
HYPOTHESIS AND THEORY
published: 12 May 2020

doi: 10.3389/fneur.2020.00371

Frontiers in Neurology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 371

Edited by:

Sabine Liebscher,

Ludwig-Maximilians-Universität

München, Germany

Reviewed by:

Cristina Miguelez,

University of the Basque

Country, Spain

Matthew Betts,

German Center for Neurodegenerative

Diseases (DZNE), Germany

*Correspondence:

Kathrin Janitzky

k.janitzky@gmx.de

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neurology

Received: 20 December 2019

Accepted: 14 April 2020

Published: 12 May 2020

Citation:

Janitzky K (2020) Impaired Phasic

Discharge of Locus Coeruleus

Neurons Based on Persistent High

Tonic Discharge—A New Hypothesis

With Potential Implications for

Neurodegenerative Diseases.

Front. Neurol. 11:371.

doi: 10.3389/fneur.2020.00371

Impaired Phasic Discharge of Locus
Coeruleus Neurons Based on
Persistent High Tonic Discharge—A
New Hypothesis With Potential
Implications for Neurodegenerative
Diseases
Kathrin Janitzky*

Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany

The locus coeruleus (LC) is a small brainstem nucleus with widely distributed

noradrenergic projections to the whole brain, and loss of LC neurons is a prominent

feature of age-related neurodegenerative diseases, such as Alzheimer’s disease (AD)

and Parkinson’s disease (PD). This article discusses the hypothesis that in early stages

of neurodegenerative diseases, the discharge mode of LC neurons could be changed

to a persistent high tonic discharge, which in turn might impair phasic discharge.

Since phasic discharge of LC neurons is required for the release of high amounts

of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective

effects, persistent high tonic discharge of LC neurons could be a key factor in the

progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS),

a non-invasive technique that potentially increases phasic discharge of LC neurons,

could therefore provide a non-pharmacological treatment approach in specific disease

stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses

the hypothesis that a persistent high tonic discharge of LC neurons might affect

neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical

tool in specific stages of AD and PD.

Keywords: locus coeruleus, phasic and tonic discharge, Alzheimers’s disease, Parkinson’s disease,

norepinephrine, transcutaneous vagal stimulation, neurodegeneration, neuroprotection

INTRODUCTION

The locus coeruleus (LC) is a small nucleus located in the brainstem near the fourth ventricle
and is composed of noradrenergic (NAergic) cells. Despite comprising only roughly 30,000–50,000
neurons in the adult human brain (1–4), the LC consists of extensively branched efferent axons
that project throughout the brain and spinal cord (1, 5–14). LC neurons project to all layers of the
cortex (15) and have dense projections to the hippocampus (16) as well as the frontal cortex (17).

As part of the ascending reticular activating system, the LC affects consciousness, wakefulness,
and attentiveness (14) by projecting axons into the whole brain and thereby activating neural
networks across many brain regions synchronously. There is evidence for a functional and
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topographic order within the LC. LC neurons in the dorso-rostral
part project to the neocortex and the hippocampus, whereas
more caudo-ventrally located neurons project to the cerebellum
and the spinal cord (11, 18–21). Furthermore, tracing studies
revealed that individual LC neurons receive input from 9 to 15
different brain regions indicating a largely integrative input to a
single LC neuron. The release of NE locally from the soma of LC
neurons activates somatodendritic α2-autoreceptors that inhibit
neuronal activity via an auto-inhibitory mechanism (22, 23).

Since the loss of LC neurons is a shared feature of
neurodegenerative diseases, especially Parkinson’s disease
(PD) and Alzheimers’s disease (AD) (24–26), a better
understanding of the role of the LC in AD and PD may
provide important insights into the underlying mechanism of
these neurodegenerative diseases.

The first part of this article focuses on the neuroprotective
effects of NE. Next, it discusses potential mechanisms underlying
the selective vulnerability of LC neurons to neurofibrillary
tangles (NFTs)- and β-amyloid (Aβ) pathology in AD as well
as α-synuclein (αSyn)-pathology in PD, respectively. Finally,
a hypothesis discussing the potential relevance of changes in
the discharge mode of LC neurons for neurodegeneration is
presented together with t-VNS as a non-invasive technique to
modulate LC activity with potentially neuroprotective effects.

LC AND NEUROPROTECTION

Besides its role as a conventional neurotransmitter in the
synapse, extrasynaptically released NE has a paracrine-
type of anti-inflammatory and neuroprotective effect on
surrounding neurons, glia cells and microvessels (1, 27, 28).
Therefore, extrasynaptically released NE decreases toxin-induced
inflammatory processes [for review, see (29, 30)], endotoxin-
mediated inflammation (31) and Aβ induced neuroinflammation
in the brain (24, 25, 30, 32–39). Furthermore, LC neurons
innervate the cerebral vasculature throughout the brain via
extensive varicosities for non-synaptic release of NE (38, 40),
hence playing an important role in maintaining the blood-brain
barrier (3, 38, 41, 42).

