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SUMMARY

DNA accessibility is a key dynamic feature of chromatin regulation that can potentiate transcriptional

events and tumor progression. To gain insight into chromatin state across existing tumor data, we

improved neural network models for predicting accessibility from DNA sequence and extended

them to incorporate a global set of RNA sequencing gene expression inputs. Our expression-informed

model expanded the application domain beyond specific tissue types to tissues not present in training

and achieved consistently high accuracy in predicting DNA accessibility at promoter and promoter

flank regions. We then leveraged our new tool by analyzing the DNA accessibility landscape of pro-

moters across The Cancer Genome Atlas. We show that in lung adenocarcinoma the accessibility

perspective uniquely highlights immune pathways inversely correlated with a more open chromatin

state and that accessibility patterns learned from even a single tumor type can discriminate immune

inflammation across many cancers, often with direct relation to patient prognosis.

INTRODUCTION

DNA accessibility plays a key role in the regulatory machinery of DNA transcription. Locations where DNA is

not tightly bound in nucleosomes, detectable as DNase I hypersensitivity sites (DHSs), render the sequence

accessible to other DNA-binding proteins, including a wide range of transcription factors (TFs). DHSs are

cell specific and play a crucial role in determining transcriptional events that differentiate cells.

Furthermore, genome-wide association studies (GWAS) have revealed that the vast majority of genetic variants

significantly associated with many diseases and traits are located in non-coding regions (Deplancke et al., 2016)

and well over half non-coding single nucleotide polymorphisms (SNPs) affect DHSs (Maurano et al., 2012). Thus

variable access to DNA regulatory elements plays a key role not only in normal cell development but also in

alteredexpressionprofilesassociatedwithdiseasestates (Deplanckeetal., 2016;Xuetal., 2015), includingcancer.

In an effort to go beyond association studies and gain deeper insight into how changes in DNA sequence

affect transcriptional regulation, some groups have developed predictive models for a multitude of genomic

phenomena. Several works have recently made significant advances in accuracy of such DNA-sequence-

based prediction tasks by applying neural network models to problems such as TF binding (Alipanahi

et al., 2015; Zhou and Troyanskaya, 2015; Quang and Xie, 2016; Lanchantin et al., 2016), promoter-enhancer

interactions (Singh et al., 2016), DNA accessibility (Hoffman et al., 2018; Kelley et al., 2016; Zhou and Troyan-

skaya, 2015), and DNA methylation states (Angermueller et al., 2017; Hoffman et al., 2018).

One common issue that limits the broad applicability of these models is the cell-type-specific nature of

many of the underlying biological mechanisms, such as DHSs. All the above examples approached their

prediction problems by learning to estimate the conditional probability, pðajd;bÞ, where a is the accessi-

bility (or other attributes) of a segment of DNA sequence, d, and b is a discrete label of tissue type. In prac-

tice, this meant either training a separate model for each cell or tissue type or having a single model output

multiple tissue-specific (multi-task) predictions. This made it difficult to apply the models to new data and

limits them from being integrated into broader scope pathway models (Vaske et al., 2010).

Conveniently, a number of studies have demonstrated that gene expression levels from RNA sequencing

(RNA-seq) can be used to discriminate cell types (Sudmant et al., 2015; Breschi et al., 2016; Conesa et al.,
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2016), providing evidence that pðbjrÞ can be learned (where r is a vector of RNA-seq gene expression mea-

surements). In addition, DNase sequencing (DNase-seq) and microarray-based gene expression levels

from matched samples were found to cluster similarly according to biological relationships, with many

DHSs found to significantly correlate with gene expressions (Sheffield et al., 2013).

Our work focuses on overcoming the barrier to broad applicability due to cell-type-specific phenomena

by putting the burden on a deep neural network classifier to handle the complex relationship between

expression and DNA sequence accessibility without intermediate discrete tissue labels. Our model directly

estimates pðajd; rÞ, and thus implicitly handles the space of possible tissue types and states, B, because

pðajd;rÞ = P

i˛B
pðajd;biÞpðbijrÞ. This allows the model to exploit similarity information in the space of tissue

types and make predictions for previously unseen tissues whose gene expressions were similar but unique

from samples in the training data.

We build on the Basset neural network architecture of Kelley et al., which recently demonstrated state-of-

the-art results on DNA accessibility prediction (Kelley et al., 2016). They factored the cell-specific DHS issue

into their work by first creating a binary matrix of sample tissues and their respective accessibility for a list of

genomic sites. The universal list of (potentially accessible) sites was found by agglomerative clustering of all

overlapping DNase-seq peaks across all samples before training. These potentially accessible sites defined

the 600-base pair DNA segments used as inputs. Second, they set up the model’s final layer as a multitask

output, with a distinct prediction unit for each tissue type.

We began by showing that neural network performance on the original task of Kelley et al., predicting

accessibility at held-out sites across 164 tissue types, could be improved by strategic factorization of con-

volutional layers. Then, based on our hypothesis that a neural network should be capable of learning to

modulate appropriately its prediction of the DNase-seq signal if informed with a global RNA-seq state,

we extended the network to handle a vector of gene expression values as input. To train this model, we

constructed a new dataset of samples from the ENCODE project (ENCODE Project Consortium, 2012) con-

sisting only of RNA-seq and DNase-seq measurements whose correspondence could be determined. Our

new model achieved compelling results for held-out tissue types and proved to be very reliable at predict-

ing accessibility at promoter and promoter flank genomic regions.

We then applied our accessibility predictionmodel to whole genomes across six cancer cohorts from The Can-

cerGenomeAtlas (TCGA) (TCGA, 2018), as summarized in Figure 1A, andhighlighted that accessibility comple-

ments RNA-seq. For example, clustering lung adenocarcinoma (LUAD) samples based on predicted accessi-

bility was distinct from any RNA-seq-based cluster assignment and revealed a group of patients showing

enrichment for pathways involved in immune response. Furthermore, splitting the same cohort by immune

cell composition revealed a difference in survival and enabled training of a classifier to detect an immune-in-

flamed tumor state in LUAD, basedonly on accessibility predictions for a small set of sites. This classifier allowed

us todiscriminate immune-activepatientgroupswith significantdifferences in survival in severaldistinct cancers,

often aligningwith findings fromother cancer immunology studies. To the extent of our knowledge, this was the

first time that a prediction of DNAaccessibility had been applied to whole genomes in TCGA cancer cohorts to

infer the chromatin landscape across cancers. In parallel with our work, accessibility was measured using assay

for transposase-accessible chromatin using sequencing (ATAC-seq) for select samples across several TCGA co-

horts (Corceset al., 2018), andwehave shown that thesenewempirical results validateourpredictions (Figure 7).

We anticipate that our expression-informed model not only may provide detailed information regarding DNA

accessibility across tissues and enable discrimination of immune-inflamed tumors but alsomight be used topre-

dict individual patient response to various immune-based therapies.Wealso expect our approach to be a useful

tool in understanding other conditions where chromatin state is suspected to play an important role, including

aging (Moskowitz et al., 2017), neurodegenerative disease (Berson et al., 2018), autoimmune diseases (Farh

et al., 2014), as well as autism (Zhao et al., 2018). Finally, we stress that our approach to implicitly handling tissue

type and state can be used in any DNA-based prediction task.

RESULTS

Convolutional Layer Factorization Improves Accuracy

As a baseline we first implemented our own version of the Basset architecture (Figure 1B), with minor

changes not related to network structure. Compared with an receiver operating characteristic area under
120 iScience 20, 119–136, October 25, 2019
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Figure 1. Overview of Our Pipeline from Training to Application

(A) DHS, hg19 DNA, and RNA-seq information are all used to train the neural network. With tumor RNA-seq and DNA-seq data input the DNA accessibility

model can then be used to predict chromatin state in tumors.

(B–D) (B) The neural network architectures for the tissue-specific baseline model, (C) the tissue-specific factorized convolutions model, and (D) the

expression-informed model are shown. Depth (d) is provided for all fully connected (fc) layers. Convolution (conv) layers also list their width (w). Max pooling

(mp) is indicated where present between layers and is always applied with equal size and stride (s).

See also Figures S1, S3, and S4.
the curve (ROC AUC) = 0.895 reported by Kelley et al. on their benchmark test set (Kelley et al., 2016), and

confirmed by applying the pre-trained model provided by the authors, our baseline implementation

achieved a mean ROC AUC = 0.903 (Table 1).

