
REVIEW
published: 07 August 2018

doi: 10.3389/fphys.2018.01013

Frontiers in Physiology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 1013

Edited by:

Vincent Pialoux,

Claude Bernard University Lyon 1,

France

Reviewed by:

Michalis G. Nikolaidis,

Aristotle University of Thessaloniki,

Greece

Michael Harris-Love,

Washington DC VA Medical Center,

United States

*Correspondence:

Valérie Julian

vjulian@chu-clermontferrand.fr

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 19 January 2018

Accepted: 09 July 2018

Published: 07 August 2018

Citation:

Julian V, Thivel D, Costes F, Touron J,

Boirie Y, Pereira B, Perrault H,

Duclos M and Richard R (2018)

Eccentric Training Improves Body

Composition by Inducing Mechanical

and Metabolic Adaptations: A

Promising Approach for Overweight

and Obese Individuals.

Front. Physiol. 9:1013.

doi: 10.3389/fphys.2018.01013

Eccentric Training Improves Body
Composition by Inducing Mechanical
and Metabolic Adaptations: A
Promising Approach for Overweight
and Obese Individuals
Valérie Julian 1*, David Thivel 2, Frédéric Costes 1, Julianne Touron 3, Yves Boirie 4,

Bruno Pereira 5, Hélène Perrault 6, Martine Duclos 1 and Ruddy Richard 1

1 Service de Médecine du Sport et Explorations Fonctionnelles, CHU Clermont-Ferrand, INRA, CRNH, Université Clermont

Auvergne, Clermont-Ferrand, France, 2 Laboratoire AME2P, Université Clermont Auvergne, Clermont-Ferrand, France,
3 INRA, CRNH, Université Clermont Auvergne, Clermont-Ferrand, France, 4 Service de Nutrition Clinique, CHU

Clermont-Ferrand, INRA, CRNH, Université Clermont Auvergne, Clermont-Ferrand, France, 5 Service de Biostatistique, CHU

Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France, 6 Faculté des Sciences de la Santé, Université

d’Ottawa, Ottawa, ON, Canada

Skeletal muscle generates force by either shortening (concentrically) or lengthening

(eccentrically). Eccentric (ECC) exercise is characterized by a lower metabolic demand

and requires less muscle activity than concentric (CON) exercise at the same level of

exerted force. However, the specific effect of ECC training vs. CON training on lean and

fat mass remains underexplored. The first aim of this paper was to review the available

evidence regarding the effects of ECC training on whole body and segmental lean and

fat mass and, when possible, compare these with the effects of CON training. The

second aim was to provide some insights into the main mechanical, physiological, and

metabolic adaptations of ECC training that contribute to its effects on body composition.

The third aim was to determine the beneficial effects of ECC exercise on health-related

parameters in overweight and obese patients. ECC training is an effective modality to

improve lean mass, but when matched for load or work, the difference between ECC and

CON trainings seems unclear. A few studies reported that ECC training is also efficient

at reducing fat mass. By increasing post-exercise resting energy expenditure, modifying

metabolic substrate, and improving both blood lipid profile and insulin resistance, ECC

training is a potential exercise modality for individuals with chronic conditions such

as those who are overweight and obese. Further investigations using standardized

experimental conditions, examining not only segmental but also whole body composition,

are required to compare ECC and CON trainings.

Keywords: eccentric exercise, concentric exercise, fat mass, lean mass, obesity, metabolism, training effects

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01013
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01013&domain=pdf&date_stamp=2018-08-07
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vjulian@chu-clermontferrand.fr
https://doi.org/10.3389/fphys.2018.01013
https://www.frontiersin.org/articles/10.3389/fphys.2018.01013/full
http://loop.frontiersin.org/people/516513/overview
http://loop.frontiersin.org/people/275159/overview
http://loop.frontiersin.org/people/554398/overview
http://loop.frontiersin.org/people/152206/overview
http://loop.frontiersin.org/people/445383/overview
http://loop.frontiersin.org/people/548364/overview


Julian et al. Impact of Eccentric Training on Body Composition

INTRODUCTION

Daily life activities are performed with a combination of
concentric (CON) and eccentric (ECC) muscle contractions.
CON contractions serve to generate motor actions, whereas ECC
contractions are involved in the braking movements of externally
loaded muscles. ECC training involves isoinertial or isokinetic
segmental contractions (Coratella et al., 2015). Recently,
training alternative modalities, such as downhill walking or
running, or cycling with special motorized eccentric cycle-
ergometers (Rakobowchuk et al., 2018), have been conceived and
characterized as “continuous moderate load eccentric exercise”
(Hoppeler, 2016). Hoppeler (2016) characterized three types of
ECC training into plyometric exercises (such as drop jumps,
with contractions lasting milliseconds and producing thousands

of watts of negative power), classical ECC resistance exercises
(protocols consisting of near maximal ECC contractions lasting
few seconds, used to lift and lower weights), and “continuous
moderate load ECC exercises” [also as denoted (RENEW)
Resistance Exercise via Negative EccentricWork by LaStayo et al.

(2017)]. For the same mechanical power, oxygen consumption

(V̇O2) during downhill running is approximately half compared
with that during uphill running and is three to four times
lower during ECC cycling than that during CON cycling

(Perrey et al., 2001; Dufour et al., 2004). Continuous moderate
load ECC exercise is characterized by lower metabolic and
cardiorespiratory demands than CON exercise when performed
at the same power output (Perrey et al., 2001; Minetti et al., 2002;
Dufour et al., 2004; Chavanelle et al., 2014). Thus, an increasing
interest has emerged with its use in patients with chronic

diseases (Isner-Horobeti et al., 2013; Hoppeler, 2016) that are
accompanied by cardiac, respiratory, or muscular impairments.
This ECC modality has been increasingly prescribed and is
proposed to patients with cardiac problems (Hortobágyi and
DeVita, 2000; Meyer et al., 2003; Steiner et al., 2004; Zoll
et al., 2006; Theodorou et al., 2013), respiratory disabilities
(Meyer et al., 2003; Steiner et al., 2004; Rocha Vieira et al.,
2011), sarcopenia (LaStayo et al., 2003), or neurological and
musculoskeletal diseases (Engardt et al., 1995; Hawkins et al.,
1999; Gür et al., 2002).