Moreover, LC neurons exhibit neuroprotective properties
through the secretion of brain-derived neurotrophic factor
(BDNF) and nerve growth factor (24, 32, 43). BDNF
is synthesized in LC neurons (44, 45) and anterogradely
transported and released from axon terminals in the projection
areas in an activity-dependent manner (45–47). BDNF induces
neurotrophic activity, promotes the survival of NAergic neurons
and increases axonal sprouting of LC neurons at the terminal
sites (45, 48, 49).

N-2-Chloroethyl-N-ethyl-2-bromobenzylamine
hydrochloride (DSP-4), a selective neurotoxin for the

Abbreviations: AD, Alzheimers’s disease; Aβ, amyloid-beta; ACC, anterior
cingulate cortex; αSyn, α-synuclein; BDNF, brain derived neurotrophic factor;
CRF, corticotrophin-releasing hormone; LC, locus coeruleus; NA, noradrenaline;
NE, norepinephrine; NFT, neurofibrillary tangles; NTS, nucleus of the solitary
tract; OFC, orbitofrontal cortex; PD, Parkinson’s disease; PFC, prefrontal cortex;
RBD, rapid eye movement sleep behavioral disorder; SNc, substantia nigra pars
compacta; SubC, subcoeruleus; t-VNS, transcutaneous vagal stimulation.

LC-NAergic system in the rodent brain, is accumulated in
NAergic nerve terminals, and damages them, thus resulting
in rapid and long lasting loss of NE (50). DSP-4 increases the
expression of proinflammatory factors, like inducible nitric
oxide synthase (iNOS) (24, 30), and nitric oxide production,
which in turn enhance the processing of amyloid precursor
protein (APP) to Aβ (24, 51, 52). After treatment with the
selective NAergic neurotoxin DSP-4, surviving LC neurons
exhibit a regenerative axon sprouting in the target regions
as a compensatory mechanism (45, 53), which seems to be
important for the temporary maintenance of extracellular
NE levels.

Thus, understanding the role of the LC in the process of
neurodegeneration may start with the question: What makes LC
neurons vulnerable to aging-related neuropathology?

POTENTIAL FACTORS FOR THE
VULNERABILITY OF LC NEURONS

Why LC neurons are vulnerable to aging and aging-
related neurodegenerative diseases, such as PD and AD, is
not completely understood. One potential reason for the
vulnerability of LC neurons might be intense mitochondrial
demand caused by sustained cellular excitability attributable
to autonomous pacemaking activity in these neurons, which
results in mitochondrial dysfunction and cumulative oxidant
stress (54–56).

A common feature of LC neurons is autonomous pacemaking.
Small-conductance Ca2+-activated K+ (SK) channels are
essential regulators of the intrinsic pacemaking of LC neurons
and the activation of SK channels is primarily coupled to
Ca2+ influx via the opening of L- and T-type calcium (Ca2+)
channels (55, 57, 58). Activity-dependent Ca2+ entry through
L-type Ca2+ channels enables feed-forward stimulation of
mitochondrial oxidative phosphorylation, and thereby helps
to prevent bioenergetic shortage when activity needs to be
sustained, but in turn leads to basal mitochondrial oxidant
stress (59). Hence, autonomous pacemaking caused by Ca2+

signaling in LC neurons requires elevated mitochondrial
activity, leading to oxidative stress under basal conditions
(55, 59–62), and thus resulting in elevated susceptibility to
mitochondrial impairment.

Another potential factor for the vulnerability of LC neurons
are their highly branched, long and thinly myelinated or
unmyelinated axons that cause high energy demand, because
ATP requirements for propagation of axon potentials grow
exponentially with the level of branching (63, 64).

Oxidative stress together with required mitochondrial
oxidative phosphorylation to sustain neurotransmitter release
and cellular excitability, could interfere with key cellular
functions, such as degradation of damaged and misfolded
proteins (59), promoting protein aggregation and finally
resulting in cell death. Subsequently, the brain is deprived
of its NAergic innervation which may be a key step in the
early stages of neurodegenerative diseases, such as AD and PD
(64, 65).
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PHYSIOLOGY OF LC NEURONS

LC neurons show two different discharge modes, tonic and
phasic. In the tonic mode, LC neurons show irregular but
continuous firing patterns at 1–6Hz whereas during the
phasic mode, LC neurons fire in short (<300ms) bursts of
higher frequencies (10–15Hz) that can occur spontaneously
or associated with salient stimuli (1, 66, 67). Tonic discharge
is high during stress and agitation, moderate during active
wakefulness, low during drowsiness and completely absent
during REM sleep (1, 66, 68, 69). Complete silencing of LC
neurons during REM sleep may be due to elevated inhibitory
GABAergic input from the ventral medulla (70–72). There is
an inverted U-shaped correlation between tonic and phasic
discharge, in such a way that phasic discharge to salient stimuli
in the environment is optimal at a moderate tonic discharge
level (1).