Following the success of many works demonstrating that deeper hierarchies of small convolutional kernels

tend to improve neural network performance (Simonyan and Zisserman, 2014; Szegedy et al., 2016; He

et al., 2016), we experimented with factorization of large convolutional layers in the baseline model. We

found that factorization of layers closest to the data was the most significant for improving accuracy (Fig-

ure S1). When only the second convolutional layer was factorized, the speed of learning improved during

the early epochs of training, but final accuracy was not noticeably affected compared with our baseline im-

plementation. An overall improvement in both rate of learning and final accuracy was achieved when both

the first and second convolutional layers were factorized (Figure 1C), leading to a mean ROC AUC = 0.910

(Table 1).
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Tissue-Specific Model Mean ROC AUC Mean PR AUC

Basset (pre-trained) 0.895 0.561

Our baseline 0.903 0.582

Our factorized convolutions 0.910 0.605

Table 1. Tissue-Specific Model Results on Basset Benchmark Dataset
Furthermore, despite following the same training procedure and taking no additional steps to account for class

imbalance, our final tissue-specific model’s mean precision-recall area under the curve (PR AUC) = 0.605

compared favorably with the mean PR AUC = 0.561 reported as the best result obtained by the Basset model.
ENCODE DNase-Seq and RNA-Seq Dataset

To train a model for predicting accessibility that is informed implicitly about tissue state through gene

expression it was necessary to build a new dataset where both DNase-seq and RNA-seq were available

for a large and diverse collection of different tissue types. We collected all human samples from the

ENCODE project (ENCODE Project Consortium, 2012) for which correspondence between RNA-seq and

DNase-seq measurements could be determined. After errors were filtered out, the final dataset consisted

of 74 unique tissue types, with 220 DNase-seq files and 304 RNA-seq files. A validation set of 5% randomly

held-out samples was split from the data so that tissue types were diverse but still independent measure-

ments of tissues also appeared in training.

Two sets of paired test and training partitions were created (Figure S2). The first partition pair (tissue over-

lap in Table 2) was constructed in the same way as the validation data by randomly holding out test samples

and allowing for tissue type overlap with training. The second partition pair (held-out tissue in Table 2) was

constructed such that the test set was composed only of samples from tissue types that were not present in

either training or validation partitions. The latter wasmeant tomore accurately simulate the intended appli-

cation scenario and was thus the main focus throughout our analysis.

The data partitions were revised once from their first iteration when several erroneous samples were discov-

ered and revoked by the ENCODE consortium. Once revoked samples were removed, we saw a significant

decrease in spurious DHSs. Table 2 shows the distributions of the final dataset.
Expression-Informed Model Can Predict Accessibility in Held-Out Tissues

We explored several alternative versions of our expression-informed neural network along with a range of

different hyperparameters. Based on validation performance, we found that concatenating the global gene

set expression vector directly with output from the convolutional layers, using a large batch size with appro-

priately matched learning rate, and weight initialization from a model trained using more noisy training

data made the most impact. Changing the fraction of positive samples per training batch from 0.5 to

0.25 also led to a minor improvement.

Table S2 shows that final model (Figure 1D) performance on the validation set, both overall and by tissue

type, was consistent across each of the two training partitions with respect to both ROC AUC as well as PR

AUC. Tables 3 and 4 summarize the results of applying our model across whole genomes, at all potential

DHSs. For tissue types with more than a single file pair in the test set, each sample’s results are listed.

As expected, overall the model was less accurate on completely new tissue types; however, even in the

more challenging scenario, the overall PR AUC was higher than the best tissue-specific models evaluated

on known tissue types. Note that several of the results in Table 4 were within similar ranges as predictions

whose sample types overlapped with training.
Expression-InformedModel Predictions Are Highly Reliable at Promoter and Promoter Flank

Genomic Sites

To better understand the performance characteristics and limitations of our model, we broke down our

ENCODE validation and test results by genomic site type. Table 5 details the distribution of annotations
122 iScience 20, 119–136, October 25, 2019



Partition Unique Tissues DNase-Seq Files RNA-Seq Files

Validation 10 11 12

Tissue overlap train 73 195 277

Tissue overlap test 12 14 15

Held-out tissue train 66 198 281

Held-out tissue test 8 11 11

Table 2. File- and Tissue-Type Distribution per Dataset Partition
applied to the 1.71 million sites considered in the held-out tissue training set, the percentage of all positive

samples that fall within each annotation, and the percentage of samples per each annotation type that are

positive. Note that a single site may overlap with more than one annotation.

We found that even for samples in which themodel performed poorly overall (Figure 2C), predictions within

promoter and promoter flank regions consistently attained a high level of accuracy (Figures 2A and 2D, Ta-

ble 6), achieving a PR AUC = 0.839 over all held-out tissue types and a PR AUC = 0.911 over randomly held-

out samples (validation set).

We also confirmed that the accuracy of these predictions was independent of whether the promoter and

promoter flank sites overlapped with the regions of genes used in our RNA-seq input gene set (Figure 2B).

Selecting a threshold for classification of only promoter and promoter flank sites such that precision is 80%

(20% false discovery rate) on the held-out tissue test set, our trained model recalls 65.3% of accessible pro-

moter regions, with a false-positive rate of 10%. Applying this same threshold to the validation set where

tissues are allowed to overlap with the training set, themodel achieves a precision of 93.4%, recalling 62.6%

of accessible promoter regions, and has a false-positive rate of only 3.5%.

We also investigated the accuracy at enhancer sites, finding a PR AUC = 0.732 over held-out tissues and PR

AUC = 0.889 over randomly held-out samples (validation set). Differently from promoter and promoter

flank regions, however, enhancer prediction accuracies showed a high variance between test samples (Fig-

ure 2D, Table S3). Thus, more investigation is necessary before relying on accessibility predictions at en-

hancers in further analysis.

To quantify the effect of similarity to training data on prediction performance we looked at correlation between

PR AUC (computed independently for all predictions in each whole genome sample) and distance of each test

and validation sample to its closest sample in the training set (Table 7). As might be expected from Figure 2D,

we confirm that prediction performance is less correlatedwith test sample similarity to trainingdata at promoter

and promoter flank sites than when PR AUC is evaluated over all potentially accessible sites.
Promoter Accessibility Patterns across Cohorts from The Cancer Genome Atlas

We applied our trained model to promoter and promoter flank sites in TCGA samples from six cohorts

(LUAD, LUSC, KICH, KIRC, KIRP, and BRCA). Across all samples in these cohorts for which whole-genome

sequencing (WGS) was available, 3,172 interest regions had one SNP, 78 had two SNPs, and only 9 regions

had between three and five SNPs. A total of 465 sites included insertion or deletions (INDELs), and only 7

sites featured both an INDEL and an SNP. Lung cancers exhibited the highest average number of mutated

sites per patient from our selected cohorts (Figure 3A).

To observe the effect of region changes on accessibility, we compared predictions with and without SNPs

and INDELs present. INDELs had the greatest impact on predicted accessibility, exhibiting a higher vari-

ance than SNPs (Figure 3B) and leading to a change in accessibility classification in 5.46% cases (at the pre-

viously defined accessibility threshold that achieved 80% precision) (Figure 3C). As there were generally few

somatic mutations impacting accessibility prediction sites, and the percentage of those that actually

impacted classifier decisions was even lower, we can conclude that any patterns we observed at the land-

scape scale of chromatin state predictions will be dictatedmore by gene expression levels providing global

context of tissue state rather than somatic mutations.
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Sample Tissue Type ROC AUC PR AUC

A172 0.959 0.721

Left renal pelvis 0.967 0.838

Small intestine 0.951, 0.926 0.737, 0.571

Muscle of arm 0.968 0.843

Forelimb muscle 0.968 0.808

Keratinocyte 0.939 0.644

Skin fibroblast 0.948, 0.947 0.770, 0.763

Large intestine 0.964 0.727

Muscle of back 0.967, 0.954 0.853, 0.854

Adrenal gland 0.957 0.743

SK-N-DZ 0.898 0.652

Fibroblast of lung 0.942 0.840

Mean tissue type AUC 0.950 0.758

Overall AUC 0.947 0.748

Table 3. Tissue Overlap Whole-Genome Test Results, with Scores Computed across All Tissues in Bold
To get a landscape view of how promoter and promoter flank sites behave, we embedded their binary

accessibility decisions across all our selected TCGA samples in two dimensions with t-distributed stochas-

tic neighbor embedding (t-SNE) (van der Maaten and Hintion, 2008). This clearly separated sites into

constitutively accessible, constitutively not accessible, and facultative (Figure 3D). A few very small clusters

of several hundred sites were also formed, which were groups of typically constitutive sites that acted

uniquely in one or two individual patients.

Second, we stacked all predictions into a single vector per patient to form accessibility profiles for all

samples in our six TCGA cohorts and again applied t-SNE to visualize relationships (Figure 3F). This qual-

itatively showed that looking at cancers from the viewpoint of DNA accessibility highlights different rela-

tionships than analysis of RNA-seq alone. For example, in the RNA-seq t-SNE space (Figure 3E) a clear

separation emerges among breast cancers (BRCA), which correspond to basal-like versus luminal A/B

and HER2-enriched clusters. In contrast, in accessibility t-SNE space (Figure 3F), the lung (LUAD, LUSC)

and breast (BRCA) cancer samples appear to share some common characteristics. There also appears to

be a slight partition into left and right groups in how lung cancer samples arrange in the embedding space,

with LUAD forming a distinct subset away from the LUSC/BRCA modality within the lung/breast superclu-

ster. Some similar clustering trends were observed in empirical ATAC-seq measurements performed con-

current to our work (Corces et al., 2018).

One of many potential biological factors that may contribute to overlap in the accessibility space is the

impact of hormone activity on both breast and lung tumors; this activity in turn is epigenetically regulated

(Zhang and Ho, 2011), thus some chromatin state patterns could be shared. Cell type composition is

another factor that is likely to play a role in determining our observations of both expression and accessi-

bility states of tissues; however, at this time we cannot isolate which biological confounders that determine

tissue state contribute in what quantities to accessibility predictions.

