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This work investigates the use of mixed-norm regularization for sensor selection in event-related potential (ERP) based brain-
computer interfaces (BCI). The classification problem is cast as a discriminative optimization framework where sensor selection is
induced through the use of mixed-norms. This framework is extended to the multitask learning situation where several similar
classification tasks related to different subjects are learned simultaneously. In this case, multitask learning helps in leveraging
data scarcity issue yielding to more robust classifiers. For this purpose, we have introduced a regularizer that induces both sensor
selection and classifier similarities.The different regularization approaches are compared on three ERP datasets showing the interest
ofmixed-norm regularization in terms of sensor selection.Themultitask approaches are evaluatedwhen a small number of learning
examples are available yielding to significant performance improvements especially for subjects performing poorly.

1. Introduction

Brain computer interfaces (BCI) are systems that help dis-
abled people communicate with their environment through
the use of brain signals [1]. At the present time, one of the
most prominent BCI is based on electroencephalography
(EEG) because of its low-cost, portability, and its nonin-
vasiveness. Among EEG based BCI, a paradigm of interest
is the one based on event-related potentials (ERP) which
are responses of the brain to some external stimuli. In this
context, the innermost part of a BCI is the pattern recognition
stagewhich has to correctly recognize presence of these ERPs.
However, EEG signals are blurred due to the diffusion of
the skull and the skin [2]. Furthermore, EEG recordings are
highly contaminated by noise of biological, instrumental, and
environmental origins. For addressing these issues, advanced
signal processing andmachine learning techniques have been
employed to learn ERP patterns from training EEG signals
leading to robust systems able to recognize the presence of
these events [3–8]. Note that while some ERPs are used for
generating BCI commands, some others can be used for
improving BCI efficiency. Indeed, recent studies have also

tried to develop algorithms for automated recognition of
error-related potentials [9]. These potentials are responses
elicited when a subject commits an error in a BCI task or
observes an error [10, 11] and thus they can help in correcting
errors or in providing feedbacks to BCI users.

In this context of automated recognition of event-related
potentials for BCI systems, reducing the number of EEG
sensors is of primary importance since it reduces the imple-
mentation cost of the BCI by minimizing the number of EEG
sensor and speeding up experimental setup and calibration
time. For this purpose, some studies have proposed to choose
relevant sensors according to prior knowledge of brain
functions. For instance, sensors located above the motor
cortex region are preferred for motor imagery tasks, while
for visual event-related potential (ERP), sensors located on
the visual cortex are favored [12]. Recent works have focused
on automatic sensor selection adapted to the specificity of a
subject [4, 13–17]. For instance, Rakotomamonjy and Guigue
[18] performed a recursive backward sensor selection using
cross-validation classification performances as an elimina-
tion criterion. Another approach for exploring subset sensors
has been proposed by [15]; it consists in using a genetic
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algorithm for sensor selection coupled with artificial neural
networks for prediction. Those methods have been proven
efficient but computationally demanding. A quicker way is
to estimate the relevance of the sensors in terms of signal
to noise ratio (SNR) [4] and to keep the most relevant ones.
Note that this approach does not optimize a discrimination
criterion, although the final aim is a classification task.
Recently, van Gerven et al. [19] proposed a graceful approach
for embedding sensor selection into a discriminative frame-
work. They performed sensor selection and learn a decision
function by solving a unique optimization problem. In their
framework, a logistic regression classifier is learned and the
group-lasso regularization, also known as ℓ

1
− ℓ
2
mixed-

norm, is used to promote sensor selection. They have also
investigated the use of this groupwise regularization for
frequency band selection and their applications to transfer
learning. The same idea has been explored by Tomioka and
Müller [20] which also considered groupwise regularization
for classifying EEG signals. In this work, we go beyond these
studies by providing an in-depth study of the use of mixed-
norms for sensor selection in a single subject setting and by
discussing the utility ofmixed-normswhen learning decision
functions for multiple subjects simultaneously.