LC neurons are electrotonically coupled through gap
junctions between dendrites outside of the nucleus, in the
peri-coerulear region (73, 74). The strength of coupling changes
between both discharges modes with increased coupling during
phasic activation and decreased coupling in the tonic mode.
The shift between the two discharge modes is thought to be
modulated by the anterior cingulate (ACC) and the orbitofrontal
cortices (OFC) of the prefrontal cortex (PFC) (1).

The PFC is important for a number of cognitive and executive
functions (75), and strongly innervated and modulated by
NAergic ascending projections from the LC. Aston-Jones and
Cohen proposed that glutamatergic projections from the OFC
and the ACC back to the LC are important in generating the
patterns of LC activity (1). Besides, corticotrophin-releasing
hormone (CRF)-containing afferences from the paraventricular
nucleus of the hypothalamus and the central nucleus of the
amygdala, increase tonic firing (74). Furthermore, LC neuronal
activity is inhibited by local GABAergic interneurons, located
dorsomedial to the LC nucleus, which hyperpolarize LC cells and
reset their spontaneous activity (76).

STRESS-INDUCED CHANGES IN LC
ACTIVITY

Sustained tonic activity during waking is metabolically
demanding and may render LC neurons a vulnerable target
to stress (77). Particularly, stress-induced high tonic activity,
mediated in part by the stress-related neuropeptide CRF, causes
vulnerability to damage induced by high energy demands
(33, 78) and makes LC neurons stress-sensitive. Stressful stimuli
activate the hypothalamic-pituitary-adrenal axis and cause a
release of CRF. CRF-immunoreactive fibers densely innervate
the pericoerulear region that contains the dendrites of LC
neurons (79) and CRF increases the tonic discharge of LC
neurons (80–84). CRF peptide promotes the tonic discharge
mode of LC neurons with a decreased maximum magnitude
and slower onset, but a much longer duration of activity (74).
Furthermore, stress seems to cause long-lasting changes in the
LC that directly impact LC function and induce morphological

alterations in LC neurons, such as proliferation of dendrites and
axons (80, 85–94).

As a protection against these changes, stress-induced
increase of NE release triggers auto-inhibitory mechanisms
via α2-autoreceptors on LC neurons (78, 95, 96), which
induce hyperpolarization and decrease the sensitivity of LC
neurons to stimulation. This negative feedback mechanism
protects LC neurons against stress-induced changes and
damage of these autoregulatory mechanisms may contribute to
neurodegenerative diseases like AD and PD (74, 78).

In conclusion, LC neurons are metabolically demanding and
highly vulnerable to stress. Given that death of LC neurons
is a shared feature of PD and AD (24–26), the damage
of autoregulatory mechanisms that protect LC neurons from
stress-induced changes might be involved in neurodegenerative
processes of both diseases.

LC and AD Pathology
Neurofibrillary tangles (NFTs) are aggregates of the microtubule-
associated protein tau and increasing levels of tau pathology
characterize the advancing stages in the development of AD. The
LC is the first brainstem structure that displays pretangle material
[for details see (97–100)], and thus axonal projections from the
LC to the transentorhinal region could be important for the
anterograde induction of tau pathology (97). Since aggregation
of tau in the LC is one of the first pathological hallmarks of
AD and precedes cortical tau pathology, it may act as a seed
for subsequent spreading of tau pathology throughout the brain
(38, 97, 98, 100–103). As hyperphosphorylated tau levels in the
LC increase, the volume of the LC decreases in early stages of
AD (102, 104). While total numbers of LC neurons are relatively
stable until Braak stage II, they are significantly reduced in Braak
stages III-VI, and analyses in the human brain revealed that as
the Braak stage increased by one unit, the average LC volume
decreased by 8.4% (38, 104). A loss of 30% characterizes the
transition to MCI and a 55% reduction represents AD (105).

Since NE released from LC neurons is needed to maintain
Aβ clearance, the progression of LC degeneration contributes to
Aβ pathology in AD (36, 106), and further degeneration of LC
neurons might be triggered by an Aβ-mediated failure in the
anterograde and retrograde transport of neurotrophic factors like
BDNF in LC axons (99, 107, 108). The bidirectional relationship
between Aβ pathology and LC degeneration may lead to an
exponential progression of the disease, because increased Aβ-
levels exaggerate LC degeneration, which in turn reduces NE
levels in the terminal fields that diminish the internalization of Aβ

by microglia, adding to increased Aβ pathology (35). Progressive
loss of LC neurons and the concomitant decrease of NE levels
in the brain diminish anti-inflammatory and neuroprotective
mechanisms and finally result in an exacerbation of Aβ-induced
pro-inflammatory processes and neurotoxicity (31, 109), as well
as tau pathology (101, 110).