As improving body composition is a major target of training
programs, identification of the exact effects of CON and ECC
modalities on both lean and fat mass is necessary. However,
the specific effects of ECC training on lean and fat mass
remain underexplored compared with CON training. Several
methodological barriers make it difficult to compare CON and
ECC trainings, including (i) the difficulty of isolating ECC and
CON actions during usual movements of daily life, and (ii)
the lack of simple comparisons of ECC and CON exercises in
standardized experimental conditions of similar power output
(i.e., at the samemechanical power), similar oxygen consumption
(i.e., at the same metabolic rate), and similar intensity and work
volume.

This narrative review aimed to summarize the available
evidence about the effects of ECC training on whole body lean
and fat mass, and on segmental body composition (i.e., of
the trained part), and compare this with the effects of CON

training or, when not possible, with traditional training (which
are mainly executed in practice). We reviewed studies carried
out over the last two decades in which ECC was used as a
training modality using ECC exercises mobilizing “segmental”
or “large muscle mass.” For greater consistency, we prioritized,
whenever possible, continuous moderate load ECC training over
classical ECC resistance training and focused our research on
whole body and lower limb composition. The second aim was to
provide some insights into the main mechanical, physiological,
and metabolic adaptations of ECC training that contribute to its
potential effects on body composition. Finally, we determined
whether ECC training is an innovative and promising approach
for the management of overweight and obesity. This review is
aimed at exercise scientists, health professionals, and trainers in
the field of chronic disease and rehabilitation.

EFFECTS OF ECCENTRIC TRAINING ON
BODY COMPOSITION

Evaluation of body composition depends on the assessment
model used to access both lean and fat mass. Advanced
technologies, such as dual-energy X-ray absorptiometry (DXA),
computed tomography (CT), and magnetic resonance imaging
(MRI), are used by researchers to precisely quantify both
whole body and segmental body composition at specific sites.
Systematic differences have been reported between DXA and
CT or MRI measures of lean mass. DXA overestimates the
measure of lean mass, which is attributed to the significant
non-fat component of adipose tissue (Levine et al., 2000).
DXA is generally preferred when tissue mass is needed as a
denominator for metabolic measurements, and CT or MRI
are more appropriate when appendicular tissue composition is
needed for relating it to muscle strength. Thus, if appendicular
composition is measured for the purpose of relating it to muscle
strength, CT is the most satisfactory method, whereas if tissue
mass is needed as a denominator for metabolic measurements,
DXA is preferred (Levine et al., 2000). Ultrasonography is
also currently used to assess lean body mass (muscle thickness
and muscle volume; Abe et al., 2015) and body fat (Wagner,
2013; Váczi et al., 2014). Several other measurement techniques
are available but we focused on the aforementioned reference
methods, which are the most sensitive, safe, and relevant in
clinical practice (Lemos and Gallagher, 2017).

Eccentric Training and Lean Mass
Direct measurements of segmental body composition performed
before and after ECC training generally show an improvement
in lean mass and volume in healthy subjects of a wide age range
(including elderly subjects), as well as in patients with chronic
pathologies. These lean mass improvements are summarized in
Table 1 and compared either to CON or traditional training.

Several studies revealed significantly “greater effectiveness” of
ECC in comparison with CON or traditional training. Raj et al.
(2012) demonstrated that a 16-week ECC resistance training in
older adults is superior to a conventional resistance training
matched for the same relative volume. In older and moderate
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TABLE 1 | Studies analyzing the effects of eccentric training on lean mass.

Studies Population Technique for body

composition measurements

Training intervention Training duration Effects

Blazevich

et al., 2007

Active young adults

Mean age: 22.5 years

CON n = 12; ECC

n = 12

(17 F; 16M)

MRI

(Whole quadriceps volume)

ECC: 4–6 sets of 6 reps (knee extension on an

isokinetic dynamometer),

50–90%MVC. Volume (sets × reps × load): 1,200

to 3,240

CON: 4–6 sets of 6 reps (knee extension on an

isokinetic dynamometer),

50–90%MVC. Volume (sets× reps × load): 1,200 to

3,240

10 weeks

(3 x/week)

+10% p < 0.001

NS between

groups

Marcus et al.,

2008

Adults with type 2

diabetes mellitus

Mean age: 50.7 years

AE n = 8; AE/RE n = 7

(7 F; 8M)

MRI

(Thigh lean tissue CSA)

AE: aerobic exercise (treadmill, recumbent stepper,

stationary bicycle, rowing machine). Intensity:

60–85% of age-predicted heart rate. Duration:

50min. Workload not available

AE/RE: recumbent eccentric stepper. Intensity: RPE

from “very very light” to “somewhat hard”. Duration:

20min + aerobic training to complete 50min.

Workload not available

16 weeks

(3 x/week)

AE: – 4% p < 0.05

AE/RE: + 10.5%

p < 0.05

Marcus et al.,

2009

Post-menopausal

women

Mean age: 56.1 years

CT n = 6; ECC n = 10

DXA

(Leg lean mass)

ECC: eccentric ergometer. Intensity: RPE from “very

very light” to “somewhat hard”. Duration 30min.

Work increased from 20.3–229.7 kJ.

CT: control group with no supervised program

12 weeks

(3 x/week)

ECC: + 6%

p < 0.05

CT: – 0.03% NS

Mueller et al.,

2009

Older adults

Mean age: 80.6 years

CT n = 14; RET

n = 21; EET n = 19

(36 F; 26M)

DXA

(Thigh muscle mass)

EET: eccentric ergometer. Intensity: initially set at

30W for women and 50W for men, gradually

ramped up according to RPE and DOMS. Duration

20min. Workload not available

RET: 3 sets of 8–10 reps (leg press, knee extension,

leg curl, hip extension) with a progressive load

based on RPE and DOMS. Duration 20min. Load

was increased if subject was able to do 10 reps.

Intensity not described. Workload not available

CT: computer-guided cognitive training without

physical training

12 weeks

(2 x/week)

EET: + 2.5%

p < 0.05

RET: + 2%

p < 0.05

CT: + 0.4% NS

LaStayo

et al., 2009

Older and obese adults

Mean age: 67.5 years

ECC n = 9; TRAD

n = 8

(13 F; 4M)

MRI

(Whole quadriceps volume)

ECC: eccentric stepper. Intensity ramped according

to RPE from “fairly light” to “somewhat hard”.