Our first contribution addresses the problem of robust
sensor selection embedded into a discriminative framework.
We broaden the analysis of van Gerven et al. [19] by
considering regularizers whose forms are ℓ

1
− ℓ
𝑞
mixed-

norms, with (1 ≤ 𝑞 ≤ 2), as well as adaptive mixed-
norms, so as to promote sparsity among group of features or
sensors. In addition to providing a sparse and accurate sensor
selection, mixed-norm regularization has several advantages.
First, sensor selection is cast into an elegant discriminative
framework, using for instance a large margin paradigm,
which does not require any additional hyperparameter to be
optimized. Secondly, since sensor selection is jointly learned
with the classifier by optimizing an “all-in-one” problem,
selected sensors are directed to the goal of discriminating
relevant EEG patterns. Hence, mixed-norm regularization
helps locating sensors which are relevant for an optimal
classification performance.

A common drawback of all the aforementioned sensor
selection techniques is that selected set of sensors may vary,
more or less substantially, from subject to subject. This
variability is due partly to subject specific differences and
partly to acquisition noise and limited number of training
examples. In such a case, selecting a robust subset of sensors
may become a complex problem. Addressing this issue is the
point of our second contribution. We propose a multitask
learning (MTL) framework that helps in learning robust
classifiers able to cope with the scarcity of learning examples.
MTL is oneway of achieving inductive transfer between tasks.
The goal of inductive transfer is to leverage additional sources
of information to improve the performance of learning on
the current task. The main hypothesis underlying MTL is
that tasks are related in some ways. In most cases, this
relatedness is translated into a prior knowledge, for example,
a regularization term, that a machine learning algorithm
can take advantage of. For instance, regularization terms
may promote similarity between all the tasks [21] or enforce

classifier parameters to lie in a low dimensional linear
subspace [22] or to jointly select the relevant features [23].
MTL has been proven efficient for motor imagery in [24]
where several classifiers were learned simultaneously from
several BCI subject datasets. Our second contribution is thus
focused on the problem of performing sensor selection and
learning robust classifiers through the use of an MTL mixed-
norm regularization framework. We propose a novel reg-
ularizer promoting sensor selection and similarity between
classifiers. By doing so, our goal is then to yield sensor
selection and robust classifiers that are able to overcome the
data scarcity problem by sharing information between the
different classifiers to be learned.

The paper is organized as follows. The first part of
the paper presents the discriminative framework and the
different regularization terms we have considered for channel
selection and multitask learning. The second part is devoted
to the description of the datasets, the preprocessing steps
applied to each of them, and the results achieved in terms
of performances and sensor selection. In order to promote
reproducible research, the code needed for generating the
results in this paper is available on the author’s website (URL:
http://remi.flamary.com/soft/soft-gsvm.html.).

2. Learning Framework

In this section, we introduce our mixed-norm regularization
framework that can be used to perform sensor selection in a
single task or in a transfer learning setting.

2.1. Channel Selection in a Single Task Learning Setting.
Typically in BCI problems, one wants to learn a classifier
that is able to predict the class of some EEG trials, from a
set of learning examples. We denoted as {x

𝑖
, 𝑦
𝑖
}
𝑖∈{1,...,𝑛}

the
learning set such that x

𝑖
∈ R𝑑 is a trial and 𝑦

𝑖
∈ {−1, 1}

is its corresponding class, usually related to the absence or
presence of an event-related potential. In most cases, a trial
x
𝑖
is extracted from a multidimensional signal and thus is

characterized by 𝑟 features for each of the 𝑝 sensors, leading
to a dimensionality 𝑑 = 𝑟×𝑝. Our aim is to learn, for a single
subject, a linear classifier 𝑓 that will predict the class of a trial
x ∈ R𝑑, by looking at the sign of the function 𝑓(⋅) defined as

𝑓 (x) = x𝑇w + 𝑏 (1)

with w ∈ R𝑑 the normal vector to the separating hyperplane
and 𝑏 ∈ R a bias term. Parameters of this function are learned
by solving the optimization problem:

min
w,𝑏

𝑛

∑

𝑖

𝐿
𝑜
(y
𝑖
, x𝑇
𝑖
w + 𝑏) + 𝜆Ω (w) , (2)

where 𝐿
𝑜
is a loss function that measures the discrepancy

between actual and predicted labels, Ω(⋅) is a regularization
term that expresses some prior knowledge about the learning
problem, and 𝜆 is a parameter that balances both terms.
In this work, we choose 𝐿

𝑜
to be the squared hinge loss

𝐿
𝑜
(𝑦, 𝑦) = max(0, 1 − 𝑦𝑦)2, thus promoting a large margin

classifier.
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2.1.1. RegularizationTerms. Wenowdiscuss different regular-
ization terms that may be used for single task learning along
with their significances in terms of channel selection.