NE deficiency in the cortex impairs the activation of microglia,
the induction of their migration toward amyloid plaques and
the stimulation of the internalization and clearance of Aβ

(35). Furthermore, NE deficiency results in an increased tau
phosphorylation and compromises neurogenesis in the dentate
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gyrus, dendritic arborization of new neurons and synaptic
plasticity (111).

Smaller fusiform cells located in the dorsal part of the LC
(23, 112, 113) that project to forebrain regions such as the PFC
(23), are characterized by a high density of voltage-gated Ca2+

channels, which enables higher spontaneous firing frequencies
(57). Furthermore, this subpopulation of PFC-projecting LC
neurons is more excitable and responsive to glutamate than
LC neurons projecting to other cortical circuitries (114). This
subpopulation of LC neurons that can be distinguished from
other LC neurons on the basis of their anatomical projections,
molecular phenotypes, and electrophysiological properties, may
be more vulnerable to activity-dependent cellular dysfunctions
and the neurodegenerative processes in AD because of their
higher basal discharge rates (114).

In summary, it can be concluded that NFT pathology causes
dysfunction of LC neurons resulting in decreased NE levels in
target regions, which contributes to Aβ pathology. This, in turn,
accelerates LC degeneration and diminishes anti-inflammatory
and neuroprotective effects of NE, resulting in increased Aβ

plaque load. Therefore, LC degeneration and Aβ pathology
synergistically interact to generate neurodegeneration in AD.

LC and PD Pathology
In PD, α-synuclein (αSyn)-positive deposits, called Lewy bodies,
can be found in the LC in Braak stage II, and thus earlier than
in the substantia nigra pars compacta (SNc) (115, 116). It is
believed that αSyn burden may lead to neuronal dysfunction and
impaired neurotransmitter release, but αSyn pathology does not
correlate well with cell death (2, 117, 118). Accordingly, αSynmay
contribute to neurodegeneration in PD, but is not likely to be the
sole reason (119). Furthermore, there is evidence that αSyn can be
transferred across synapses and spread within postsynaptic cells
in a prion-like fashion (3, 120).

A loss of LC neurons can be found throughout the rostral-
caudal extent of the nucleus (20), earlier and in a greater
magnitude as compared to the SNc (20, 121), with the onset of
LC pathology occurring more than 10 years before the clinical
diagnose of PD (122, 123).

Neuromelanin (NM) is an autophagic product synthesized
via oxidation of catecholamines and subsequent reactions,
and it is the main iron storage mechanism in neurons that
protects them from iron-mediated neurotoxicity caused by
superoxide free radicals (124–127). Although intraneuronal
NM is neuroprotective, NM released by dying neurons can
trigger neuroinflammation via activation of microglia (128).
Postmortem studies have shown NM accumulation in LC
neurons with increasing age (129). Several studies found an
inverted U-shaped correlation between NM accumulation in LC
cells and age with peak levels around 60 years, followed by an age-
related decline related to loss of LC neurons (130, 131). However,
some studies reported a linear age-related increase of NM in LC
neurons without age-related decline (132). Nevertheless, under
pathological conditions involving LC degeneration, the pigment
is diminished (132, 133).

NM-sensitive Magnetic resonance imaging (NM-MRI) allows
for in vivo visualization of the LC by exploiting the presence of

NM (125, 134–138). Studies indicate that NM-MRI can detect
structural alterations in the LC in early disease stages (139), even
in patients with rapid eye movement (REM) sleep behavioral
disorder (RBD) (140, 141), thus indicating NM-MRI as a
potential biomarker in prodromal stages of neurodegenerative
diseases [(138, 142) for a review see (143, 144)].

RBD is a prodrome of α-synucleinopathies, like PD, that
appears 10 or more years before the first motor symptoms
occur (145–147). Patients with RBD show fully developed αSyn
pathology in the LC, equivalent to the pathology found in
patients diagnosed with PD, while exhibiting normal nigrostriatal
dopaminergic innervation (148). This begs the question if there
are special characteristics of LC neurons, which are relevant to
early αSyn pathology and Lewy body burden (106, 149–151).

One feature of LC neurons that may affect their sensitivity for
PD-pathology is the presence of elevated Ca2+ concentrations
in the cytosol (119). Autonomous pacemaking of LC neurons
caused by voltage-sensitive Ca2+ channels (57) requires
extensive Ca2+ entry to stimulate oxidative phosphorylation,
which promotes high levels of reactive oxygen species (ROS)
production, thus elevating oxidative stress (55, 152). Thus,
sustained neurotransmitter release and neuronal excitability of
LC neurons require high energetic demands that could impair
other key cellular functions, such as degradation of misfolded
proteins and promote their accumulation in intracellular
inclusions (59). αSyn is widely expressed in the nervous system
and located in presynaptic terminals, where it is involved in the
regulation of synaptic vesicle exocytosis (153–157). Furthermore,
αSyn interferes with Ca2+ homeostasis (59, 158–160), for
instance by increasing ion permeability of the lysosomal and
plasma membrane (161–163). Extracellularly accumulated
αSyn increases the permeability of Ca2+ channels resulting in
increased cytoplasmatic Ca2+ (119). Hence, αSyn oligomers
are able to increase internal Ca2+ concentrations and Ca2+, in
turn, increases αSyn oligomerization with cytotoxic effects (164–
166). This positive feedback cycle of αSyn oligomerization and
increased internal Ca2+ concentration could make LC neurons
more vulnerable to PD pathology, because of Ca2+ channel-
mediated pacemaking and the cellular burden associated with it
(57). NE stabilizes αSyn in a soluble, monomeric form, thereby
preventing the formation of toxic oligomers and enabling the
disaggregation of existing fibrils (167). Consequently, decreased
NE levels increase αSyn oligomerization, and therefore, LC
degeneration and αSyn pathology synergistically interact to
induce neurodegeneration in PD.