Accessibility Is Linked to Immune Activity in Lung Adenocarcinoma

We subsequently explored the biological associations of our model’s accessibility predictions by exam-

ining transcriptomic data from LUAD samples, as this tumor type has been shown to be of particular inter-

est in chromatin accessibility studies due to the impact on progression (Polak et al., 2014; Kim and Kim,

2016). Upon clustering LUAD samples for which WGS was available according to their predicted accessi-

bility, clear bifurcation into low- (C0, 21 samples) and high-accessibility (C1, 20 samples) samples was
124 iScience 20, 119–136, October 25, 2019



Sample Tissue Type ROC AUC PR AUC

Left kidney 0.965 0.778

OCI-LY7 0.899, 0.899, 0.886, 0.886 0.654, 0.654, 0.655, 0.654

Prostate gland 0.865 0.516

Hindlimb muscle 0.943 0.824

Spleen 0.913 0.582

Astrocyte 0.919, 0.944 0.787, 0.613

Fibroblast of skin of abdomen 0.964 0.826

G401 0.739, 0.846 0.459, 0.516

Mean tissue type AUC 0.898 0.655

Overall AUC 0.897 0.621

Table 4. Held-Out Tissue Whole-Genome Test Results, with Scores Computed across All Tissues in Bold
observed (Figure 4A). Cluster assignment based on predicted accessibility was distinct from any cluster as-

signments using the same methodology on RNA-seq directly (Figure 4B).

Differential KEGG pathway expression analysis with Enrichr (Kuleshov et al., 2016) showed the Chemokine

Signaling Pathway (hsa04062) to be upregulated in the low DNA accessibility (C0) patient group. This

association held true whether using TOIL RNA-seq data (Vivian et al., 2017; TOIL RNA-seq Recompute,

2016) (Enrichr adjusted p value [adj. p] = 1.191 3 10�6) or HiSeqV2 RNA-seq data (TCGA Genome Charac-

terization Center UNC, 2017) (Enrichr adj. p = 0.0145) (see methods and Figure S5 for details). Chemokines

are involved in multiple key processes in tumor growth and immune response (Nagarsheth et al., 2017; Ri-

vas-Fuentes et al., 2015; Sarvaiya et al., 2013), and their regulation by epigenetic mechanisms has also pre-

viously been reported (Flavahan et al., 2017; Yasmin et al., 2015).

No difference in tumor mutation burden was found between the two clusters (two-sided t test: t = �0.696,

p = 0.491), but interestingly the C0 group exhibited higher expression of immune checkpoint genes (Fig-

ure 4C). Cell type enrichment analysis (Aran et al., 2017) of lymphoids and myeloids also revealed a higher

level of class-switched memory B cells (two-sided t test: t = 4.040, p = 0.000385, Benjamini-Hochberg [BH]

adj. p = 0.0131) in C0, although estimated levels were generally low in both clusters. Other immune cell

estimates exhibited no differences with adj. p < 0.1, which was largely limited by small sample set size.
Total Number of Accessible Sites Correlates with Activity in Immune Pathways

To enhance the scope of our findings, we extended our analysis to all LUAD patient samples for which WGS

was not available by predicting accessibility using just the reference genome (hg19/GRCh37) and gene expres-

sion data. Although no mutation information was included for these additional samples, only 37 of 5,449 sites

(6.79%) used to cluster all WGS data included any instances of mutations. With the additional consideration

that only a small percentage of all mutations actually flip binary class predictions (Figure 3C), it is unlikely

that cluster assignment of new non-WGS samples was significantly affected by this missing information. As

before, the expanded set of patient samples was clustered into two groups according to accessibility.

The group with generally lower accessibility (C0) again exhibited generally higher checkpoint levels

(Figures 4D and 4E). However, visualizing the first three principal components and coloring points by total

number of accessible promoter and promoter flank sites (Figure 4F), we did find a smooth change in value

along a continuous manifold of samples, primarily along the first principal component (Spearman correla-

tion = 0.989, p = 0.0).

Therefore, instead of differential analysis, all protein-coding genes were filtered by correlation with the to-

tal number of accessible sites and evaluated for KEGG pathway enrichment. We found that all genes satis-

fying the threshold (correlation absolute value >0.4) had negative correlation values. As some relationships
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Site Type % of All Sites % of All Positive Examples % per Site Type that Are Positive

Exon 3.47 5.08 9.74

Intragenic 49.94 45.25 6.04

Intergenic 39.89 34.11 5.70

Promoter and flank 6.37 30.33 31.75

Enhancer 1.08 3.81 23.47

Other 5.39 5.20 6.43

Table 5. Distribution of Potentially Accessible Sites by Annotation
may not be linear but still monotonic, we focus on the Spearman measure (Table S4), although the Pearson

measure yielded similar top pathways (Table S5). Osteoclast Differentiation (hsa04380, adj. p = 7.45 3

10�15) was the most significantly correlated pathway.

Interestingly, the process of osteoclast differentiation is controlled by two essential cytokines (Kim and Kim,

2016): macrophage colony stimulating factor and the receptor activator of nuclear factor (NF)-kB ligand.

Tumor Necrosis Factor (TNF) Signaling Pathway (hsa04668, adj. p = 1.30 3 10�8) also appeared among

the top three results. TNF has a pro-inflammatory effect and has been noted to play a critical role in the

control of apoptosis, angiogenesis, proliferation, invasion, and metastasis (Yasmin et al., 2015).

When pathways were sorted by significance, the Chemokine Signaling Pathway, observed in WGS-only

cluster analysis, appeared 11th (adj. p = 4.01 3 10�5). Other notable pathways appearing in the top 10

included Pathways in Cancer (hsa05200, adj. p = 6.50 3 10�7), Regulation of Actin Cytoskeleton

(hsa04810, adj. p = 6.50 3 10�7), NF-kB Signaling Pathway (hsa04064, adj. p = 2.68 3 10�7), and Ep-

stein-Barr Virus Infection (hsa05169, adj. p = 2.83 3 10�5). Focal Adhesion (hsa04510, adj. p value =

2.29 3 10�4) appeared 20th but is worth noting as it resurfaces in later analysis.
Majority of Genes with Differential Accessibility Exhibit Consistent Differential Expression in

Immune Cell-Driven Clusters

To investigate accessibility patterns specifically in the context of different tumor immune environments, all

LUAD samples were clustered into two groups according to lymphoid and myeloid levels based on xCell

cell type enrichment analysis (Aran et al., 2017). Lymphoid and myeloid cells were selected for their roles in

the adaptive and innate immune system, respectively. A thin margin was introduced between clusters to

exclude samples with near-ambiguous label assignment (Figure S6).

Patients in X0 (141 samples) were enriched for many immune cells (Figure 5A), as well as checkpoint gene

expression (Figure 5C), and tended to have narrower distributions of both number of accessible promoter

and flank sites (generally lower than X1, two-sided t test p = 1.07 3 10�3) and total overall methylation

(generally higher than X1, two-sided t test p = 1.293 10�7) (Figure 5B). These samples also reflected signif-

icantly favorable survival (Figure 5G).We therefore interpreted X0 as the group of ‘‘immune-hot’’ patients in

LUAD and X1 as ‘‘immune-cold’’ patients.

After eliminating sites that exhibited low standard deviation, we selected all significantly differentiated

accessibility sites between the two clusters and mapped them to their nearest gene. Qualitatively, we

observed that several groups of sites act together in different ways and that those different clusters of chro-

matin state behavior are stable across significance thresholds (Figures 5D and 5E). We found that when a

majority of sites corresponding to a single gene were accessible more frequently in one cluster, that gene

exhibited upregulated expression in the same cluster most of the time (64.7% for genes more accessible in

X0 and 64.2% in X1).

Genes whose expression was consistent with increased accessibility in X0 showed near-significant levels of

enrichment for some pathways that had previously surfaced in our correlation results such as Focal Adhe-

sion (hsa04510, adj. p = 0.0355) and Osteoclast Differentiation (hsa04380, adj. p = 0.0936) (Table S6). No
126 iScience 20, 119–136, October 25, 2019



Figure 2. Promoter and Promoter Flank Accessibility Is Highly Predictable, but Enhancers Show Variability

(A) Promoter flank (pf) accessibility is highly predictable (PR AUC = 0.839), as shown by the genomic site performance breakdown over all samples in the held-

out tissues test set. The orange line indicates overall PR AUC computed across all test samples and all sites.

(B) No clear performance difference was observed when genomic sites across the held-out tissue test set were split into those that did (in L1000) and did not

(non-L1000) overlap the L1000 RNA-seq input gene set. Note that not all sites overlapped with known gene regions, so the union of the L1000 and non-L1000

subsets did not always make up the complete set of sites of a certain type.

(C) Overall metrics separated by tissue type show that some held-out tissues in the test set were more challenging as reflected by lower AUCs.

(D) Predictions at enhancers were highly variable between samples, even with good PR AUC, and performance on pf regions remained consistently high,

even for tissues where overall results were lowest.
significant pathways were found for genes consistent with increased accessibility in X1, or those inconsis-

tent with more accessibility in X0. The strongest significance in pathway enrichment existed in the set of

genes inconsistent with increased accessibility in X1 (up in X0 despite accessibility predictions voting for

upregulation in X1) (Table S7). The most prominent of the enriched pathways in this group were Platelet

Activation (hsa04611, adj. p = 4.38 3 10�4), Inflammatory Mediator Regulation of TRP Channels

(hsa0475, adj. p = 0.0109), and several with adj. p = 0.0235: Chemokine Signaling Pathway (hsa04062), Focal

Adhesion (hsa04510), cGMP-PKG Signaling Pathway (hsa04022), Intestinal Immune Network for IgA Pro-

duction (hsa04672), and Vascular Smooth Muscle Contraction (hsa04270).