Duration 30min. Mean work increased from 44 003

to 86 480 kJ

TRAD: 3 sets of 10–12 reps (leg press, leg curl, leg

extension, calf raise). Intensity 70% 1 RM. Relative

volume 2,100–2,520

12 weeks

(3 x/week)

ECC: + 11.5%

p < 0.001

TRAD: + 3% NS

Reeves et al.,

2009

Older adults

Mean age: 70 years

ECC n = 10; CONV

n = 9

(10 F; 9M)

Ultrasonography (Vastus lateralis

thickness)

ECC: 2 sets of 10 reps (knee extension, leg press),

intensity 80% 5 RM. Absolute volume (sets× reps ×

load) 157,525 ± 47,790

CONV: 2 sets of 10 reps (knee extension, leg press),

intensity 80% 5 RM. Absolute volume (sets × reps

× load) 197,722 ± 77,461

14 weeks

(3 x/week)

ECC: + 11%

p < 0.05

CONV: + 11%

p < 0.05

Raj et al.,

2012

Older adults

Mean age: 68 years

EB n = 13; CONV

n = 12

CT n = 13

(11 F; 17M)

Ultrasonography (Vastus lateralis

thickness)

EB: 3 sets of 10 reps (leg press, toe press,

pull-down, bench press), intensity 50% 1 RM.

Relative volume (sets× reps × load) 1,500

CONV: 2 sets of 10 reps (leg press, toe press,

pull-down, bench press), intensity 75% 1 RM.

Relative volume (sets × reps × load) 1,500

CT: no exercise

16 weeks

(3 x/week)

EB: + 5%

p < 0.05

CONV: + 0% NS

CT: – 6% p < 0.05

English et al.,

2014

40 healthy males

Mean age: 34.9 years

CON n = 8; ECC 33

n = 8;

ECC 66 n = 8; ECC

100 n = 8; ECC 138

n = 8

DXA

(Whole body lean mass

and leg lean mass)

CON: 2–5 sets of 2–8 reps (supine leg press and

supine calf press). Intensity modified each session

from 55–96% 1 RM

ECC 33: program based on CON + ECC training

(leg press) at 33% of the CON load

ECC 66: program based on CON + ECC training

(leg press) at 66% of the CON load

ECC 100: program based on CON + ECC training

(leg press) at 100% of the CON load

ECC 133: program based on CON + ECC training

(leg press) at 138% of the CON load

8 weeks

(3 x/week)

Whole body lean

mass

NS in any group

Leg lean mass

ECC 133: + 2.4%

p < 0.05

NS in other groups

(Continued)
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TABLE 1 | Continued

Studies Population Technique for body

composition measurements

Training intervention Training duration Effects

Váczi et al.,

2014

Active older males

Mean age: 65 years

ECC n = 38; SCC

n = 9

(57 F; 20M)

MRI

(Quadriceps CSA)

ECC (knee extension on an isokinetic

dynamometer): 4 sets of 8 to 14 reps. Intensity

based on %MVC.

SCC: Stretch load/contractions from 86 ± 24 J to

120 ± 10 J.

Total work matched in the 2 groups.

10 weeks

(3 x/week)

ECC: + 3%

p < 0.05

SCC: + 2%

p < 0.05

Franchi et al.,

2015

Young males

Mean age: 23 ± 4

n = 10

1 leg CON; 1 leg ECC

Ultrasonography (Quadriceps

thickness)

DXA

(Thigh lean mass)

80% of CON or ECC 1 RM

CON: 4 sets of 8–10 reps (leg press). Intensity 80%

1 RM CON.

ECC: 4 sets of 8–10 reps (leg press). Intensity 80%

1 RM ECC.

Relative loads matched.

4 weeks

(3 x/week)

Muscle thickness

ECC: + 7.5%

p < 0.001; CON:

+ 8.4% p < 0.001

Thigh lean mass

ECC: + 2.3%

p < 0.01;

CON: + 3%

p < 0.01

NS between

groups

LaStayo

et al., 2017

Older adults fallers

Mean age: 76.1

n = 134

(87 F; 47M)

MRI

(Thigh lean tissue CSA)

TRAD: circuit training, static tasks, aerobic exercise

(cycle ergometer), flexibility exercises, upper

extremity resistance exercise (free weights). 3 sets

of 15 reps (leg press, standing multidirectional

straight leg). Intensity 60–70% 1 RM. Duration 1 h.

Workload not available.

RENEW: circuit training + eccentric stepper.

Intensity ramped according to RPE from “very very

light” to “somewhat hard.” Duration 15min. Total

training duration 1 h. Workload not available

12 weeks

(3 x/week)

Pre-post

difference

p < 0.05 in each

group but NS

between groups

AE, aerobic exercise; AE/RE, aerobic exercise/resistance exercise; CON, concentric; CONV, conventional resistance training; CSA, cross-sectional area; CT, control group; DOMS,

delayed onset muscular soreness; DXA, dual-X-ray absorptiometry; EB, Eccentrically biased resistance training; ECC, eccentric; EET, eccentric ergometer training; MRI, magnetic

resonance imaging; MVC, maximal voluntary contraction; NS, non-significant; RET, conventional resistance training; RM, repetition maximum; RPE, rating of perceived exertion; SSC,

stretch-shortening cycle; TRAD, traditional resistance training program; RENEW, resistance exercise via negative eccentric work.

obese adults, another study showed that a 12-week moderate
load ECC training (with ECC cycle-ergometers) exhibits a greater
increase in quadriceps muscle size than a conventional resistance
training (LaStayo et al., 2009). Similar results were obtained
by Marcus et al. (2008) in a high-metabolic risk population of
patients with type 2 diabetes: a 16-week program combining
moderate load ECC exercises (with ECC cycle-ergometers) and
aerobic exercises induces a superior increase in the thigh lean
tissue cross-sectional area (CSA), compared with a program
based on aerobic exercises only.

Other studies indicated similar results with regard to gain in
lean mass after both forms of training. In elderly subjects with
sarcopenia, Mueller et al. (2009) compared a 12-week moderate
load ECC training group (with ECC cycle-ergometers) with a
conventional resistance training group. They observed that both
trainings induce a significant gain in thigh leanmass, without any
significant difference between the groups. In older adult fallers,
LaStayo et al. (2017) compared a moderate load ECC training
group (the RENEW group, training with ECC cycle-ergometers)
with a traditional resistance training group. Similarly, they
found no significant difference in the increase in the CSA of
thigh lean tissue after 12 weeks of training. In healthy active
men and women, a 10-week ECC or CON resistance training

matched for relative volume shows similar improvements in
whole quadriceps volume (Blazevich et al., 2007). In youngmales,
Franchi et al. (2015) also compared an ECC training with a CON
resistance training matched for relative loads and found that
quadriceps thickness and thigh lean mass increase with similar
proportions after 4 weeks. In older adults, Reeves et al. (2009) also
demonstrated similar improvements in vastus lateralis thickness
after 14 weeks of resistance training (however, the volume of the
ECC program was lower than that of the conventional program).
Interestingly, English et al. (2014) demonstrated that an 8-week
resistance ECC training in healthy males produces a superior
increase in leg lean mass compared with CON training, provided
that ECC loads were superior to CON.