ℓ
2
Norm. The first regularization term that comes to mind is

the standard squared ℓ
2
norm regularization:

Ω
2
(w) = 1

2
||w||2
2
, (3)

where || ⋅ ||
2
is the Euclidean norm. This is the common

regularization term used for SVMs and it will be considered
in our experiments as the baseline approach. Intuitively,
this regularizer tends to downweigh the amplitude of each
component of w leading to a better control of the margin
width of our large-margin classifier and thus it helps in
reducing overfitting.

ℓ
1
Norm. When only few of the features are discriminative

for a classification task, a common way to select the relevant
ones is to use an ℓ

1
norm of the form

Ω
1
(w) =

𝑑

∑

𝑖=1

𝑤𝑖


(4)

as a regularizer [25]. Owing to its mathematical properties
(nondifferentiability at 0), unlike the ℓ

2
norm, this regulariza-

tion term promotes sparsity, which means that at optimality
of problem (2), some components of w are exactly 0. In a
Bayesian framework, the ℓ

1
norm is related to the use of

prior on w that forces its component to vanish [19]. This
is typically obtained by means of Laplacian prior over the
weight.However, ℓ

1
norm ignores the structure of the features

(which may be grouped by sensors) since each component
of 𝑤 is considered independently to the others. As such, this
norm precludes grouped feature selection and allows only for
feature selection.

ℓ
1
− ℓ
𝑞
Mixed-Norm. A way to take into account the fact that

features are structured is to use a mixed-norm that will group
them and regularize them together. Here, we considermixed-
norm of the form

Ω
1−𝑞

(w) = ∑

𝑔∈G




w
𝑔



𝑞 (5)

with 1 ≤ 𝑞 ≤ 2 and G being a partition of the set {1, . . . , 𝑑}.
Intuitively, this ℓ

1
− ℓ
𝑞
mixed-norm can be interpreted as an

ℓ
1
norm applied to the vector containing the ℓ

𝑞
norm of each

group of features. It promotes sparsity on each w
𝑔
norm and

consequently on the w
𝑔
components as well. For our BCI

problem, a natural choice for G is to group the features by
sensors yielding thus to𝑝 groups (one per sensor) of 𝑟 features
as reported in Figure 1. Note that unlike the ℓ

1
− ℓ
2
norm

as used by van Gerven et al. [19] and Tomioka and Müller
[20], the use of an inner ℓ

𝑞
norm leads to more flexibility as it

spans from the ℓ
1
−ℓ
1
(equivalent to the ℓ

1
-norm and leading

thus to unstructured feature selection) to the ℓ
1
− ℓ
2
which

strongly ties together the components of a group. Examples of
the use of ℓ

𝑞
norm and mixed-norm regularizations in other

biomedical contexts can be found for instance in [26, 27].

Adaptive ℓ
1
− ℓ
𝑞
. The ℓ

1
and ℓ
1
− ℓ
𝑞
norms described above

are well known to lead to grouped feature selection. However,
they are also known to lead to poor statistical properties
(at least when used with a square loss function) [28]. For
instance, they are known to have consistency issue in the
sense that, even with an arbitrarily large number of training
examples, these normsmay be unable to select the true subset
of features. In practice, this means that when used in (2),
the optimal weight vector w will tend to overestimate the
number of relevant sensors. These issues can be addressed
by considering an adaptive ℓ

1
− ℓ
𝑞
mixed-norm of the form

[28, 29]

Ω
𝑎:1−𝑞

(w) = ∑

𝑔∈G

𝛽
𝑔




w
𝑔



𝑞
, (6)

where theweights𝛽
𝑔
are selected so as to enhance the sparsity

pattern of w. In our experiments, we obtain them by first
solving the ℓ

1
− ℓ
𝑞
problem with 𝛽

𝑔
= 1, which outputs an

optimal parameterw∗, and by finally defining 𝛽
𝑔
= 1/||w∗

𝑔
||
𝑞
.

