tion and energy depletion can lead to increased false positives due to hyperexcitable neurons

in diseased conditions. Furthermore, because of the necessity of a minimum “metabolic

level” for spike emission, this also means that energy-impaired neurons cannot sustain

long-term responses, and would tend to display phasic responses. These combined effects

could further drive bursty activity such as what is observed in PD, where the reliability of

thalamic relay breaks down and the cells start emitting bursts of activity which could lead to

tremor [70, 71].

The mAdExp model can reproduce the main relevant dynamical properties in these phe-

nomena and therefore enables detailed and potentially large-scale computational studies. Such

simulations could lead to more realistic dynamical models and thus to new experimentally

testable predictions.

4.4 Limitations

Due to their simplicity, the eLIF and mAdExp models still suffer from many of the limitations

of the original LIF and AdExp models.

For example, the eLIF cannot reproduce bursting behavior and can only exhibit simple

accelerating or decelerating spiking patterns. Though the dynamical richness of mAdExp is

greater than the LIF and AdExp models, its adaptation mechanism also possesses the same

drawbacks as the original model: the presence of a single adaptation timescale τw. As for the
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AdExp and QIF, though, the mAdExp can be extended in a straightforward manner to account

for multiple adaptation timescales by adding additional w-like variables.

Since multiple biological phenomena are associated to or can affect the � variable (Naf inac-

tivation, ATP/ADP ratio, oxygen concentration, pH, ROS. . .), precise experimental verifica-

tions and relations to biochemical pathways can be quite complex or even impossible to

predict, at least if several phenomena are occurring on similar timescales. The depolarization

block, for instance, only stems from the combination of metabolic parameters δ and �c in our

model. It is indeed strongly related to sodium or potassium accumulation (though not ‘meta-

bolic’ per se, these directly depend on the efficiency of the NKP), to general energetic consider-

ations [72, 73], and may have been selected due to energetic constraints [74]. Yet, other slow

mechanisms that are not accounted for in our models also contribute to this behavior in bio-

logical neurons; notably chloride-related changes in cell volume [75]. However, the purpose of

our models is to explore how changes in energy availability may increase or reduce the occur-

rence of specific behaviors such as the depolarization block. Thus, for the sake of simplicity, we

did not include such passive mechanisms as they do not directly influence energy availability.

Eventually, complex interactions between sodium or calcium levels and ATP production [76,

77] is only coarsely implemented in the model. In particular, because the adaptation variable w
represents calcium-gated potassium, and not directly the calcium levels, interactions between �

and w would not capture precise biological mechanisms. Overall, calcium dynamics can have

very different impacts on ATP production, depending on concentrations and timescales, which

cannot be completely accounted for by the simple relationship present in the model.

5 Conclusion

The two models introduced in the present study provide a novel reductionist approach to

include generic energetic constraints and energy-mediated dynamics to the models of single

neurons. The low-dimensional nature of these two dynamical systems makes them suitable for

analytical investigation of energy-based bifurcations in neuronal behaviors, as well as for large

scale simulations.

The mAdExp model, in particular, is able to replicate a large range of biologically-relevant

behaviors as well as their evolution under metabolic stress. Complex behaviors that are crucial

for some brain regions and disorders, such as rebound spiking or depolarization block, now

can be successfully reproduced. Since energetics plays a critical role in many disorders, this

model is especially well suited to explore possible origins of the differences observed between

normal and diseased activities in neuronal populations.

Finally, these new models are not limited to the comparison between specific healthy or dis-

eased states, as they provide a tunable parameter to represent neuronal health. Thus, the con-

tinuous transition between states can now be investigated, as well as dynamical feedback

between activity and resource consumption in resource-limited conditions such as in neuronal

cultures or seizures.

Supporting information

S1 Text. Supporting information for “Simple models including energy and spike con-

straints reproduce complex activity patterns and metabolic disruptions” including in-

depth mathematical analysis, benchmarks, and parameter data.

(PDF)

S1 Fig. I − f curves of the eLIF neuron for different threshold values Vth (left/right). The

corresponding phase-space is shown in the middle. Threshold values are -65.5 (dark grey), -63,
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-61, and -59 mV (light grey); they correspond to the associated curves on the I − f plots and to

the dashed vertical lines on the phase-space representation. The type of the curve depends on

the position of Vth compared to the position of the low-energy fixed point (FP) at the bifurca-

tion point which is shown as a filled black circle: for Vth > VFP, the neuron has a continuous

type I response curve whereas for Vth > VFP the curve, though still continuous, becomes closer

to a type II curve, with a sharp increase starting immediately at the bifurcation current I�e . See

S2 Table for detailed parameters.

(EPS)

S2 Fig. Dynamics of the eLIF model as timeseries (left) and in phase-space (right) for Eu<
E0 (resonant behavior). The behavior of the model is shown in response to four different

inputs, shown in grey on the V subplot: a low depolarizing current (a: 10 pA), a stronger depo-

larizing current (b: 30 pA), a large depolarization (c: 80 pA), and a hyperpolarizing current (d:

-60 pA). Corresponding behavior in phase-space is shown in the four right panels, with spike

emission marked by an empty left triangle and reset position marked by a dot: (a) the neuron

leaves the fixed point (FP), then goes back towards it (both transitions are associated to and

up/downshoot), (b) the neuron spikes at decreasing frequency as its energy is depleted, (c) the

neuron spikes, then enters a depolarization block for high stimulation, (d) post-inhibitory

overshoot is associated to rebound spiking. See S2 Table for detailed parameters.

(EPS)

S1 Table. Runtime of various models in NEST. A “baseline” run with no neuron (None),

compared to runs with one neuron of each of the mentioned models. For the new energy-

based models (eLIF and mAdExp), two runs were performed: one using a naive implementa-

tion and another using slightly optimized implementation (numbers in parentheses). Conduc-

tance-based models are also included: a standard Hodgkin-Huxley (HH) model which can

display regular spiking an depolarization block, and one with calcium and calcium-gated

potassium (HH+Ca) to reproduce bursting dynamics.

(PDF)

S2 Table. Parameters used with the eLIF model.

(PDF)

S3 Table. Parameters used for the different behaviors of the mAdExp model on Fig 6.

(PDF)

S4 Table. Parameters used to match rebound spiking behaviors on Fig 7.

(PDF)

S5 Table. Left: static neuronal parameters used with the all eLIF neurons in Fig 5. Right: Spe-

cific parameters used for each of the simulations at a different neuronal health in Fig 5. Each

health level, corresponding to a value of α is associated to the corresponding values for Vth and

Vreset in the same column.

(PDF)
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