Thus, both forms of exercise are effective to induce gains in
lean mass. The studies reported above indicate that ECC training
is more effective (LaStayo et al., 2009; Marcus et al., 2009; Raj
et al., 2012; English et al., 2014) or at least as effective as other
exercise modalities (Blazevich et al., 2007; Mueller et al., 2009;
Reeves et al., 2009; Franchi et al., 2015) in improving segmental
lean mass. Nevertheless, the greater effectiveness of ECC training
in improving leanmass is not clearly elucidated in recent reviews.
Franchi et al. (2017) discussed the contribution of ECC and CON
resistance trainings to muscular hypertrophy. They grouped
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studies in different categories depending on the index used to
assess hypertrophy (and thus on the model of assessment) and
concluded that the changes between ECC and CON trainings are
similar whenmatched for load or work. Furthermore, Schoenfeld
et al. (2017) conducted a systematic review comparing low-
and high-load resistance training protocols and found similar
hypertrophy between conditions.

The increase in muscle fiber volume induced by ECC training
is also microscopically confirmed by measuring the CSA of the
muscle fiber. LaStayo et al. (2000) compared 8-week trainings
based on either ECC or CON cycling matched for metabolic
rate (quantified as a percentage of the patients’ peak heart rate)
in healthy males. The ECC program show an increase of more
than 50% in the CSA of the muscle fibers measured using
biopsy from the middle part of the vastus lateralis, whereas CON
training exhibited no changes (LaStayo et al., 2000). However,
measurement of the CSA of the whole muscle was not performed.
This increase in the CSA of the muscle fiber after ECC training
has been validated by several studies (Hortobágyi et al., 1996;
LaStayo et al., 2003; Vikne et al., 2006). Other studies showed
similar positive changes in the size of the muscle fibers after ECC
training compared with CON training (Jones et al., 1989; Meyer
et al., 2003). Only few studies failed to detect any significant
change after ECC training (Colliander and Tesch, 1990; Fisher
et al., 2016).

Moreover, muscle strength measurement, muscle CSA
measurement, and DXA evaluation of thigh lean mass are
closely correlated (Levine et al., 2000). Hence, muscle strength
measurement is considered as a reliable indirect measure of
lean mass, and has been extensively studied. The findings have
revealed that ECC training induces a significantly greater increase
in appendicular total strength (i.e., the sum of CON, isometric
and ECC peak torque) and ECC strength, whereas the difference
in isometric and CONmeasures seems less significant (Roig et al.,
2009). Thus, the increase in ECC strength after ECC training is
greater than the gain in CON strength after CON training (Higbie
et al., 1996; Vikne et al., 2006).

In summary, ECC training is effective at inducing gains in lean
mass. Comparison between ECC and CON training programs in
terms of mechanical power, metabolic rate, intensity, or volume
remains methodologically difficult. Although ECC training was
previously associated with greater muscle hypertrophy, the
findings were extremely varied to clearly affirm its superiority
over CONor traditional training. However, considering the lower
metabolic demand of ECC exercise, it would be more efficient
than CON training given the ratio of energy expenditure to net
force or work production. Investigations comparing not only
segmental but also whole body lean mass after ECC and CON
trainings are necessary.

Eccentric Training and Fat Mass
The effects of ECC training on body fat mass remain
underexplored. The available clinical evidences are detailed and
summarized inTable 2. As no study has considered the variations
of whole body or segmental fat mass in comparing ECC and
CON training, we presented here indirect comparisons between
ECC and traditional trainings. We noted a 12-week randomized

controlled trial among elderly patients with sarcopenia that
measured both thighs and whole body fat mass in three groups
of patients: (i) the moderate load ECC training group (training
with motorized eccentric ergometer with a power output based
on the patients’ perceived exertion); (ii) the conventional
resistance training group; and (iii) the cognitive training group.
Although the trainings were not matched for load, only the
ECC ergometer training group showed a significant reduction
in thigh fat content and whole body fat mass (Mueller et al.,
2009). In a high-metabolic risk population of patients with
type 2 diabetes mellitus, a 16-week intervention combining
moderate load ECC exercises (on motorized cycle-ergometers)
and aerobic exercises was compared against a program with
aerobic exercises only. The two groups experienced a decrease in
thigh intramuscular fat area, without any significant difference
between the groups concerning intramuscular fat. Interestingly,
a greater reduction in body mass index was observed in the
ECC group (Marcus et al., 2008). Another study showed that
after 12 weeks of multimodal exercise intervention in elderly
patients with comorbidities and a history of falling, no significant
difference in intermuscular adipose tissue was found after either
the ECC program (paired with moderate load ECC exercises
on motorized stepper ergometers) or the traditional training
program (paired with traditional resistance training; Jacobs et al.,
2014). However, in these studies, the total training loads were not
available. Another study that enrolled post-menopausal women
with impaired glucose tolerance evaluated the effect of a 12-week
moderate load ECC training program (with motorized eccentric
ergometers) and measured a significant increase in leg lean mass
combined with a decrease in abdominal fat mass (total body fat
was not reported). Although the study also enrolled a control
group (a computer-guided cognitive training group), it lacked a
CON group for comparison (Marcus et al., 2009).

In summary, ECC training is effective at reducing fat mass.
Studies comparing ECC vs. CON training have not been
conducted. Nevertheless, referring to the previous studies that
compared ECC training and traditional trainings, ECC training
is more (Mueller et al., 2009) or at least as effective as
traditional training (Marcus et al., 2008; Jacobs et al., 2014) in
reducing fat mass. ECC training may simultaneously increase
lean mass and decrease fat mass, which would contribute
to preventing sarcopenia and a number of other age-related
metabolic impairments (Marcus et al., 2008, 2009; Mueller et al.,
2009). Nevertheless, studies on the effects of ECC training on
fat mass are scarce and further investigations are required. In
particular, studies that evaluate both segmental and whole body
composition and that employ the same mechanical power, the
same metabolic intensity, or the same total training load or
volume when calibrating training interventions are necessary.