Then, solving the weighted ℓ
1
− ℓ
𝑞
problem yields an optimal

solutionwith increased sparsity pattern compared tow∗ since
the𝛽
𝑔
augments the penalization of groupswith norm ‖ w∗

𝑔
‖
𝑞

smaller than 1.

2.1.2. Algorithms. Let us now discuss how problem (2) is
solved when one of these regularizers is in play.

Using the ℓ
2
norm regularization makes the problem

differentiable. Hence a first- or second-order descent based
algorithm can be considered [30].

Because the other regularizers are not differentiable, we
have deployed an algorithm [31] tailored for minimizing
objective function of the form𝑓

1
(w)+𝑓

2
(w)with𝑓

1
a smooth

and differentiable convex function with Lipschitz constant 𝐿
and 𝑓

2
a continuous and convex nondifferentiable function

having a simple proximal operator, that is, a closed-form or
an easy-to-compute solution of the problem

prox
𝑓
2

(k) := argmin
u

1

2
‖k − u‖2

2
+ 𝑓
2
(u) . (7)

Such an algorithm, known as forward-backward splitting [31],
is simply based on the following iterative approach:

w𝑘+1 = prox
(1/𝛾)𝑓

2

(w𝑘 − 𝛾∇w𝑓1 (w
𝑘
)) (8)

with 𝛾 being a stepsize in the gradient descent.This algorithm
can be easily derived by considering, instead of directly
minimizing 𝑓

1
(w) + 𝑓

2
(w), an iterative scheme which at each

iteration replaces 𝑓
1
with a quadratic approximation of 𝑓

1
(⋅)

in the neighborhood of w𝑘. Hence, w𝑘+1 is the minimizer of

𝑓
1
(w𝑘) + ⟨∇w𝑓1 (w

𝑘
) ,w − w𝑘⟩ + 𝛾

2


w − w𝑘

2

2
+ 𝑓
2
(w)

(9)

whose closed-form is given in (8). This algorithm is known
to converge towards a minimizer of 𝑓

1
(w) + 𝑓

2
(w) under

some weak conditions on the stepsize [31], which is satisfied
by choosing for instance 𝛾 = 1/𝐿. We can note that the
algorithm defined in (8) has the same flavor as a projected
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gradient algorithm which first takes a gradient step and then
“projects” back the solution owing to the proximal operator.
More details can also be found in [32].

For our problem (2), we choose 𝑓
1
(w) to be the squared

hinge loss and 𝑓
2
(w) the nonsmooth regularizer. The square

hinge loss is indeed gradient Lipschitz with a constant 𝐿
being 2∑

𝑖=1
‖x
𝑖
‖
2

2
. Proof of this statement is available in

Appendix A. Proximal operators of the ℓ
1
and the ℓ

1
− ℓ
2

regularization term can be easily shown to be the soft-
thresholding and the block-soft thresholding operator [25].
The general ℓ

1
− ℓ
𝑞
norm does not admit a closed-form

solution, but its proximal operator can be simply computed
bymeans of an iterative algorithm [23]. More details on these
proximal operators are also available in Appendix C.

2.2. Channel Selection and Transfer Learning in Multiple Task
Setting. We now address the problem of channel selection in
cases where training examples for several subjects are at our
disposal. We have claimed that in such a situation, it would
be beneficial to learn the decision functions related to all
subjects simultaneously, while inducing selected channels to
be alike for all subjects, as well as inducing decision function
parameters to be related in some sense.These two hypotheses
make reasonable sense since brain regions related to the
appearance of a given ERP are expected to be somewhat
location-invariant across subjects. For solving this problem,
we apply a machine learning paradigm, known as multitask
learning, where in our case, each task is related to the decision
function of a given subject and where the regularizer should
reflect the above-described prior knowledge on the problem.
Given 𝑚 subjects, the resulting optimization problem boils
down to be

min
W,b

𝑚

∑

𝑡

𝑛
𝑡

∑

𝑖=1

𝐿 (𝑦
𝑖,𝑡
, x𝑇
𝑖,𝑡
w
𝑡
+ b
𝑡
) + Ωmtl (W) (10)