These findings suggest that in LUAD tumors, partial regulation of immune- and cytokine-controlled path-

ways may be exerted via an activator mechanism at promoters. Furthermore, a more significant component

of chemokine signaling and platelet activation that distinguishes immune-active patients may be subject to

repressor regulation at promoter sites.
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Sample Tissue Type ROC AUC PR AUC

Left kidney 0.949 0.905

OCI-LY7 0.869, 0.868, 0.864, 0.864 0.842, 0.842, 0.859, 0.859

Prostate gland 0.897 0.826

Hindlimb muscle 0.935 0.938

Spleen 0.867 0.782

Astrocyte 0.925, 0.914 0.946, 0.838

Fibroblast of skin of abdomen 0.951 0.929

G401 0.798, 0.828 0.807, 0.757

Overall AUC 0.876 0.839

Table 6. Held-Out Tissue Test Results Restricted to Promoter and Promoter Flank Sites, with Scores Computed

across All Tissues in Bold
Patterns of Promoter Accessibility Predict Immune-Hot Tumors with Impact on Patient

Survival across Several Cancers

To further explore the link between DNA accessibility, immune activity, and clinical outcomes, we trained

an ensemble of three classifiers to detect an immune-hot tumor state in LUAD based only on a small subset

of accessibility predictions. Applying the ensemble to all of LUAD (Figure 6A) led to a cleaner and more

significant partition of patients (compared to Figures 5F and S6F) into immune-hot and immune-cold tu-

mors. Further applying the classifier ensemble to accessibility predictions across 11 other cancers in

TCGA revealed cases wherein the immune-hot state learned from LUAD was beneficial to patient survival

(Figures 6A–6E), detrimental to survival (Figures 6J and 6K), or had little impact (Figures 6F–6I and 6L), with

varying degrees of significance.

Our findings aligned very well with a comprehensive analysis of immune subtypes across TCGA (Thorsson

et al., 2018), which characterized the influence of immune activations on survival. Despite very different

methodologies, their plots also indicated that in cohorts such as LUAD, SKCM, and CESC activation of im-

mune subtypes was associated with better outcomes; that the opposite was true in KIRC, LGG, and STAD;

and that little impact was visible in LUSC. They did not, however, discuss accessibility as a potential addi-

tional biomarker for immune activity.

Significant negative impact of immune activity on survival in KIRC was also shown in a separate cohort of

clinical data from Oulu University Hospital (Mella et al., 2015), confirming that this trend is not unique to

TCGA. Interestingly, the study used CD8+ T cell count cutoffs to stratify patients with renal cell carcinoma

into two groups. Based on xCell estimates this was the secondmost significantly enriched immune cell type

(two-sided t test BH adj. p = 3.57 3 10�26) in KIRC immune-hot patients identified by our classifier, after

activated dendritic cells (two-sided t test BH adj. p = 1.073 10�26) (Figure S8). Although the training cohort

(LUAD) did express some difference in CD8+ T cell enrichment scores between hot and cold tumors (two-

sided t test BH adj. p = 9.653 10�15), it was not in the top 10 most significantly different immune cells (Fig-

ure 5A). From this we see that our classifiers operating on accessibility predictions learned a more complex

decision boundary than simply focusing on direct correlates with the most differentiated immune cell com-

positions in the training set.

An additional curiosity specific to the KIRC partition from our classifier ensemble is that little difference in

CD274 (also called PD-L1) and PDCD1LG2 (also called PD-L2) expression is visible between the two pre-

dicted classes; however, the strong difference in PDCD1 (also called PD-1) expression levels that exists

in other immune-hot versus immune-cold partitions does exist. This unique state of checkpoint-related

gene expression may be linked to the low response rate in patients with renal cell carcinoma to anti-

PD-L1 therapies, compared with more favorable responses found for anti-PD-1 drugs, in early-phase clin-

ical trials (Weinstock and McDermott, 2015). Interestingly, an empirical study of ATAC-seq peaks across

cancers (Corces et al., 2018) also found a link between four regulatory regions that exhibited distinct chro-

matin accessibility patterns across cancers and expression of CD274.
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PR AUC Evaluation

Domain

Pearson

Correlation

Pearson

p Value

Spearman r Spearman

p Value

Overall �0.7472 1.77 3 10�5 �0.7080 7.52 3 10�5

Promoter and flank �0.6795 1.87 3 10�4 �0.5417 5.16 3 10�3

Table 7. Correlation of PR AUC with Test Sample Distance to the Nearest Training Sample
ATAC-Seq Measurements Validate Predictions in TCGA Samples

In parallel to our analysis, the chromatin state of select samples across several TCGA cohorts was empiri-

cally measured using ATAC-seq (Corces et al., 2018). At a minimum overlap threshold of 70% we found that

10.9% (61,342 of 562,709) of all pan-cancer peaks identified in the study corresponded directly with 56.3% of

our (108,970) promoter and promoter flank sites at which we applied our model. At lower peak overlap

thresholds this percentage increased significantly; for example, at 10% minimum overlap 83.6% of our pro-

moter and promoter flank sites had corresponding pan-cancer ATAC-seq peaks. For correspondences

defined by the 70% overlap threshold we first showed that the means of normalized count values for indi-

vidual ATAC-seq peaks across lung and kidney cohorts had clearly distinct distributions (Figure 7A) be-

tween constitutive and facultative site categories (identified based on clustering our TCGA predictions,

Figure 3D). Constitutive sites had consistently high mean peak counts in the accessible category and

consistently low mean peak counts in the not accessible category, whereas facultative sites corresponded

to ATAC-seq peaks with a broader distribution of mean normalized count values centered between the

previous two categories (Figure 7A).

We then explored the distributions of ATAC-seq peak counts as stratified directly by our accessibility

classifier predictions in addition to the above site categories (Figures 7B and 7C). In this case no

means were computed across samples; every prediction site in every TCGA sample was considered

as one data point. Normalized counts for peaks corresponding to sites predicted as accessible were

generally distributed at higher values than peaks corresponding to sites predicted as not accessible,

and the difference between predicted accessibility distributions was significantly more striking at

constitutive sites than at facultative sites. This observation held true for all cohorts used in our im-

mune classification experiments (Figure 6) for which there existed TCGA samples with both ATAC-

seq measurements and our accessibility predictions. This result suggests that chromatin sites whose

accessibility changes dynamically within a tissue type tend to remain closer to an accessibility

threshold compared with less dynamic sites. The distributions did differ some in shape between co-

horts, which may partly be explained by the fact that our constitutive and facultative site category

labels used for this experiment were derived only based on predictions in lung and kidney cohorts;

thus in different tissues wherein the dynamics of chromatin slightly differ those particular labels may

not be as representative.
DISCUSSION

We have demonstrated that predictive models operating on DNA sequence data, additionally condi-

tioned on a global set of RNA-seq gene expression inputs, can predict DHSs in unseen tissue types in

a way that allows application to new samples without re-training. We showed that these models were

capable of achieving consistently high performance for predictions at promoter and promoter flank re-

gions of the genome. Leveraging this new tool for analysis of tumor genomes across different cell and

tissue types, we provided a unique perspective on the DNA accessibility landscape across TCGA data.

Complementary to the exploration of the full range of variable accessibility sites across cancers made

possible by empirical measurements (Corces et al., 2018), our analysis of sites at reliably predictable

genomic regions explored a more limited and thus more subtle set of chromatin dynamics, which proved

to still be very information rich. Despite the more limited view of accessibility sites in our case, both

studies found some similar clustering trends and both concluded that chromatin state plays a significant

role in cancer immune response.

DNA accessibility is one of many factors that determine expression, which makes inversion of the relation-

ship not trivial; knowing expression levels does not uniquely define the pattern of DHSs. Our expression-

informed model (Figure 1D) learns a most likely mechanism by which the DNA sequence immediately
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Figure 3. SNP and INDEL Mutations and Predicted Accessibility Landscape in Tumors

(A) The average number of SNP and insertion or deletion (INDEL) mutations that overlap prediction sites per patient across six TCGA cohorts is shown.

(B) When predictions at sites with mutations were compared with and without applying mutations to the input DNA sequence, the change in predicted

accessibility exhibited a higher variance for INDELs than SNPs.

(C) In addition, a larger fraction of sites with INDELs were responsible for a change in the classification decision (flipped prediction) than the fraction of sites

with SNPs.

(D) Using t-SNE (perplexity = 50) to visualize the predicted accessibility of individual promoter flank (pf) sites across our selected TCGA samples, we

identified which sites were facultative (orange), constitutively accessible (blue), and constitutively not accessible (green).

(E and F) (E) Finally, t-SNE applied to patient samples exhibited different relationships (such as a clear split in BRCA samples) when based on RNA-seq gene

expression of the L1000 gene set, than (F) when based on predicted accessibility at all pf sites within each sample (in which case lung and breast cancers

appeared to share some common characteristics).
surrounding a potential DHS determines its accessibility, conditioned also on an observed global expres-

sion state. Therefore, accessibility prediction applied across the whole genome is an approach to approx-

imately invert gene expression to obtain most likely DHSs.