PHYSIOLOGIC AND METABOLIC EFFECTS
OF ECCENTRIC EXERCISE

Figure 1 schematically illustrates the physiological andmetabolic
effects of ECC training, and their relationship to changes in lean
and fat mass.
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TABLE 2 | Studies analyzing the effects of eccentric training on fat mass.

Study, year Population Technique for body

composition

measurements

Training intervention Training duration Effects

Marcus et al.,

2008

Adults with type 2

diabetes mellitus

Mean age: 50.7 years

AE n = 8; AE/RE n = 7

(7 F; 8M)

MRI

(Thigh intramuscular fat CSA)

AE: aerobic exercise (treadmill, recumbent

stepper, stationary bicycle, rowing machine).

Intensity: 60%−85% of age-predicted heart

rate. Duration: 50min. Workload not available

AE/RE: recumbent eccentric stepper. Intensity:

RPE from “very very light” to “somewhat hard”.

Duration: 20min + aerobic training to complete

50min. Workload not available

16 weeks

(3 x/week)

Thigh intramuscular fat

CSA

AE: – 2.2 cm2

p < 0.05

AE/RE: – 1.2 cm2

p < 0.05

NS between groups

Marcus et al.,

2009

Post-menopausal

women

Mean age: 56.1 years

CT n = 6; ECC n = 10

DXA

(Abdominal fat mass)

CT: control group with no supervised program

ECC: eccentric ergometer. Intensity: RPE from

“very very light” to “somewhat hard”. Duration:

30min. Work increased from 20.3 to 229.7 kJ

12 weeks

(3 x/week)

Abdominal fat mass

CT: + 2.5% NS; ECC:

– 3.7% NS

Mueller et al.,

2009

Older adults

Mean age: 80.6 years

CT n = 14; RET

n = 21; EET n = 19

(36 F; 26M)

DXA

(Total body and thigh fat

mass)

RET: 3 sets of 10 reps (leg press, knee

extension, leg curl, hip extension) with a

progressive load based on RPE and DOMS.

Duration 20min. Volume not available.

EET: eccentric ergometer. Intensity: initially set

at 30W for women and 50W for men, gradually

ramped up according to RPE and DOMS.

Duration: 20min. Workload not available

CT: computer-guided cognitive training without

physical training

12 weeks

(2 x/week)

Whole body fat mass

RET: – 0.6% NS

EET: – 5.0% p < 0.01;

CT: + 1.4% NS

Thigh fat mass RET:

– 2.7% NS;

EET: – 6.9% p < 0.01;

CT: + 0.6% NS

Jacobs et al.,

2014

Older adults

Mean age: 75.5 years

TRAD n = 38; ECC

n = 9 (57 F; 20M)

MRI

(Thigh intermuscular

adipose tissue)

TRAD: 3 sets of 15 reps (bilateral leg press), 3

sets of 15 reps (standing multidirectional

straight leg exercise). Intensity 60–70% 1 RM +

aerobic exercise. Duration: 60min. Volume

(sets × reps × load) 2 700–3 150

ECC: eccentric ergometer. Intensity: RPE from

“very very light” to “somewhat hard.” Duration:

15min + aerobic exercise to complete 60min.

Workload not available

12 weeks

(3 x/week)

Thigh intermuscular

adipose tissue

TRAD: – 0.1% NS;

ECC: – 0.1% NS

AE, aerobic exercise; AE/RE, aerobic exercise/resistance exercise; CSA, cross-sectional area; CT, control group; DXA, dual-X-ray absorptiometry; DOMS, delayed onset muscular

soreness; ECC, eccentric; EET, eccentric ergometer training; MRI, magnetic resonance imaging; NS, non-significant; RET, conventional resistance training; RM, repetition maximum;

RPE, rating of perceived exertion; TRAD, traditional resistance training program.

Eccentric Training and Resting Energy
Expenditure
Resting energy expenditure (REE), which represents 60 to 75%
of the total daily energy expenditure in humans, can remain
elevated up to 48 h after a single bout of exercise (Melby et al.,
1993; Gillette et al., 1994). Several studies have recently shown
that ECC exercise may increase and prolong this rise in post-
exercise REEmore than CON exercise. A study conducted among
healthy young women using oxygen calorimetry recorded a
significant increase of 12% in REE 48 h after an acute segmental
ECC exercise (five sets of 15 maximal voluntary contraction
knee extensions), but not after a CON exercise set at the same
power output (Paschalis et al., 2011). Some authors have even
emphasized that acute ECC exercise can prolong the increase in
post-exercise REE to at least 72 h (Hackney et al., 2008). This
higher REE observed after an acute bout of ECC exercise may be
caused by enhanced muscle protein turnover (i.e., an increase in
both muscle protein degradation, which activates proteases and
hydrolases, and muscle protein synthesis). The elevated turnover
arises because of inflammatory processes to repair muscular
myofibrillar damage and support muscle hypertrophy (Chesley

et al., 1992; Burleson et al., 1998; Tidball, 2011). Although
every exercise modality can lead to exercise-induced muscle
damage (EIMD), ECC exercise has more damaging effects due
to the higher force developed and the mechanical disruption
of the actin-myosin bonds (Eliasson et al., 2006). EIMD is the
result of both “mechanical” and “metabolic” stresses on the
muscle fibers (Proske and Morgan, 2001; Allen et al., 2005; Tee
et al., 2007), which cause temporary lesions of the cytoskeleton
and disruption of the sarcomeres and Z-lines in response to
overstretching (Proske and Morgan, 2001; Morgan et al., 2004;
Tee et al., 2007). The unregulated influx of extracellular ions
into the injured muscle induces elevation in cytosolic calcium
concentration. This elevation leads to the activation of calcium-
dependent proteases within the muscle cytosol (calpains), the

activation of phospholipases and the elevation of free radical

production, contributing to muscle damages (Tidball, 2011).
These damages can be specific to a few macromolecules of

muscular tissue or can involve large tears of sarcolemma, basal
lamina and connective tissue (Vierck et al., 2000), with more
damages to type II fibers (Douglas et al., 2017a). The increase
in REE after acute ECC exercise is higher in untrained subjects
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FIGURE 1 | Schematic representation of physiological and metabolic effects of ECC training and their relationship with body composition changes.