with {x
𝑖,𝑡
, 𝑦
𝑖,𝑡
}
𝑖∈{1,...,𝑛

𝑡
}
being the training examples related

to each task, 𝑡 ∈ 1, . . . , 𝑚, (w
𝑡
, b
𝑡
) being the classifier

parameters for task 𝑡, and W = [w
1
, . . . ,w

𝑚
] ∈ R𝑑×𝑚

being a matrix concatenating all vectors {w
𝑡
}. Note that the

multitask learning framework applied to single EEG trial
classification has already been investigated by van Gerven
et al. [19]. The main contribution we bring compared to
their works is the use of regularizer that explicitly induces all
subject classifiers to be similar to an average one, in addition
to a regularizer that enforces selected channels to be the same
for all subjects. The intuition behind this point is that we
believe that since the classification tasks we are dealing with
are similar for all subjects and all related to the same BCI
paradigm, selected channels and classifier parameters should
not differ that much from subject to subject. We also think
that inducing task parameters to be similar may be more
important than enforcing selected channels to be similar
when the number of training examples is small since it helps
in reducing overfitting. For this purpose, we have proposed a
novel regularization term of the form

Ωmtl (W) = 𝜆
𝑟
∑

𝑔∈G




W
𝑔



2
+ 𝜆
𝑠

𝑚

∑

𝑡=1


w𝑡 − ŵ



2

2
, (11)

where ŵ = (1/𝑚)∑
𝑡
w
𝑡
is the average classifier across

tasks andG contains nonoverlapping groups of components
from matrix W. The first term in (11) is a mixed-norm
term that promotes group regularization. In this work, we
defined groups in G based on the sensors, which means
that all the features across subject related to a given sensor
are in the same group 𝑔, leading to 𝑝 groups of 𝑟 × 𝑚

feature, as depicted in Figure 1.The second term is a similarity
promoting term as introduced in Evgeniou and Pontil [21].
It can be interpreted as a term enforcing the minimization
of the classifier’s parameter variance. In other words, it
promotes classifiers to be similar to the average one, and it
helps improving performances when the number of learning
examples for each task is limited, by reducing overfitting.
Note that 𝜆

𝑟
and 𝜆

𝑠
, respectively, control the sparsity induced

by the first term and the similarity induced by the second one.
Hence, when setting 𝜆

𝑠
= 0, the regularizer given in (11) boils

down to be similar to the one used by van Gerven et al. [19].
Note that in practice 𝜆

𝑟
and 𝜆

𝑠
are selected by means of a

nested cross-validation which aims at classification accuracy.
Thus, it may occur that classifier similarity is preferred over
sensor selection leading to robust classifiers which still use
most of the sensors.

Similar to the single task optimization framework given
in (2), the objective function for problem (10) can be
expressed as a sum of gradient Lipschitz continuous term
𝑓
1
(W) = ∑

𝑚,𝑛

𝑡,𝑖
𝐿(⋅)+𝜆

𝑠
∑
𝑚

𝑡=1
||w
𝑡
−ŵ||2
2
and a nondifferentiable

term 𝑓
2
(W) = 𝜆

𝑟
∑
𝑔∈G ||W𝑔||2 having a closed-form

proximal operator (see Appendix B). Hence, we have again
considered a forward-backward splitting algorithm whose
iterates are given in (8).

3. Numerical Experiments

We now present how these novel approaches perform on
different BCI problems. Before delving into the details of the
results, we introduce the simulated and real datasets.

3.1. Experimental Data. We have first evaluated the proposed
approaches on a simple simulated P300 dataset generated as
follows. A P300 wave is extracted using the grand average
of a single subject data from the EPFL dataset described in
the following. We generate 11000 simulated examples with
8 discriminative channels containing the P300 out of 16
channels for positive examples. A Gaussian noise of standard
deviation 0.2 is added to all signals making the dataset more
realistic. 1000 of these examples have been used for training.