Our results showed that viewing tumors by promoter accessibility highlights immune pathways that would

otherwise be harder to detect from completely unsupervised analysis of RNA-seq data alone. For example,

we found several pathways inversely correlated with an overall more open chromatin state. Through iden-

tification of facultative accessibility sites linked with differential gene expression in immune-inflamed LUAD

tumors and training of a classifier ensemble, we showed that patterns of predicted chromatin state at a

small subset of genomic regions are predictive of immune activity across many tumor types, with direct im-

plications for patient prognosis. We see such predictive models playing a significant future role in matching

patients to appropriate immunotherapy treatment regimens, as well as in analysis of other conditions

wherein epigenetic state may play a significant role, such as autoimmune disease, autism, aging, and

neurodegenerative disease.
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Figure 4. Promoter and Promoter Flank Accessibility and Checkpoint Gene Expression in LUAD WGS Samples Only and Augmented with Non-

WGS Samples

(A) The heatmap and patient sample cluster assignment based on the top 5%most variable promoter and promoter flank (pf) accessibility sites across LUAD

samples with WGS available are shown. Cluster 0 (C0) has lower overall accessibility (blue = not accessible), and cluster 1 (C1) exhibits generally higher

accessibility (red = accessible).

(B) Adjusted mutual information (AMI) (1) between label assignments based on different data shows higher values (red) between different RNA-seq cluster

assignments and low values (blue) between accessibility (Access.) and clusters based on any other data type.

(C) Distribution of key checkpoint gene expression levels (with x axis sorted by significance of two-sided t test between C0 and C1) shows that the low-

accessibility group tends to have higher checkpoint levels.

(D) Applying the same procedure to the full LUAD cohort, which also includes predictions for all non-WGS samples, we see a similar split into low- (C0) and

high (C1)-accessibility groups.

(E) The same trend in checkpoint expression is observed, with FOXP3 again appearing as the most significant difference (two-sided t test with Benjamini-

Hochberg adjusted p = 4.53 3 10�19).

(F) Plotting promoter and flank accessibility with respect to its first three principal components (PC1–3) and coloring points by total number of accessible

sites in a sample reveals a smoothly varying relationship, motivating a correlation-based approach to exploring the relationship between overall accessibility

and gene expression levels.
It may also be interesting to pursue a deeper functional investigation of genes linked with accessibility.

Genes with consistent behavior to accessibility are candidates that may be regulated via an activator mech-

anism at promoters, whereas genes with inconsistent behavior may be subject to alternative gene repres-

sion mechanisms, e.g., silencer elements or suppression via microRNAs.

In a few TCGA cohorts, our ensemble classification approach only identified a very small number of im-

mune-hot tumor samples, making survival analysis impossible. The generalizability of our immune-related

chromatin state across cancers was undoubtedly limited by only having trained the support vector ma-

chines (SVMs) on a single cohort, because immune cell composition and definition of an immune-active

state varies across cancers (Thorsson et al., 2018); going forward, we will integrate accessibility signatures

from multiple cohorts to train a more comprehensive subtyping of immune state.

Ideally, WGS for each of the samples in our training dataset should have been used to learn themost faithful

representation of the true biology, as using only reference genome data introduces non-random noise in

the input space. Unfortunately, such individual whole-genome data were not available for this project.

Nonetheless, our work and that of others demonstrates that useful predictors can be learned despite

this noise. Unlike models with multitask outputs, our architecture can easily support such individualized

training without any changes, and when possible, it will be instituted in the future.
iScience 20, 119–136, October 25, 2019 131



Figure 5. Enrichment in LUAD xCell-Derived Clusters (after Adding a Small Margin) by Cell Type, Checkpoint Expression, Methylation,

Accessibility, and Survival

(A) Cell type enrichment distributions sorted by significance of two-sided t test for the two clusters (X0, X1), based on xCell lymphoid and myeloid cells, with

Benjamini-Hochberg adjusted p value < 1.0 3 10�5 are shown.

(B) Total number of accessible promoter and promoter flank sites in each sample by cluster (two-sided t test p = 1.07 3 10�3) along with total methylation

(two-sided t test p = 1.29 3 10�7).

(C) Checkpoint expression distributions, likewise sorted by significance, also point to a general difference in immune landscape between the two groups.

(D and E) (D) All sites with differences in accessibility based on a two-sided t test with Benjamini-Hochberg adjusted p values < 0.01 and (E) < 1.0 3 10�5 are

illustrated on the t-SNE plot of promoter and promoter flank facultative sites. Sites with a difference satisfying the thresholds were assigned to the cluster in

which they were more accessible.

(F) Accessibility differences are further broken down by how they align with direction of upregulation of corresponding nearby genes (ns gene, no significant

difference in matching gene; consistent, direction of significant accessibility and gene expression differences are consistent; inconsistent, direction of

significant accessibility and gene expression are inconsistent).

(G) Kaplan-Meier plots demonstrate better survival among X0 (immune hot) patients, shown with log rank test p value and hazard ratio (HR) based on a Cox

proportional hazards (CoxPH) model regression using class assignment as the only explanatory variable.

See also Figures S6 and S7, and Tables S4–S7.
We saw high variance for enhancer sites, but these sites are also interesting with respect to chromatin state

and immunotherapy, because they have been linked with T cell dysfunction with potential for therapeutic

reprogrammability in mice (Philip et al., 2017). At this time, it needs to be determined whether the large

variance in performance is due to limitations in the model, noise in the data, or lack of necessary informa-

tion in the available inputs. To this end, we look forward to future exploration of a more complete set of

genes instead of a manually curated set, such as the LINCS L1000. Many alternatives exist to learn gene

embeddings as part of model training, and we believe that ultimately an approach that efficiently incorpo-

rates all genes as input will be most effective.

Furthermore, there are a multitude of alternative model architectures such as residual connections (He

et al., 2016), densely connected convolutional networks (Huang et al., 2016), and recurrent neural networks

(Hochreiter and Schmidhuber, 1997) with additions such as attention (Bahdanau et al., 2014; Xu et al., 2015),

which we believe are likely to improve performance of our model. These have been left for future evalua-

tion, such as one rigorous study that has independently verified and built on our architectural innovations

(Nair et al., 2019). The key contribution of this work was movement beyond the cell-type-specific limitations
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Figure 6. Application of the Three SVM Ensembles for Classification of Immune-Hot Tumors (Trained on Subsets of LUAD) with the Only Input

Being a Vector of 484 Promoter and Flank Predicted Accessibility Decisions

All Kaplan-Meier plots show group size (N) for patients of both predicted immune activity classes (hot/cold) that satisfy a confidence threshold (see

Transparent Methods). Also provided are log rank test p values and hazard ratio (HR) based on a Cox proportional hazards (CoxPH) model regression

using class assignment as the only explanatory variable. Note that the time axis range on subplots varies by cohort and that the immune-hot state

learned based on LUAD is not always beneficial for patient survival in other tumor types. Tumor types included (A) LUAD, lung adenocarcinoma; (B)

SKCM, skin cutaneous melanoma; (C) SARC, sarcoma; (D) BRCA, breast invasive carcinoma; (E) CESC, cervical squamous cell carcinoma and

endocervical adenocarcinoma; (F) HNSC, head and neck squamous cell carcinoma; (G) LUSC, lung squamous cell carcinoma; (H) BLCA, bladder

urothelial carcinoma; (I) GBM, glioblastoma multiforme; (J) KIRC, kidney renal clear cell carcinoma; (K) LGG, brain lower grade glioma; and (L) STAD,

stomach adenocarcinoma.

See also Figure S8.
of DNA sequence classifiers, demonstration of the application of our expression-informed model to pre-

dict accessibility, and the ability of these predictions to distinguish prognostically alternative immune

states across human cancers.
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Figure 7. Validation of Our Promoter and Promoter Flank DNA Accessibility Predictions in TCGA with Empirical ATAC-Seq Measurements

(A) The top violin plots show the distributions of per ATAC-seq peak means of normalized counts in lung and kidney cohorts, for sites we labeled as

constitutively (const.) accessible, facultative, or const. not accessible (based on our analysis shown in Figure 3D). Peak count values along all y axes were log

transformed and quantile normalized as provided by the authors of the empirical study.

(B and C) Distributions of ATAC-seq peak normalized counts for all prediction sites across all available samples were further broken down per cohort by

classification decision (accessible, pðajd;rÞ = 1, and not accessible, pðajd;rÞ = 0) in addition to site category. Site categories were either facultative (facult.) or

constitutive (const.), the latter including both const. accessible as well as const. not accessible. The number of TCGA samples that contributed to each plot is

shown (N = ). (B and C) Only TCGA samples for which we had made predictions and were also empirically measured were used, but (A) utilized all available

measured samples. The distribution plots were informed by N * 61,342 data points in (B and C), whereas for (A), where we considered themean value for each

site, there were only 61,342 data points total within each cohort.
Limitations of the Study

By design, convolutional neural networks only capture the influence of a small local neighborhood of DNA

sequence (600 base pairs in our experiments) on predicted outputs, so impacts frommore distal mutations

on potential DNA accessibility sites can be captured implicitly only if they happen to influence expression

levels of input of the global RNA-seq gene set. True biological function of DNA sequence may not be fully

captured due to reliance on reference genome as a proxy for WGS in all training samples. At genomic re-

gions where predictions demonstrate consistently good accuracy, we suspect that a fair amount of noise

due to this approximation has averaged out over training data. Regions at which prediction accuracies

have high variance across samples, such as enhancers, may be hard to predict for this reason, or other lim-

itations with the training data or model assumptions. Both DNase-seq and RNA-seq measurements are

taken from tissue samples, which feature heterogeneous cell type populations of varying proportions.