than in trained subjects, suggesting that the degree of muscle
damage is a strong determinant and that the repeated bout
effect is increased in untrained subjects (Hackney et al., 2008).
The inflammatory adaptations, the repair process mechanisms
and the protein synthesis following ECC exercise are speculated
to be limited after subsequent ECC bouts (McHugh, 2003;
Lehti et al., 2007). It has been described that a bout of
ECC exercise protects against muscle damages from subsequent
ECC bouts (McHugh, 2003; Gault and Willems, 2013). Several
mechanisms interact in this protective adaptation called the
repeated bout effect, including neural adaptations with change
in motor unit synchronization, alterations to muscle mechanical
properties, structural remodeling of the extracellular matrix and
inflammatory response (Hyldahl et al., 2017). The severity of
EIMD increases with the intensity and duration of exercise
(Lieber and Friden, 2002; Cheung et al., 2003), the untrained
status of the subjects, aging, and chronic disease status (Tee et al.,
2007; Tidball, 2011; Schoenfeld, 2012; Gault and Willems, 2013;
Baumert et al., 2016). Other factors, such as the muscle involved
(Jamurtas et al., 2005), muscle length (Paschalis et al., 2005), and
angular velocity (Chapman et al., 2008) at which the exercise is
performed, affect the extent and the duration of the EIMD.

A significant increase in REE is also observed in healthy
young women after chronic ECC exercise compared with chronic
CON exercise performed at the same power output (Paschalis
et al., 2011). This increase may be attributed to the continuous
adaptation of skeletal muscles to repair and regenerate after
bouts of exercise and the larger increase in lean mass (described

above) after ECC training. The inflammatory response to ECC
exercise leads to increased content, recruitment and migration
of satellite cells, thereby inducing muscle hypertrophy (Tidball,
2011; Peake et al., 2016). Once activated by the ECC mechanical
stimulus, satellite cells generate myoblasts that proliferate and
fuse to existing cells, increasing the number of myonuclei per
cell (Tidball, 2011; Schoenfeld, 2012). Muscle repair is associated
with novel transcriptional programs involving gene regulation,
growth, and membrane synthesis (Schoenfeld, 2012). Moreover,
mRNA production in the newmyonuclear domains provides new
muscle tissue (Petrella et al., 2008; Schoenfeld, 2012). In fine, the
increase in the CSA of existing muscle fibers in response to ECC
exercise may be associated with this expansion in myofibrillar
content as a result of the activation of satellite cells, stimulation
of anabolic signaling pathways, up-regulation of genes involved
in anabolic mechanisms, and increase in protein translation
and synthesis (Douglas et al., 2017b). As EIMD repair and
regeneration processes decrease with training, the increase in
post-exercise REE after chronic ECC exercises may occur due to
both the increase in muscle protein turnover and gain in lean
mass.

Eccentric Training, Muscle Fibers, and
Metabolic Changes
Paschalis et al. (2011) showed that acute ECC exercise in
untrained subjects can significantly modify metabolic substrate
use, increasing post-exercise fat oxidation by 13% and reducing
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glucose oxidation. However, they observed no significant
modification in metabolic substrates after exercise in the CON
group at the same power output. This modification of substrate
oxidation rates in response to ECC exercise might be due
to a specific effect of ECC exercise on muscle metabolism.
Considering muscle type fiber composition, greater increase in
type II compared with type I muscle fibers has been extensively
described in human subjects after ECC training (Hortobágyi and
DeVita, 2000; Paddon-Jones et al., 2001; Friedmann-Bette et al.,
2010; Douglas et al., 2017a), with a shift from IIx to IIa. According
to Hody et al. (2013), the proportion of type I and IIa fibers
significantly increases compared with type IIx or IIb fibers. By
using a proteomic analysis approach without any pre-established
hypothesis on humans trained with five sessions of ECC
exercises, they observed a decrease in several glycolytic enzymes
coupled with a lower expression of the fast isoforms of some
contractile and structural proteins, suggesting that ECC training
could result in a switch to more oxidative metabolism (Hody
et al., 2011). A similar proteomic approach, completed with
histological analyses of whole quadriceps muscles, was conducted
in mice, comparing two groups submitted to five sessions of
either uphill or downhill running (exercises performed at the
same power output; Hody et al., 2013). The proteomic profiling
confirmed the results previously observed in humans, showing
that the ECC group had a lower abundance of the myosin
heavy chain isoforms specific to fast-twitch glycolytic fibers
compared with the CON group. When they combined the
quantification of muscle fiber types and the calculation of the
CSA of each muscle fiber type (i.e., the number of type I, IIa,
and IIb fibers per square millimeter multiplied by the mean
area), both the ECC and CON groups had a significantly higher
relative surface area for slow oxidative fibers and a significantly
lower surface area for fast glycolytic fibers than the untrained
control group (Hody et al., 2013), and the ECC group had a
significantly higher surface area for type I and IIa fibers than
the CON group (Hody et al., 2013). The hypothesis of a higher
oxidative muscle phenotype is also supported by blood profile
analyses. In untrained subjects, both acute and chronic ECC
exercises favor decreased triglyceride (TG), LDL cholesterol, and
total cholesterol levels, along with improved HDL cholesterol
levels (which were not significantly modified after similar CON
exercises; Paschalis et al., 2011). This improvement in blood
lipid profile may be associated with the increased demand of
the working muscles for fatty acid substrates (coming from
blood TGs and LDL cholesterol) to regenerate injured muscles
and particularly to synthesize new cell membranes after ECC
exercises (Drexel et al., 2008). Fatty acids are necessary for
the replenishment of muscle phospholipids and TG stores for
the regeneration of damaged muscle fibers (Nikolaidis et al.,
2008). The observed increase in HDL cholesterol may be due
to the heightened activity of the lipoprotein lipase after ECC
exercise, which causes lipoprotein particles to shrink and transfer
to HDL cholesterol (Frayn, 2003). TG plasma concentrations
are also reduced by this rise in lipoprotein lipase, which acts
on lipoprotein particles passing through the capillaries and
releases free fatty acids. These may be taken up by muscles
and then esterified in phospholipids and intramuscular TGs, or

oxidized in the mitochondria (Nikolaidis et al., 2008). Thus,
the improvement in lipid and lipoprotein profiles may be aided
by the increase in lipid oxidation rate previously described
after acute and chronic ECC exercise (Paschalis et al., 2011).
The improvement in lipid profiles after ECC training may be
attenuated in trained patients, partially because of a lower muscle
repair activity owing to diminished EIMD (Nikolaidis et al.,
2008).