The first real P300 dataset we used is the EPFL dataset,
based on eight subjects performing P300 related tasks [33].
The subjects were asked to focus on one of the 3× 2 = 6 images
on the screen while one of the images is flashed at random.
The EEG signals were acquired from 32 channels, sampled
at 1024Hz, and 4 recording sessions per subject have been
realized. Signals are preprocessed exactly according to the
steps described in [33]: a [1, 8]Hzbandpass Butterworth filter
of order 3 is applied to all signals followed by a downsampling.
Hence, for each trial (training example), we have 8 time-
sample features per channel corresponding to a 1000ms time-
window after stimulus, which leads to 256 features for all



Computational and Mathematical Methods in Medicine 5

Sensor 1 Sensor p

wT
=

r features

(a)

Sensor 1 Sensor p

wT

m
=

wT

1
=

Group 1 Group p
...

...

(b)

Figure 1: Examples of feature grouping for (a) single task and (b) multiple task learning.

channels (32× 8 = 256 features). Overall, the training set of
a given subject is composed of about 3000 trials.

Another P300 dataset, recorded by the Neuroimaging
Laboratory of Universidad Autónoma Metropolitana (UAM,
Mexico) [34], has also been utilized. The data have been
obtained from 30 subjects performing P300 spelling tasks on
a 6× 6 virtual keyboard. Signals are recorded over 10 channels
leading thus to a very challenging dataset for sensor selection,
as there are just few sensors left to select. For this dataset,
we only use the first 3 sessions in order to have the same
number of trials for all subjects (≈4000 samples). The EEG
signals have been preprocessed according to the following
steps: a [2, 20]Hz Chebyshev bandpass filter of order 5 is first
applied followed by a decimation, resulting in a poststimulus
time-window of 31 samples per channels. Hence, each trial is
composed of 310 (10× 31) features.

We have also studied the effectiveness of our methods
on an error-related potential (ErrP) dataset that has been
recorded in the GIPSA Lab. The subjects were asked to
memorize the position of 2 to 9 digits and to remind the
position of one of these digits; operation has been repeated 72
times for each subject. The signal following the visualization
of the result (correct/error on the memorized position) was
recorded from 31 electrodes and sampled at 512Hz. Similar to
Jrad et al. [17], a [1, 10]Hz Butterworth filter of order 4 and a
downsampling has been applied to all channel signals. Finally,
a time window of 1000ms is considered as a trial (training
example) with a dimensionality of 16 × 31 = 496.

3.2. Evaluation Criterion, Methods, and Experimental Proto-
col. We have compared several regularizers that induce fea-
ture/channel selection embedded in the learning algorithm,
in a single subject learning setting as defined in (2). The
performance measure commonly used in BCI competitions
[3] is the area under the Roc curve (AUC). This measure is
an estimate of the probability for a positive class to have a
higher score than a negative class. It makes particularly sense
to use AUCwhen evaluating a P300 speller as the letter in the
keyboard is usually chosen by comparing score returned by
the classifier for every column or line. In addition, AUC does
not depend on the proportion of positive/negative examples
in the data which makes it more robust than classification
error rate. Our baseline algorithm is an SVM, which uses an
ℓ
2
regularizer and thus does not perform any selection. Using

an ℓ
1
regularizer yields a classifier which embeds feature

selection, denoted as SVM-1 in the sequel. Three mixed-
norm regularizers inducing sensor selection have also been
considered: an ℓ

1
−ℓ
2
denoted asGSVM-2, and ℓ

1
−ℓ
𝑞
referred

as GSVM-q, with 𝑞 being selected in the set {1, 1.2, . . . , 1.8, 2}
by a nested cross-validation stage, and adaptive ℓ

1
− ℓ
𝑞
norm,

with 𝑞 = 2 denoted as GSVM-a.
For the multitask learning setting, two MTL methods

were compared to two baseline approaches which use all
features, namely, a method that treats each tasks separately by
learning one SVM per task (SVM) and a method denoted as
SVM-Full, which on the contrary learns a unique SVM from
all subject datasets. The two MTL methods are, respectively,
a MTL as described in (10), denoted as MGSVM-2s and the
same MTL but without similarity promoting regularization
term, which actually means that we set 𝜆

𝑠
= 0, indicated as

MGSVM-2. For these approaches, performances are evalu-
ated as the average AUC of the decision functions over all the
subjects.