The addition of RNA-seq data has enabled models to implicitly handle some degree of this type of noise;
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however, due to the massive possible permutations in how such variations can manifest, trained models

may not perform well in test cases where tissue types, compositions, or the RNA-seq expression quantifi-

cation pipeline are drastically different than samples seen in training.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.09.018.
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Transparent Methods 

Baseline tissue-specific dataset  

All tissue-specific models described in this work were trained and evaluated following the exact 

procedure of the Basset network (Kelley et al., 2016), using DNase-seq peak data from 164 sample types 

obtained from ENCODE (Consortium, 2012) and Roadmap Epigenomics (Kundaje et al., 2015) projects. 

Greedy merging of overlapping peaks across all DNase-seq data samples allowed us to create a universal 

set of potential accessibility sites. For each site, a binary vector was used to label its accessibility state in 

each of the 164 cell types. Data was then split by genomic site so that 70,000 peak locations were held out 

for validation, 71,886 for testing, and the remaining 1.8 million sites were used for training. The model 

input was a 600 base pair window of the DNA sequence centered at a site of interest, represented as one-

hot encoding.  

Baseline tissue-specific model implementation 

We used TensorFlow (Abadi et al., 2015) to implement the Basset architecture for our baseline.  We used 

Adam (Kingma and Ba, 2014) instead of RMSProp (Tieleman and Hinton, 2012) to optimize network 

parameters. We also found that use of a dynamic decay rate (that increased over the course of training) for 

updating moving averages in batch normalization (Ioffe and Szegedy, 2015) led to a model with 

competitive performance more quickly than when using a fixed decay.  No other significant deviations 

from the original implementation were included. 

When improving on the baseline model with convolutional layer factorizations, we focused experiments 

on factorizations that maintained the effective region of influence of the original layers and did not 

significantly increase the overall number of network parameters. 

ENCODE DNase-seq and RNA-seq dataset 



Data from the ENCODE project was initially collected at the start of 2017 for all cell or tissue types for 

which RNA-seq and DNase-seq measurements were both available. In order to capture a greater diversity, 

gene quantifications from RNA-seq files with the following ENCODE labels were collected: “RNA-seq”, 

“polyA mRNA”, “polyA depleted”, “single cell”. All files with “ERROR” audit flags were rejected. We 

kept files with “insufficient read depth,” and “insufficient read length” warnings. Despite being below 

ENCODE project standards, we believe the available read depths and lengths in warning situations were 

likely to be less of an issue when it comes to differentiating cell types (Conesa et al., 2016), and preferred 

to accept more potential noise in favor of a larger diversity of sample types. 

The final step of data preparation involved assigning associations between specific RNA-seq and DNase-

seq files within the same tissue type. In cases where there existed multiple exact matches of "biosample 

accession” identifiers between the two file types, associations were restricted to such exact matches. If 

exact accessions did not match, two file types were associated if it could be verified that they originated 

from the same tissue sample, cell line, or patient. This eliminated several tissue types for which no such 

correspondences existed. Both technical and biological replicates were treated as independent samples of 

the same tissue since we wanted to put the burden of learning non-invertible aspects of noise due to the 

measurement process on the neural network model. 

The dataset was refined in late 2017, as several samples that had been part of our training and testing data 

were revoked by the ENCODE consortium due to quality concerns and updates. The final dataset 

consisted of 74 unique tissue types, distributed among partitions as discussed earlier (Table 2). The 

validation set was held constant, while the training and test sets included two variations. 

We utilized the same greedy merge methodology described in Basset (Kelley et al., 2016) on all DNase-

seq samples in our training sets to obtain a set of all potential sites of accessible DNA along the whole 

genome. 



We used a fixed length of 600 base pairs (bp) centered at DHS peaks to define each site. Blacklisted sites 

at which measurements were suggested to be unreliable were excluded (Kundaje, 2016). This led to a 

total of 1.71 million sites of interest in the case of the held-out tissue data partition, and 1.75 million sites 

in the tissue overlap data partition. Using all sites across all available DNase-seq files, this produced a 

total 338.7 million training examples in the held-out tissue split. 

As in other recent work on DNA-based prediction tasks (Alipanahi et al., 2015, Kelley et al., 2016, Singh 

et al., 2016, Quang and Xie, 2016) the sequence for each genomic site was obtained from human genome 

assembly hg19/GRCh37. 

Training the expression informed model 

During training data was balanced per batch due to a 14:1 ratio of negative to positive examples. Each 

batch sampled an equal amount of accessible and non-accessible sites without replacement, such that one 

pass through all available negative training examples constituted multiple randomly permuted passes 

through all positive training examples. In situations where a DNase-seq file had more than a single 

matching RNA-seq file, sites from that DNase-seq file were randomly assigned to one of the multitude of 

corresponding RNA-seq expression vectors each time they were selected for a training batch. 

To generate a validation set that was manageable to evaluate frequently we selected 40,000 random 

samples from each of accessible and non-accessible sites per validation DNase-seq file. This resulted in a 

set of 440,000 validation examples that were used to estimate ROC AUC throughout training. 

However, upon stopping we also evaluated prediction performance across whole genomes (all potential 

DHSs) of all validation samples (Supplemental Table S2). In cases where multiple RNA-seq file matches 

existed, predictions across the entire genome were evaluated once for every possible DNase-seq and 

RNA-seq file pair. Whole genome evaluation gave a better characterization of performance on the 

intended application, especially as captured by PR AUC, which is less misleading in the presence of data 

imbalance. Results on the test sets were evaluated across whole genomes following the same procedure. 



The total number of examples (all sites across all samples) for validation was 20.5 million and 22.2 

million for testing in the held-out tissue partition.  

All RNA-seq expression data used to train and test models was in units of log2(TPM + 1). There were 

many possible strategies for selecting the subset of genes for our input signature, but to initially avoid 

optimizing in this space, we relied on the prior work of the Library of Integrated Network-based Cellular 

Signatures (LINCS) and used their curated L1000 list of genes (LINCS, 2018). To ensure that the models 

could be applied later to cancer genomes in TCGA we converted all L1000 gene names into Ensembl 

gene identifiers and kept only those genes that were available in both ENCODE and TCGA TOIL RNA-

seq files. After this refinement, our final input L1000 gene list consisted of 978 genes. 

Expression informed model architecture and hyperparameters 

We trained several alternative versions of our model and reported validation results over the course of 

training in Supplemental Figure S3 and Supplemental Figure S4.  

The tissue-specific models demonstrated that multi-task outputs could share common convolutional layers 

and provide an accurate prediction of DNA accessibility across distinct sample types. Thus, we expected 

that if an input vector was discriminative of cell type it was likely to be sufficient to integrate it into the 

network after the convolutional layers. We evaluated adding a fully connected layer (depth = 500) before 

concatenating the vector of L1000 gene RNA-seq data to output from the convolutional layers, but found 

that it performed consistently worse (Supplemental Figure S3) than direct concatenation without the fully 

connected layer (Figure 1D). 

Transfer learning consistently shortened the training time across model variants, and we found that using 

weights learned from the corresponding data partitions before final cleanup of revoked files was more 

effective on the validation set than was transfer of convolutional layer weights from the best tissue-

specific model. However, our most impactful changes were increasing the batch size (from 128 to 512, 

and finally to 2048), and decreasing the learning rate (from 0.001 to 0.0001). 



The tissue-specific models had multi-task outputs so that each training sample provided an information-

rich gradient based on multiple labels for backpropagation. Since using RNA-seq inputs eliminated the 

need for multi-task outputs, each sample now only provided gradient feedback based on a single output. 

The batch size increase was intended to compensate for this change in output dimension to produce a 

more useful gradient for each batch. 

The learning rate decrease, on the other hand, was guided by the observation that training was reaching a 

point of slow improvement before even a single full pass through all negative training examples. Our new 

dataset was also significantly larger than that used to train tissue-specific models. 

We initialized our final expression-informed model (Figure 1D) with weights learned from the first 

iteration of the dataset, before erroneous revoked files were removed. In turn, those models were 

initialized with convolutional layer parameters from our best performing tissue-specific factorized 

convolutions model (Figure 1C). An effective batch size of 2048 was used for training (2 GPUs 

processing distinct batches of 1024), with an Adam (Kingma and Ba, 2014) learning rate of 0.0001 and a 

0.25 fraction of positive to negative samples in every batch. 

Expression informed model evaluation on ENCODE and genomic site annotations 

ENCODE test set results were summarized in two ways: as a mean of AUC scores computed per whole 

genome sample (mean tissue type AUC in Tables 3 and 4), and as a single AUC score computed by 

considering predictions for all sites across all whole genome samples together (overall AUC in Tables 3 

and 4).  Only the latter was reported for performance analysis by genomic site type. 