With regard to insulin resistance, several studies have reported
that an acute ECC exercise increases glycemia, insulin levels, and
homeostasis model assessment of insulin resistance (Tee et al.,
2007; Paschalis et al., 2011). This transitory increase in insulin
resistance may be caused by EIMD, which may impair insulin
signal transduction via inflammatory processes and decrease
glucose transporter proteins (Tee et al., 2007). Nevertheless,
most studies (Drexel et al., 2008; LaStayo et al., 2008; Paschalis
et al., 2011; Zeppetzauer et al., 2013), but not all (Marcus et al.,
2009; Philippe et al., 2016), demonstrated that the adverse effects
of acute ECC exercise subside after chronic ECC exercise and
that ECC training would decrease insulin resistance. An 8-
week ECC training program proved sufficient to increase insulin
sensitivity and improve lipid profile (Paschalis et al., 2011).
The improvement in insulin sensitivity after ECC exercise may
result from improved mitochondrial function and increased fat
oxidation, which prevent the accumulation of fatty acid-derived
metabolites in skeletal muscle (such as long chain acyl-CoA,
diacylglycerol, and ceramides, which can in turn impair insulin
signal transduction) (Rigalleau et al., 1998; Christ-Roberts et al.,
2004; Houmard, 2007). The associated decrease in plasma TG
may also be involved in the decrease in insulin resistance, as it can
impair insulin action through over-activity of the glucose-fatty
acid cycle (Randle et al., 1963). Moreover, these improvements
in blood lipid profile and insulin resistance are combined with a
decrease in low-grade inflammation, as proved by Drexel et al.
(2008) in a chronic downhill hiking model of ECC training and
confirmed by other studies (LaStayo et al., 2008; Zeppetzauer
et al., 2013). Low-grade inflammation contributes to impaired
insulin signal transduction, and reduction of such inflammation
contributes to improving insulin sensitivity (Barrett and Eringa,
2012). Moreover, both lowering fat mass and increasing fat free
mass are determinant factors that strongly influence insulin
resistance (Macor et al., 1997; Kelly, 2000; Fernández-Real et al.,
2003; Srikanthan and Karlamangla, 2011; Alemán-Mateo et al.,
2014).

ECCENTRIC TRAINING FOR OVERWEIGHT
AND OBESE PATIENTS

Obesity is a major public health challenge. It is defined as
an excessive fat accumulation due to an imbalance between
energy intake and energy expenditure (Ebbeling et al., 2002).
Obesity is associated with numerous comorbidities, such as type
2 diabetes, dyslipidemia, high blood pressure, cardiovascular
disease, respiratory disease, and joint disease (Daniels et al.,
2005). Educational strategies, in particular the combination
of nutritional and physical interventions, are required to
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counteract the progressive metabolic disorders and functional
impairments associated with obesity (Machado et al., 2016).
Physical activity is effective for both preventing and controlling
obesity, hypertension, type 2 diabetes, metabolic syndrome and
cardiovascular diseases, because it contributes to better blood
glucose control, reduced weight and waist circumference, and
improved body composition, with benefits to the cardiovascular
system (Machado et al., 2016). Nevertheless, patients with
overweight and obesity present muscular, respiratory, or cardiac
limitations with regard to their exercise capacities (Suastika,
2006; Look AHEAD Research Group and Wing, 2010). These
limitations frequently reduce the intensity and duration of
training exercises. Multidisciplinary programs are often used
and are mainly based on CON activities, mostly due to limited
access to ECC ergometers (because of the bespoken design and
financial constraints). ECC exercise produces less cardiovascular
and respiratory stress (Meyer et al., 2003) and less fatigue
(Horstmann et al., 2001) than CON exercise, and requires lower
metabolic demand than equal CON exercise (Perrey et al., 2001;
Minetti et al., 2002; Dufour et al., 2004; Chavanelle et al., 2014).
Although the energy expenditure during ECC exercise is lower
than that during CON exercise when power output is matched,
ECC exercise should be considered more efficient compared
with CON exercise in increasing post-exercise REE (Paschalis
et al., 2013) and thus in improving energy balance and weight
management over time. Moreover, moderate load ECC training
could be a strategy tomaximize compliance, as it induces effective
stimulations that not exceed the cardiorespiratory capacity of
a patient (Mitchell et al., 2017). Moderate load ECC training
is well-tolerated in multiple chronic conditions and critically ill
patients (LaStayo et al., 2014; Mitchell et al., 2017).

The modality of muscle actions has not been completely
studied in all aspects of energy balance, particularly in food
intake. In the study by Paschalis et al. (2011) conducted in
healthy subjects, daily energy and macronutrient intakes do not
significantly change after ECC and CON training. Brain-derived
neurotrophic factor (BDNF), which increases its production after
muscle contraction in rodent and humans, is a growth factor
that induces neurogenesis, protects against neurodegeneration,
positively influences neural plasticity (learning and memory),
plays a central role in fuel metabolism (fat oxidation), and is
a strong central regulator of energy intake (Hu and Russek,
2008; Matthews et al., 2009; Yarrow et al., 2010). Several
investigations in humans and rodents have supported the role
of BDNF in regulating energy balance. In mice, global BDNF
haploinsufficiency or brain-specific BDNF depletion results
in excessive feeding and body weight gain accompanied by
other features of the associated metabolic syndrome, including
hyperleptinemia, hyperglycemia, and hyperinsulinemia (Rios
et al., 2001; Beckers et al., 2008; Skledar et al., 2012). The
BDNF levels in mice increase BDNF significantly (more than
double) after ECC running compared with CON running
(Aguiar et al., 2008). Moreover, BDNF increases in both the
hippocampus and striatum after ECC running, but it increases
in the hippocampus only after CON running (ECC and CON
exercises were performed at the same mechanical power). This
finding indicates that BDNF levels are most responsive after

ECC exercise than CON exercise (Aguiar et al., 2008). In
human subjects, Yarrow et al. (2010) demonstrated that an
eccentric-enhanced progressive resistance training intervention
enhances the transient post-exercise elevation of circulating
BDNF. Conclusive research may be necessary to compare food
intakes and biological regulators of appetite after acute and
chronic ECC compared with CON exercise.