The experimental setup is described in the following. For
each subject, the dataset is randomly split into a training set
of 𝑛 = 1000 trials and a test set containing the rest of the
trials. The regularization parameter 𝜆 has been selected from
a log-spaced grid ([10−3, 101]) according to a nested 3-fold
cross-validation step on the training set. When necessary,
the selection of 𝑞 is also included in this CV procedure.
Finally, the selected value of 𝜆 is used to learn a classifier
on the training examples and performances are evaluated on
the independent test set. We run this procedure 10 times for
every subject and report average performances. A Wilcoxon
signed-rank test, which takes ties into account, is used to
evaluate the statistical difference of the mean performances
of all methods compared to the baseline SVM. We believe
that such a test is more appropriate for comparing methods
thanmerely looking at the standard deviation due to the high
intersubject variability in BCI problems.

3.3. Results and Discussions. We now present the results we
achieved on the above-described datasets.

3.3.1. Simulated Dataset. Average (over 10 runs) performance
of the different regularizers on the simulated dataset is
reported in Table 1 through AUC, sensor selection rate, and
𝐹-measure. This latter criterion measures the relevance of
the selected channels compared to the true relevant ones. F-
measure is formally defined as

𝐹-measure = 2
C ∩C∗



|C∗| + |C|
, (12)

whereC andC∗ are, respectively, the set of selected channels
and true relevant channels and |⋅| here denotes the cardinality
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Figure 2: Selected sensors for the EPFL dataset. The line width of the circle is proportional to the number of times the sensor is selected for
different splits. No circle means that the sensor has never been selected.

of a set. Note that if the selected channels are all the
relevant ones, then the 𝐹-measure is equal to one. Most
of the approaches provide similar AUC performances. We
can although highlight that group-regularization approaches
(GSVM-2, GSVM-p, GSVM-a) drastically reduce the num-
ber of selected channels since only 62% and 45% of the
sensors are selected. A clear advantage goes to the adaptive
regularization that is both sparser and is more capable of
retrieving the true relevant channels.

3.3.2. P300 Datasets. Results for these datasets are reported
in Table 2. For the EPFL dataset, all methods achieve per-
formances that are not statistically different. However, we
note that GSVM-2 leads to sensor selection (80% of sensor
selected) while GSVM-a yields to classifiers that, on average,
use 26% of the sensors at the cost of a slight loss in
performances (1.5% AUC).

Results for the UAM dataset follow the same trend in
terms of sensor selection but we also observe that the mixed-
norm regularizers yield to increased performances. GSVM-
2 performs statistically better than SVM although most of
the sensors (9 out of 10) have been kept in the model.
This shows that even if few channels have been removed,
the group-regularization improves performances by bringing
sensor prior knowledge to the problem. We also notice

that GSVM-a performance is statistically equivalent to the
baseline SVM one while using only half of the sensors and
GSVM-p consistently gives similar results to GSVM-2.

To summarize, concerning the performances of the differ-
ent mixed-norm regularization, we outline that on one hand,
GSVM-2 is at worst equivalent to the baseline SVM while
achieving sensor selection and on the other hand GSVM-a
yields to a substantial channel selection at the expense of a
slight loss of performances.

A visualization of the electrodes selected by GSVM-a can
be seen in Figure 2 for the EPFL dataset and in Figure 3 for
the UAM dataset. Interestingly, we observe that for the EPFL
dataset, the selected channels are highly dependent on the
subject.Themost recurring ones are the following: FC1 C3 T7
CP5 P3 PO3 PO4 Pz and the electrodes located above visual
cortex O1, Oz, and O2.We see sensors from the occipital area
that are known to be relevant [12] for P300 recognition, but
sensors such as T7 and C3, from other brain regions, are also
frequently selected.These results are however consistent with
those presented in the recent literature [4, 18].

The UAM dataset uses only 10 electrodes that are already
known to perform well in P300 recognition problem, but
we can see from Figure 3 that the adaptive mixed-norm
regularizer further selects some sensors that are essentially
located in the occipital region. Note that despite the good
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Figure 3: Selected sensors for the UAM dataset. The line width of the circle is proportional to the number of times the sensor is selected for
different splits. No circle means that the sensor has never been selected.

Table 1: Performance results on the simulated datasets: the average performance in AUC (in %), the average percent of selected sensors (Sel),
and the 𝐹-measure of the selected channels (in %).