Two key sources were used to assign functional labels to accessibility prediction sites for performance 

breakdown. Exon, intragenic, and intergenic regions were derived from annotations defined by 

GENCODE v19 (Harrow et al., 2012). Promoter and promoter flank, and enhancer region annotations 

were obtained from the Ensembl Regulatory Build (Zerbino et al., 2015). 



When investigating correlation of training similarity to test sample performance, since the modulating 

factor between predictions applied to different tissues is the input RNA-seq data, distance between test 

samples, 𝑡, and the training set, 𝑇, was computed as d(𝑡, 𝑇)	=	min
,∈.

‖𝒓, − 𝒓2‖, where 𝒓2 is a test sample’s 

vector of log2(TPM + 1) expression levels for all L1000 genes. 

Predicting DNA accessibility in TCGA 

We applied our best expression informed model trained on the held-out tissue ENCODE partition to 

predict accessibility in TCGA. We restricted our predictions to promoter and promoter flank sites, since 

performance at those sites was high across all tests. 

TOIL RNA-seq transcripts per million (TPM) gene expression data was used to obtain L1000 input gene 

signatures for all processed TCGA samples (Vivian et al., 2017, TOIL RNA-seq recompute, 2016). All 

expression values were converted from log2(TPM + 0.001) to log2(TPM + 1) before use.  

For landscape views of accessibility and mutation impact analysis (Figure 3) we considered only samples 

with WGS available, and used mutation calls from an internal tool. For each sample site affected by at 

least one mutation, the change in predicted accessibility was computed before and after each mutation 

was applied, independently for SNPs and INDELs (Figure 3B). In order to apply t-SNE to generate the 

per-site landscape view (Figure 3D) we represented each site by a vector of binary accessibility decisions 

at that position across all selected TCGA samples with all mutations applied. All mutations were also 

applied when generating the per-patient t-SNE visualization (Figure 3F). 

Accessibility in LUAD 

To assess the uniqueness in perspective of accessibility versus RNA-seq, all LUAD samples for which we 

had WGS data were clustered into two groups via K-means. For this, four data sources were used: 

accessibility predictions for promoter and promoter flank sites, TOIL log2(TPM + 1) RNA-seq gene 

expression data, HiSeqV2 log2(normalized count + 1) RNA-seq gene expression data (TCGA Genome 



Characterization Center, 2017) and TOIL log2(TPM + 1) RNA-seq gene expression data for all genes in 

the L1000 gene set used as inputs to our expression informed model. For the first three datatypes, we 

clustered samples based on the top 5% most variable sites (for accessibility) or genes (for TOIL and 

HiSeqV2) across the LUAD cohort, following the logic that the most highly variable sites may highlight 

the most dramatic differentially active pathways. For the L1000 genes, clustering was based on the entire 

set of gene expression levels. To show the difference quantitatively between cluster assignments across 

data types we used adjusted mutual information (Vinh et al., 2010) (Figure 4B). 

Exploration of pathway enrichment between the accessibility clusters was performed using Enrichr 

(Kuleshov et al., 2016). Genes for enrichment analysis were selected by first eliminating all genes below 

a standard deviation threshold of 0.33 (in TOIL data) across the LUAD cohort (in HiSeqV2 data the 

equivalently selected standard deviation threshold was 1.0). This threshold was selected to include the 

main peak of gene standard deviation and exclude the peak around zero (Supplemental Figure S5), 

comprised of genes with little change or very low levels of expression. All remaining genes were then 

compared with a two-sided t-test between the two clusters and p-values were adjusted with Benjamini 

Hochberg (BH) correction. Due to the low number of WGS samples in either cluster (21 samples in C0 

and 20 samples in C1) a more permissive false discovery rate of 0.25 was chosen as the cutoff for 

differential expression. In TOIL data, this procedure returned 512 genes upregulated in C0 and 857 genes 

upregulated in C1. In HiSeqV2 data, the same process yielded 344 upregulated genes in C0 and 339 in 

C1. 

For comparison of tumor mutational burden (TMB) across clusters, TMB was computed as the total count 

of missense and nonsense mutations in each WGS sample. 

When the patient analysis set was expanded to include all LUAD samples without WGS mutation 

information, clustering based on promoter and promoter flank accessibility predictions was repeated with 

the same procedure as before (Figure 4D). 



To investigate whether the accessibility space appeared continuous along the dimensions of most variance 

across LUAD we used Principal Component Analysis (PCA) applied to all promoter and flank 

accessibility predictions to project each sample onto the first three principal components (Figure 4F). 

Correlating accessibility count with gene expression 

Total accessibility count used to investigate gene correlations was computed as the total number of 

promoter and promoter flank sites predicted to be accessible after applying the binary decision threshold 

(at 80% precision) defined on ENCODE data. Again, only genes whose standard deviation was above 

0.33 were considered for correlation analysis. Both Pearson and Spearman measures were evaluated, and 

the threshold for both measures was an absolute value above 0.4. All genes satisfying the threshold were 

analyzed for KEGG pathway enrichment with Enrichr (666 genes for Pearson correlation, and 418 genes 

for Spearman) (Supplemental Table S4 and S5) 

Accessibility analysis in immune cell driven clusters 

LUAD samples were clustered into two groups using K-means on vectors of lymphoid (21 cell types) and 

myeloid (13 cell types) xCell estimates (Aran et al., 2017), revealing a survival difference (Supplemental 

Figure S6C). We noticed that a plane orthogonal to the first principal component (PC1) partitioned cluster 

labels when xCell vectors were reduced to three dimensions with PCA (Supplemental Figure S6A and B). 

To exclude cases of near ambiguous label assignment and focus on more prominent differences we 

removed samples within a small margin at the midpoint between clusters (in PC1). Margin size was equal 

to the standard deviation of the smallest cluster in the PC1 dimension (Supplemental Figure S6D and E). 

After ignoring margin samples, the survival difference of patients between clusters increased in 

significance (logrank test p = 6.7e-4) (Supplemental Figure S6F).  

Total methylation for all LUAD samples was computed as the sum of values at all sites measured by the 

Infinium HumanMethylation450 BeadChip, available from TCGA (TCGA, 2016). Total accessible site 



count considered all promoter and promoter flank sites, with binary class assignment based on the 80% 

precision threshold (Figure 5B). 

For further analysis of accessibility, only sites previously determined as facultative were considered and 

all with low standard deviation (< 0.135) across LUAD (N = 512) were eliminated, to ignore cohort 

specific constitutive sites with some tolerance for noise. The threshold was selected so that at minimum 

10 accessibility values at a site had to be distinct from the site’s values across the whole cohort 

(Supplemental Figure S7A). 

Each accessibility prediction site was assigned to its nearest gene, according to distance in base pairs, as 

defined by GENCODE v19 (Harrow et al., 2012). We considered only accessibility sites within 50,000 

base pairs as having a valid correspondence to a gene (Supplemental Figure S7B). Significantly 

differentiated accessibility sites were then used to vote for candidate upregulated genes in each cluster. A 

very conservative significance threshold (two sided t-test BH adj. p < 1.0e-5) was selected so as to only 

focus on the most striking accessibility differences. Each site was allowed to contribute a single vote to its 

corresponding gene according to the cluster in which the site was more accessible. 

Genes with a consistent direction of upregulation votes were considered cluster-specific candidate genes 

to test for differential expression (532 genes in X0 and 2250 genes in X1). From the candidate genes for 

each cluster that also had significant (two sided t-test BH adj. p < 0.01) differential expression (190 in X0 

and 835 in X1) we identified the group in each cluster that was consistent (123 in X0, and 536 in X1) and 

inconsistent (67 in X0, and 299 in X1) with the direction of increased accessibility. All four sets were 

then tested for KEGG pathway enrichment via Enrichr (Supplemental Table S6 and S7). 

Predicting immune state from promoter and promoter flank accessibility 

To train an ensemble of distinct models to discriminate immune hot from immune cold we used three fold 

cross validation; independently partitioning hot (X0 from immune cell based clustering) and cold (X1 

from immune cell clustering) samples randomly to maintain an equal ratio across each fold. Training on 



different random subsets of data enhanced robustness when dealing with training label uncertainty. Each 

classifier was an RBF kernel SVM with 𝐶 = 3.5, and 𝛾 = 8
9:

, where 𝑁 was the number of features and 𝜎 

was the standard deviation of feature values across the training set. Additionally, training samples were 

balanced by weights inversely proportional to class frequency, and Platt scaling (Platt, 1999) was used to 

obtain probability estimates from SVM classification. During ensemble classifier application we excluded 

all samples that did not have a mean probability of at least 0.5 for the ensemble’s majority class 

prediction. 

Input features to the classifier were binary accessibility predictions for a set of 484 sites comprised from 

the union of all immune hot (X0) sites consistent with gene expression and immune cold (X1) sites 

inconsistent with expression, as obtained from analysis of the xCell driven LUAD clusters. These sites 

were chosen both for their association with significant differences in expression of corresponding genes 

and the enrichment of those gene sets for immune relevant pathways. 

Expanding the application domain of the immune activity classifier to previously unprocessed TCGA 

cohorts involved first applying our expression informed convolutional neural network model to all 

promoter and promoter flank sites in the new data. As previously, when expanding our LUAD sample 

size to non-WGS data, we used only the reference genome (hg19/GRCh37) and TOIL log2(TPM + 1) 

RNA-seq gene expression data for all predictions. Predictions that incorporated mutation information 

were included only for samples in our original six cohorts for which WGS was available. 