DISCUSSION

Persistent High Tonic Discharge of LC
Neurons and Potential Implications for
Neurodegenerative Diseases
The findings mentioned above suggest that AD and PD are
both characterized by a significant degeneration of LC neurons,
despite having distinct pathologies (22, 106, 121). Postmortem
studies reveal disease-specific patterns of LC cell loss, affecting
the whole LC in PD. In AD, particularly the rostral and dorsal
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parts of the LC are affected, along with cortical-projecting
LC neurons, while the caudal and ventral parts that contain
non-cortical-projecting neurons are spared (20, 104). Slight
differences in LC pathology in AD and PD could be a result
of different underlying neuropathological mechanisms that may
depend on the internal organization of the LC nucleus, the
modulation of neuronal activity and the complexity of axonal
projections of LC cells. The LC is not a single functional entity
of neurons that function as a whole in order to control global
arousal. Instead, LC neurons appear to be a collection of NAergic
cells with sub-specializations according to their anatomical
projections (114, 168–170), electrical properties (75, 168) and
co-transmitter content, with distinctive roles in regulating brain
function (168, 171).

The loss of LC neurons occurs earlier and in a greater
magnitude than the atrophy of the hippocampus in AD and
the loss of dopaminergic cells in the SNc in PD (25, 26, 104,
106, 121, 150, 172–175). However, LC pathology starts much
earlier than evidence of cell loss. Grinberg and colleagues showed
tau pathology in the LC in Braak stage 0, but no significantly
decreased number of LC neurons until Braak stage III (104),
indicating that LC neurons may survive substantial tau burden
even with impaired NAergic neurotransmission (176). Moreover,
αSyn pathology in the LC is evident early in the premotor
phase of PD (Braak stage II), prior to the involvement of the
dopaminergic SNc (Braak stage III) (177), but LC neurons can
survive with αSyn pathology for years before significant cell
loss is evident (20, 26, 121). Thus, tau- and αSyn pathology
is verifiable in LC neurons many years before a significant
loss of LC neurons is detectable in AD and PD, respectively
(45, 106, 150, 174, 178–180).

Previous studies suggest that early damage to the LC in
preclinical or prodromal AD may result in a persistent state
of high tonic activity (181), which might be detrimental to
brain functions that require phasic responses. Wang et al.
(182) have shown that the mean firing rate of LC neurons
increases significantly 2 and 4 weeks after unilateral lesion of
the nigrostriatal pathway in the rat by local injection of 6-
hydroxydopamine (6-OHDA) into the right substantia nigra
pars compacta (SNc). Furthermore, the percentage of neurons
with irregular firing patterns increased significantly. The authors
postulated that 6-OHDA lesions of the SNc caused loss of
LC neurons and decreased NE concentration in the LC of 6-
OHDA-lesioned rats, which in turn resulted in overactivity of
residual LC neurons. Moreover, patch-clamp data from Parkin-
knockout mice also showed increased spontaneous firing of
aged LC neurons caused by alterations in calcium-dependent
excitability (183). In contrast, however, Miguelez et al. (184)
found no effects of 6-OHDA infusion into the right medial
forebrain bundle on the number of spontaneously active LC
neurons, but in turn reported a significantly lower basal firing
rate after 6-OHDA infusion and postulated that changes in
firing rate may be attributed to dopaminergic degeneration.
Another study showed an increase in α2-adrenoceptor mRNA
in the LC in 6-OHDA-lesiond rats (185), and α2-adrenoceptors
modulate the firing rate of the LC by inhibiting neuronal activity
(186). With respect to these apparently opposing results, new

mouse models, which overexpress αSyn in the LC seem to be a
promising approach, since these models capture some cardinal
morphological changes in human PD more closely (187, 188).
Unfortunately, no electrophysiological LC data based on these
models have been reported to date. The fundamental problem,
however, off all the reported electrophysiological findings is that
in all studies, recordings have been conducted under anesthesia,
which impacts spontaneous LC activity (66, 189–192), and
thus limits any conclusions about tonic LC discharge in awake
animals, let alone patients.