Overweight and obese patients are more sedentary than
lean subjects, which in turn keep them in positive energy
balance. They are also less active with regard to ECC exercise
(Pacy et al., 1986). Biopsies obtained from vastus lateralis in
patients with obesity show a higher proportion of type IIb
muscle fibers (Kriketos et al., 1997), which are preferentially
recruited and damaged during and after ECC exercise (Nardone
and Schieppati, 1988). Since these patients are untrained, they
exhibit higher EIMD and display more significant and more
prolonged muscle alterations after ECC exercise than lean
patients (Paschalis et al., 2013). Concerning post-exercise REE,
Paschalis et al. (2011) demonstrated that patients with overweight
and obesity exhibit significantly larger (+25% in overweight and
obese subjects vs. +9% in lean subjects) and more prolonged
(up to 72 h) increases in REE after acute ECC exercises, even
in relation to their fat free mass. Additionally, their results
showed that acute ECC exercise induces a significantly greater
increase in lipid oxidation in overweight and obese patients
than in lean subjects (Paschalis et al., 2011). This is particularly
relevant because of the following three reasons. First, patients
with obesity usually exhibit a lower rate of lipolysis (Blaak
et al., 1994). Second, body fat content significantly positively
correlates with type IIx fibers (Blaak et al., 1994). Third,
oxidative enzyme activities negatively correlate with insulin
resistance (Kriketos et al., 1996). This greater increase in lipid
oxidation may arise from the increase in the hydrolysis of
fatty acid phospholipids of the damaged muscle membranes
and the alteration of the glucose transport system and insulin
resistance following ECC exercise (King et al., 1993; Asp and
Richter, 1996). Furthermore, the magnitude of the response of
circulating lipids in patients with obesity after an acute ECC
exercise is likewise significantly higher than that in non-obese
patients. This result confirms that the extent of muscle damage
is a strong determinant of the improvements in post-exercise
blood profile (Paschalis et al., 2010). Nikolaidis et al. (2008)
examined the effect of a repeated muscle damage exercise on
the time-course changes in blood lipids and lipoprotein profiles.
They showed that the effect of a repeated session of ECC
exercise induces a relatively less improvement compared with
the first exercise. Nevertheless, the benefic effects of chronic
ECC training on healthy subjects suggest that the decrease in
circulating lipids may continue after bouts of ECC exercises
(Paschalis et al., 2011). With regard to glucose metabolism
and insulin resistance, ECC training similarly offers benefits
to patients with metabolic risk factors (Drexel et al., 2008;
Marcus et al., 2008; Miles et al., 2016). Thus, decreased insulin
resistance, intra-myocellular lipid pool changes, and decreases
in glucose oxidation after ECC exercises support the growing
interest for the ECC modality for the management of metabolic
diseases (Hughes et al., 2010; Beaven et al., 2014; Gavin
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et al., 2015). Notably, ECC exercise may protect against low-
grade inflammation usually observed in patients with obesity
(Nascimento et al., 2016).

LIMITATIONS OF ECCENTRIC EXERCISE

For chronic patients, which exhibit severe muscle wasting
(in relation to general deconditioning, nutrition, systemic
inflammation and/or medication), dyspnea is often experienced
during classical CON exercises. Moreover, skeletal muscle
dysfunction limits patient tolerance to classical ECC exercises
at relatively high load (close to maximal), which would make
an evident choice for moderate load ECC exercises (Hoppeler,
2016). To date, a wide range of techniques and equipment,
such as upper and lower limb ergometers (Isner-Horobeti et al.,
2013; LaStayo et al., 2017), treadmills for walking downhill, and
ergometers offering stair descending (Theodorou et al., 2013),
facilitate ECC exercises. To reach a moderate training load, the
supervision must be strict and require a specific experience.
However, these moderate loads could be achieved without undue
delayed onset muscular soreness (DOMS) provided that the
initial 2- or 3-week progressive ramping protocol is followed
(LaStayo et al., 2017). Nevertheless, the equipment is often
bespoken and sophisticated, with financial constraints, which
may also limit their expansion. These factors may contribute
to the lack of studies comparing moderate load ECC training
and other modalities of training. For specific cases of obese
individuals, who display significant and prolonged muscle
alterations after ECC exercise (Paschalis et al., 2013), the training
may require an additional caution from the supervisor to
adapt the progressive initial ramped phase to limit DOMS
and to maximize exercise tolerance and training compliance.
Nevertheless, the beneficial effect of ECC training on body
composition and other health-related parameters make it a
promising tool for this population.

CONCLUSION

ECC training results in multi-target beneficial effects on lean and
fat mass. Further investigations employing similar mechanical
power, metabolic rate, intensity, and work volume when
calibrating the ECC and CON exercises are required to provide
a conclusive comparison of the two modalities. Our review
focused on the effect of ECC training on lean and fat mass
and particularly on whole body measurements, but more studies

with better power and design are warranted. The heterogeneity
of the available studies (in terms of populations, measurement
techniques, etc.) makes it premature to draw any definitive
conclusions (and explains why a meta-analysis was not possible
here). EIMD after ECC exercise leads to local inflammation and
regeneration, which enhance protein degradation and synthesis
via activation of well-known intracellular hypertrophy signaling
pathways. Both acute and chronic ECC exercises induce larger
increases in post-exercise REE than acute and chronic CON
exercises performed at the same power output, partially because
of the increase in muscle protein turnover and gain in lean
mass. Both acute and chronic ECC exercises can also modify
metabolic substrate use by increasing post-exercise fat oxidation
and reducing glucose oxidation, leading to a switch to a more
oxidative metabolism. In line with the increased demand of the
working muscle for fatty acid substrates to regenerate injured
muscles, both acute and chronic ECC exercises improve blood
lipid profile to a greater extent than CON exercises. Although
a transient increase in insulin resistance occurs after acute ECC
exercise because of EIMD, chronic ECC exercise also decreases
insulin resistance.

ECC training, particularly continuous moderate load ECC
training, is a potential exercise modality for overweight and
obese patients because most metabolic and biological effects
induced by ECC exercise are heightened in these subjects in
comparison with lean subjects. Moreover, ECC exercise requires
lower metabolic demands than CON exercises when performed
at the same mechanical power and induces a greater increase
in post-exercise REE. Further investigations using standardized
experimental conditions in the ECC and CON training groups
are necessary to define the specific metabolic effects of ECC
training, to determine the effectiveness and long-term effect of
this exercise modality in overweight and obese patients and
to guide future physical activity prescriptions, particularly in
terms of exercise modality, intensity and duration. Finally, the
combination of ECC and nutritional anabolic compounds as
an appropriate source of dietary proteins could be examined
in future multimodal approaches for chronic diseases that limit
mobility.
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