Validating TCGA predictions with measured ATAC-seq peaks 

The list of pan-cancer peaks, TCGA sample identifiers, and the normalized ATAC-seq insertion counts 

within the pan-cancer peak set were obtained from supplemental material of the empirical investigation of 

chromatin accessibility in TCGA (Corces et al., 2018) at: https://gdc.cancer.gov/about-

data/publications/ATACseq-AWG . To visualize distributions of ATAC-seq peaks for our clustering-

based constitutive and facultative site labels, we computed the mean values within KIRC, KIRP, LUAD, 



and LUSC cohorts individually for each pan-cancer peak that corresponded uniquely to our promoter and 

promoter flank sites with at least 70% overlap (Figure 7A). This was not restricted to TCGA samples for 

which we had also made predictions. But when looking at normalized count distributions for prediction 

decisions made by our accessibility classifier (Figure 7B,C) we did restrict analysis only to samples where 

both ATAC-seq was performed and our predictions were available. For every TCGA sample, each 

accessibility prediction site with a matching pan-cancer ATAC-seq peak contributed a single datum to the 

distribution plots. So every matched TCGA sample whose numbers are listed in Figure 7B,C contributed 

61,342 data points. We validated matched samples for all cohorts to which we had previously applied our 

immune activity classifier with the exception of SARC, for which no ATAC-seq measurements were 

available, and GBM, for which none of the TCGA samples measured matched those for which we had run 

predictions. As in all previous TCGA analyses the classification decision threshold for binarizing 

accessibility predictions was based on an 80% precision (20% false discovery rate) threshold on the 

ENCODE held out tissue test set.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures 

 
Supplemental Figure S1. Training of tissue-type-specific model architectures. Related to Figure 1 and 
Table 1. The mean ROC AUC across 164 cell types in the validation set versus training epoch is shown. 
The result obtained by the pre-trained model provided by the authors of Basset is shown for reference, but 
since the number of training epochs was not reported, an arbitrary range was selected for display. We 
explored independent factorization of the second convolutional layer of the baseline model, and achieved 
the best performance when both the first and second convolutional layers were factorized. 

 



 
Supplemental Figure S2. t-SNE embedding of ENCODE dataset partitioning in RNA-seq and DNase-
seq space. Related to Tables 2, 3, 4, and Figure 2. Sample distribution is illustrated by t-SNE embedding 
of the tissue overlap data partitions (training1 and test1) based on (A) RNA-seq log2(TPM + 1) 
expression data and (B) DNase-seq peaks, as well as the held-out tissues data partitions (training2 and 
test2) based on (C) RNA-seq and (D) DNase-seq. The original ENCODE sample type labels are also 
shown for t-SNE embedded (E) RNA-seq and (F) DNase-seq samples, illustrating that samples of similar 
tissue or function often appear in proximity to each other across both data types. 
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Supplemental Figure S3. Overall ROC AUC for the small validation set. Related to Figures 1, 2, and 
Tables 3, 4. The ROC AUC for the small validation set over number of passes through all positive 
examples (positive epochs) for several expression informed model architectures is shown. We 
experimented with adding a fully connected (FC) layer of depth 500 before concatenating (concat) gene 
expressions with outputs from the convolutional (conv) layers. However, increasing the batch size and 
initializing the convolutional layers with weights from our final tissue-specific model (transfer) improved 
performance most. Models trained on the tissue overlap set (train1) showed similar validation 
performance as those trained on the held-out tissue set (train2) with the same hyperparameters. This 
evaluation was done before the final dataset revision which revoked several suspected low quality 
samples, yet still provided valuable feedback for model selection. 

 



 
Supplemental Figure S4. Overall ROC AUC for the small validation set over positive training epochs 
for models trained after the final dataset revision. Related to Figures 1, 2, and Tables 3, 4. A further 
increase in batch size as well as a decreased learning rate (lr) led to additional significant improvements. 
Changing the fraction of positive samples per training batch (from p:n=0.5 to p:n=0.25) also slightly 
improved both ROC AUC as well as PR AUC in whole genome validation. Transfer of weights learned 
before final revoking of data (Figure S3) was a more effective initialization than weight transfer from our 
final tissue-specific model. Finally, we again confirmed that the same hyperparameters led to good 
validation performance across both training partitions: tissue overlap (train1) and held-out tissue (train2). 

 

 

 

 

 

 



 
Supplemental Figure S5. Histograms of gene expression standard deviations. Related to Figure 4. (A) 
Histogram of gene expression standard deviations across LUAD WGS samples in TOIL RNA-seq 
log2(TPM + 1) data along with the selected threshold (0.33) in orange is shown. (B) Gene expression 
standard deviations across the same samples in HiSeqV2 log2(normalized count+1) data and the selected 
threshold (1.0) in orange (B) are also shown. In both cases the thresholds eliminate genes with little 
change across samples or very low levels of expression, and keep all genes that constitute the main peak 
of values. 
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Supplemental Figure S6. Adding a margin between immune cell based clusters in LUAD samples. 
Related to Figure 5. (A) All LUAD samples are shown with respect to the first three principal components 
(PC1-3) of their lymphoid and myeloid xCell estimates, colored according to labels assigned from k-
means clustering. (B) Plotting the labeled data according to only the first principal component clearly 
shows the location of a separating plane between the clusters. The points excluded by introducing a 
margin at the scale of the smaller cluster’s standard deviation along PC1 are shown (D) and (E). The 
impact on survival between X0 and X1 is shown by Kaplan-Meier plots before (C) and after (F) the 
margin was introduced. Kaplan-Meier plots are annotated with group size (N), logrank test p-values and 
hazard ratio (HR) based on a Cox proportional hazards (CoxPH) model regression using class assignment 
as the only explanatory variable. 
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Supplemental Figure S7. Histograms of accessibility and site to gene distance standard deviations. 
Related to Figure 5. (A) A histogram of the standard deviation of accessibility classifications in LUAD of 
promoter and promoter flank sites previously identified as facultative (40,823 sites) based on t-SNE 
across our initial set of six TCGA cohorts is shown. The threshold (< 0.135), in orange, identifies a subset 
of 25,093 sites facultative in LUAD. (B) The second histogram shows the site to nearest gene distances 
for all accessibility sites that also satisfy BH adjusted p < 1.0e-5 from a two-sided t-test between the 
LUAD immune cell driven clusters (3246 sites). Only sites within 50k base pairs (orange) were 
considered when voting for gene accessibility. 
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Supplemental Figure S8. Example immune cell and checkpoint gene distributions across predicted hot 
and cold tumors. Related to Figure 6. Examples of xCell estimates and checkpoint gene expression levels 
compared across multiple cohorts for tumors classified by our 3 SVM ensemble as hot or cold, with group 
size shown (N). All x-axis labels are ordered by significance based on a two-sided t-test between tumors 
classified as hot and cold. Only the top 21 most significant xCell estimates from lymphoid and myeloid 
cell categories are shown. (A) The LUAD xCell estimate and (B) checkpoint gene distributions 
demonstrate how application of the classifier affected significance ordering from the raw training data 
illustrated in Figure 5. (C,D) SKCM provides an example of a distinct cohort in which immune hot 
patients exhibited longer survival. (E,F) LUSC demonstrates one case where immune activity appears to 
have no effect. (G,H) Finally, KIRC shows a case where immune active patients have significantly worse 
survival, and also exhibits a curious lack of difference between levels of CD274 (also called PD-L1) and 
PDCD1LG2 (also called PD-L2) compared to other cohorts split by our accessibility based immune 
activity classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Tables 



Supplemental Table S1. Number of DNase-seq files by tissue name per dataset partition, including 
tissue overlap (TO) and held-out tissue (HOT) sets. Related to Tables 2, 3, 4, and Figure 2. 

 



Supplemental Table S2. Whole genome validation results for our expression-informed model trained on 
tissue overlap (TO) and held-out tissue (HOT) sets. Related to Tables 2, 3, and 4. 

 
 

Supplemental Table S3. Enhancer results across held-out tissue test set whole genomes. Related to Table 
6 and Figure 2. 

 
 

 

 

 

 

 

 

 



Supplemental Table S4. Pathway enrichment (Enrichr) results with adjusted p < 1.0e-4 for all 418 genes 
correlated with total promoter and promoter flank accessibility in LUAD with ïSpearman correlationï > 
0.4. Related to Figure 4. 

 
 

Supplemental Table S5. Pathway enrichment (Enrichr) results with adjusted p < 1.0e-6 for all 666 genes 
correlated with total promoter and promoter flank accessibility in LUAD with ïPearson correlationï > 
0.4. Related to Figure 4. 

 
 



Supplemental Table S6. Top pathway enrichment (Enrichr) results for genes whose expression was 
consistent with increased accessibility in the immune active (X0) group of LUAD patients identified by 
xCell clustering. Related to Figure 5. 

 
 

Supplemental Table S7. Pathway enrichment (Enrichr) results (adj. p < 0.05) for genes whose 
expression was inconsistent with increased accessibility in the immune cold (X1) group of LUAD 
patients identified by xCell clustering. Related to Figure 5. 
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