Since recording from LC neurons is a challenging and invasive
task, human data are lacking to date. Therefore, to make
inferences about LC activity in humans, one has to rely on
more indirect measures, like event-related potentials (ERPs),
for instance the P300. The P300 is an event-related potential
(ERP) that can be recorded in humans from the scalp in
an auditory oddball paradigm. In contrast to former reviews
that discuss glutamate as the most important neurotransmitter
for the generation of the P300 as well as the cholinergic
system and GABAergic influences as important modulators
(193), more recent reviews suggest that dopamine and NE
are the most important modulators for the generation of
the P300 (194–196). The P300 can be devided into two
subcomponents, the P3a and the P3b, respectively (196). P3a
seems to depend on dopaminergic (DAergic) activity and
is thought to reflect a novelty-driven orienting response to
distractors that can be recorded more frontally on the scalp
(194). On the other hand, P3b seems to be related to memory
and decision making driven by phasic NAergic LC activity and
can be recorded from more temporal-parietal areas (195, 196).
Hence, a dual-transmitter P300 hypothesis was assumed that
associated DAergic neurotransmission with P3a and LC-NAergic
neurotransmission with P3b (194). Furthermore, Nieuwenhuis
et al. (195) suggest that the P300 reflects phasic activity of the
LC-NAergic system, and recent studies suggest that phasic LC
activity depends on background tonic discharge of LC neurons
in an inverted U-shaped manner, with highest phasic discharge
rates at moderate levels of tonic LC activity, which would in turn
create the largest P3b amplitudes (1, 197).

Also, animal studies suggest that the P300 can be interpreted
as a cortical correlate of the phasic LC response (195, 197–
199), and the hypothesis that phasic LC activity contributes
to P300 generation during a target detection task is consistent
with the fact that both phasic LC activity and the P300 depend
on the motivational significance of the eliciting stimulus as
well as underlying attentional mechanisms and show congruent
latencies in response to target stimuli [for review see (195)].
Hence, it was suggested that the P300 reflects NE mediated
enhancement of gain in the cerebral cortex induced by phasic
LC activity and thus enhances cortical encoding of salient stimuli
(1, 67, 195, 198).

In addition, studies in PD patients have shown a reduced P300
amplitude (200–206) or an increase in P300 latency (207, 208),
whereas in AD patients an increase in P300 latency was found
(209–213). If the hypothesis given above is correct and an optimal
rate of phasic LC activity is contingent upon a moderate level
of tonic activity (1), then a reduction in P300 amplitude and/or
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FIGURE 1 | Relation between tonic and phasic LC discharge (blue curve) and proposed effects of t-VNS treatment. Under normal conditions (left), a moderate range

of tonic activity (indicated by green lines) allows for an optimal level of phasic activity in response to salient stimuli. Under constant stress (middle), LC tonic activity is

thought to shift from moderate to high tonic discharge (solid red lines) which in turn impairs phasic discharge, presumably facilitating neuroinflammatory processes

and contributing to neurodegeneration. t-VNS treatment (right) is proposed to restore tonic discharge to a moderate range, thus enabling an optimal level of phasic

discharge, and presumably inhibiting neuroinflammatory/neurodegenerative processes by neuroprotective effects of NE.

increase in P300 latency might reflect impaired phasic activity
caused by persistent high tonic LC activity.

Furthermore, persistent high tonic discharge of LC neurons
during REM sleep could explain RBD, an early feature of
neurodegenerative disorders, including PD (214). RBD is
characterized by REM sleep without atonia (RSWA), leading
an individual to “act out” dreams, and lesions of the LC and
subcoeruleus (SubC) nucleus complex have been theorized to be
one possible cause of RBD (215, 216). Glutamatergic neurons
in the ventral part of the SubC project to the ventromedial
medulla and the spinal cord, who’s GABA and glycine neurons
inhibit motoneurons and initiate REM sleep atonia (214). These
glutamatergic neurons in the SubC get inhibitory afferents
from NAergic LC neurons (217, 218). Because normally, tonic
discharge of LC neurons is completely absent during REM sleep
(66), the SubC is not inhibited by the LC during that state
and can thus promote REM sleep muscle paralysis. Therefore,
a constantly high tonic discharge of LC neurons during REM
sleep could result in an over-inhibition of the SubC and thus
explain RSWA.

Moreover, persistent high tonic LC activity during sleep
could contribute to the accumulation of protein aggregation and
promote neurodegeneration by an inhibition of the glymphatic
system (219). The glymphatic system is a macroscopic
waste clearance system formed by astroglial cells (220). It
is turned on during sleep and enables the elimination of
potentially neurotoxic waste products, including Aβ [for
details see (219)]. Hence, dysfunction of the glymphatic system
could thus contribute to the accumulation of misfolded or

hyperphosphorylated proteins and could thereby render the
brain more vulnerable to developing a neurodegenerative
pathology, because all neurodegenerative diseases are
characterized by accumulation of aggregated proteins (221),
e.g., misfolded Aβ and NFT in AD or misfolded αSyn in
PD, respectively.

A distinct subpopulation of LC neurons in the dorsal part
of the nucleus that innervates the PFC (168, 222) and the
hippocampus (170), seems to be particularly vulnerable to the
pathophysiological processes in AD. Since these LC cells are
characterized by greater synaptic excitability, higher spontaneous
firing frequencies, and higher susceptibility to glutamate (75),
they could be more vulnerable to stress and hyperactivity-
dependent cell death. If LC neurons in the dorsal part of the
nucleus are indeed the first set of neurons affected by the
pathophysiological processes, then this might result in persistent
high tonic activity and impaired task-related phasic activity in
those cells (181), which in turn may result in compromised PFC
and hippocampal functions (64, 176).

Transient silence of LC neurons during REM sleep and
prior to each non-REM sleep spindle seems to be important
for synaptic plasticity and essential for hippocampus-dependent
memory consolidation (223). Swift and colleagues could show
that increased LC activity during sleep has no effect on the
stability and duration of sleep states, but impairs learning
related signatures of non-REM and REM sleep (223). Since
glutamatergic projections from the SubC to the medial septum
innervate the hippocampus and promote the generation of the
theta electroencephalographic activity characterizing REM sleep
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(218), a persistent high tonic discharge of LC neurons could
impair theta oscillation in the hippocampus during REM sleep,
which has been shown to be important for consolidation of
hippocampal-dependent memories (224, 225).

Since LC neurons in the dorsal part of the nucleus show
minimally overlapping projections to the OFC, the medial
PFC, and anterior cingulate (ACC) cortex (75), respectively,
neuronal activity in individual prefrontal subregions could also
be impaired, resulting in compromised cognitive and executive
functions, e.g. shifting of the attentional focus and behavioral
adaptation in a changing environment. NAergic projections of
LC neurons to the PFC are critical for the ability to rapidly
switch attention between stimuli and stimulus categories (226–
229), and therefore tests of cognitive flexibility could possibly be
used to determine LC dysfunction in early stages of AD (230) and
PD (231).

Consequences of Persistent and
Abnormally High Tonic Discharge of LC
Neurons
Neuronal plasticity is essential to adapt to a changing
environment through strengthening, weakening or adding of
synaptic connections or by promoting neurogenesis (232).
Alteration in synaptic plasticity is an early feature in AD with
abnormally suppressed efficacy of neuronal plasticity linked to
cognitive decline (232). Since deprivation of cortical NAergic
innervation is associated with reduced expression of genes
important for synaptic plasticity in the cerebral cortex, the
NAergic system seems to have a gating function for neuronal
plasticity (233). Oberman and Pascual-Leone (232) hypothesize
that cortical “hyperplasticity” in autism spectrum disorder
(ASD) may provide protection for this population against the
development of age-related cognitive decline and AD, and it was
assumed that in autism, tonic LC discharge is affected, which in
turn has a protective effect against later development of AD (234).

Assuming a persistent and abnormally high tonic discharge
of LC neurons in the dorsal part of the nucleus in early
stages of AD (20, 64, 104, 170, 181), phasic discharge of these
cells—which requires a moderate tonic discharge level—could
be impaired as a result. Because the release of high amounts
of NE requires phasic spiking of LC neurons (32, 65, 235–
238), NE levels in the cortex might not be high enough in this
scenario to activate low-affinity β-adrenoceptors that facilitate
the anti-inflammatory and neuroprotective effects of NE (32,
35, 65). It can be assumed that sustained high tonic activity
would induce compensatory mechanisms that could initially
help to maintain homeostasis (85, 89, 92–94), such as axon
sprouting in the terminal fields, augmented synthesis of NE
by increased activity of tyrosine hydroxylase and dopamine
beta-hydroxylase, and decreased NE transporter activity (174,
180, 239–242). All these compensatory mechanisms, however,
would further serve to increase the energy demand and oxidative
stress of LC neurons. As a protection against these changes, NE
could trigger auto-inhibitory mechanisms via α2-autoreceptors
on LC neurons (78, 95, 96), which induce hyperpolarization and
decrease the sensitivity of LC neurons to dendritic stimulation.

These autoregulatory mechanisms may protect LC neurons, but
could on the other hand interfere with LC functions, because they
further impair the ability of LC neurons to create selective phasic
responses, as described above. Subsequently, sustained increase
of basal mitochondrial oxidant stress in tonically discharging
LC neurons could contribute to an impaired capability to
maintain other key cellular functions, such as the degradation of
damaged or misfolded proteins (59), giving rise to axon terminal
degeneration as an adaptation to excessively high metabolic
demand. The consequences of decreased NE levels in the
PFC and hippocampus are increased neuro-inflammation and
neurodegeneration, and finally, increased amounts of damaged
axonal proteins, such as αSyn and tau-protein may promote
aggregation and accelerate cell death of LC neurons. If a
dysbalance between tonic and phasic discharge of LC neurons
is part of the problem—due to the fact that sustained high
tonic discharge impairs phasic discharge to salient stimuli—then
modulation of afferent stimulationmay be an option to normalize
LC functions.

t-VNS, a Potential Non-invasive Technique
to Increase Phasic Discharge of LC
Neurons
Transcutaneous vagal stimulation (t-VNS) is a novel non-
invasive brain stimulation technique that increases activation
of the LC and NE release (243), via activation of the auricular
branch of the vagal nerve at the external ear (244), and fMRI
studies in humans show that t-VNS and invasive vagal nerve
stimulation (i-VNS) activate the same afferent vagal projection
sites (245). The vagal nerve innervates the nucleus of the
solitary tract (NTS), which directly modulates the activity of LC
neurons via monosynaptic excitatory projections (246, 247) and
indirectly excites the LC via the nucleus paragigantocellularis,
providing pathways by which VNS could directly drive short
latency spiking in the LC (248, 249). Stronger activation of LC
dendrites in the peri-coerulear area via t-VNS may significantly
influence the activity of LC neurons, for instance via changes in
their electrotonic coupling (250) due to gap junctions between
dendrites in the peri-coerulear region (73, 74). Previous studies
show that when LC neurons are isolated from the peri-coerulear
dendritic region, synchronous activity is reduced or abolished
(73). This suggests that the modulation of electrical interactions
between dendrites in the peri-coerulear area can stimulate
synchronous activity within the LC. Hence, t-VNS may increase
electrotonic coupling, and in that way may promote phasic
activation and decrease tonic activation of LC neurons, which in
turn could normalize the dysbalance in LC activity and facilitate
phasic spiking of LC neurons required for the release of NE levels
high enough to activate low-affinity β-adrenoceptors to promote
anti-inflammatory and neuroprotective mechanisms (32, 35, 65).

Electrophysiological studies in rats show that i-VNS increases
the firing rate of LC neurons above their baseline activity (246,
251–253). Moreover, VNS causes a significant increase in the
percentage of LC neurons firing in bursts (251–253), which in
turn leads to a greater NE release in terminal fields as compared
to single pulses (254). Short trains of VNS drive rapid, phasic
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neural activity in the LC (248), and 30 second trains of VNS
increase firing rates of LC neurons and NE concentrations in
the cortex and hippocampus on the order of minutes to hours
(246, 248, 251, 253, 255).

Since direct measurements would require invasive procedures
there is a lack of human data on LC activity. However, a
recent review of Burger and colleagues discusses the P300 as
a potential biomarker for t-VNS effects (256) that seems to
represent the phasic activity of the LC-NAergic system. Studies
investigating t-VNS effects on P3b in an oddball paradigm in
healthy subjects found increased P300/P3b amplitudes compared
to sham stimulation (257, 258). Furthermore, consistent with the
hypothesis that P3b reflects the activation of the LC-NA system,
no effects of t-VNS stimulation on P3a were found (257, 259).
However, there are other studies that could not confirm those
data (260, 261).

If phasic LC activity in humans could be assessed by P3b
measurements, a reduction in P3b amplitude and/or increase
in latency in PD or AD patients could possibly indicate t-
VNS as a valid non-invasive treatment option. Indeed, we have
shown that t-VNS in healthy subjects leads to an increase in P3b
amplitude and a reduction in P3b latency (258). Based on the
literature cited above, these findings might be interpreted as t-
VNS having a positive influence on the imbalance between tonic
and phasic discharge by shifting LC activity toward increased
phasic activation. If this presumption can stand the test of
further experimental scrutiny, then t-VNS may have potential
as a clinical tool used to normalize the imbalance between
tonic and phasic LC activity in patients in certain stages of
neurodegenerative diseases, and possibly have additional benefits
by promoting anti-inflammatory and neuroprotective effects
which require sufficiently large NE levels related to phasic LC
discharge (32, 35, 65, 262). Recently, auricular t-VNS has been
shown to have neuroprotective effects on dopaminergic neurons
in 6-OHDA-treated rats and the authors suggested that these

effects might be related to the inhibition of neuroinflammation
(262). Thus, these results indicate t-VNS as a prospectively useful
tool with potential anti-inflammatory and neuroprotective effects
in early stages of neurodegenerative diseases, like AD and PD
(Figure 1).

Concluding Remarks
Studies suggest that early damage to the LC in preclinical
or prodromal phases of neurodegenerative diseases, such as
AD and PD, may result in an abnormally persistent state
of high tonic activity of the LC (181) that impairs phasic
discharge, which requires a moderate tonic activity level.
Since phasic LC discharge is essential for optimization of
cognitive and neural network function (67), as well as anti-
inflammatory and neuroprotective effects, a potential facilitation
of phasic LC activity by t-VNS might be a useful clinical
tool in early stages of neurodegenerative diseases, like AD and
PD (Figure 1).
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