Methods Avg. AUC AUC 𝑃-val Avg. Sel 𝐹-measure
SVM 79.79 — 100.00 66.67
GSVM-1 79.32 0.027 98.75 67.25
GSVM-2 80.96 0.004 62.50 89.72
GSVM-p 80.74 0.020 63.12 89.40
GSVM-a 80.51 0.014 45.62 93.98
Best results for each performance measure are in bold.
The 𝑃 value refers to the one of a Wilcoxon signed-rank test with SVM as a baseline.

Table 2: Performance results for the 3 datasets: the average performance (over subjects) in AUC (in%), the average percent of selected sensors
(Sel), and the 𝑃 value of the Wilcoxon signed-rank test for the AUC when compared to the baseline SVM’s one.

Methods
Datasets

EPFL dataset (8 Sub., 32 Ch.) UAM dataset (30 Sub., 10 Ch.) ErrP dataset (8 Sub., 32 Ch)
Avg. AUC Avg. Sel 𝑃 value Avg. AUC Avg. Sel 𝑃 value Avg. AUC Avg. Sel 𝑃 value

SVM 80.35 100.00 — 84.47 100.00 — 76.96 100.00 —
SVM-1 79.88 87.66 0.15 84.45 96.27 0.5577 68.84 45.85 0.3125
GSVM-2 80.53 78.24 0.31 84.94 88.77 0.0001 77.29 29.84 0.5469
GSVM-p 80.38 77.81 0.74 84.94 90.80 0.0001 76.84 37.18 0.7422
GSVM-a 79.01 26.60 0.01 84.12 45.07 0.1109 67.25 7.14 0.1484
Best performing algorithms for each performance measure are in bold.
The 𝑃 value refers to the one of a Wilcoxon signed-rank test with SVM as a baseline.
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Figure 4: Performance versus sensor selection visualisation for the EPFL dataset. The large marker corresponds to the best model along the
regularization path.

average performances reported in Table 2, some subjects in
this dataset achieve very poor performances, of about 50% of
AUC, regardless of the consideredmethod. Selected channels
for one of these subjects (Subject 25) are depicted in Figure 3
and, interestingly, they strongly differ from those of other
subjects providing rationales for the poor AUC.

We have also investigated the impact of sparsity on the
overall performance of the classifiers. To this aim, we have
plotted the average performance of the different classifiers
as a function of the number of selected sensors. These
plots are depicted in Figure 4 for the EPFL dataset and on
Figure 5 for the UAM dataset. For both datasets, GSVM-
a frequently achieves a better AUC for a given level of
sparsity. For most of the subjects, GSVM-a performs as
well as SVM but using far less sensors. A rationale may be
that in addition to selecting the relevant sensors, GSVM-a
may provide a better estimation of the classifier parameters
leading to better performances for a fixed number of sensors.
As a summary, we suggest thus the use of an adaptive mixed-
norm regularizer instead of an ℓ

1
− ℓ
2
mixed-norm as in van

Gerven et al. [19] when sparsity and channel selection are of
primary importance.

3.3.3. ErrP Dataset. The ErrP dataset differs from the others
as its number of examples is small (72 examples per subject).
The same experimental protocol as above has been used

for evaluating the methods but only 57 examples out of
72 have been retained for validation/training. Classification
performances are reported on Table 2. For this dataset, the
best performance is achieved by GSVM-2 but the Wilcoxon
test shows that all methods are actually statistically equiva-
lent. Interestingly, many channels of this dataset seem to be
irrelevant for the classification task. Indeed, GSVM-2 selects
only 30%of themwhileGSVM-a uses only 7%of the channels
at the cost of 10% AUC loss. We believe that this loss is
essentially caused by the aggressive regularization of GSVM-
a and the difficulty to select the regularization parameter 𝜆
using only a subset of the 57 training examples. Channels
selected by GSVM-2 can be visualized on Figure 6. Despite
the high variance in terms of selected sensors, probably due
to the small number of examples, sensors in the central area
seem to be the most selected one, which is consistent with
previous results in ErrP [35].

3.3.4. Multitask Learning. We now evaluate the impact of the
approach we proposed in (10) and (11) on the P300 datasets.
We expect that since multitask learning allows transferring
some information between the different classification tasks, it
will help in leveraging classification performances especially
when the number of available training examples is small.
Note that the ErrP dataset has not been tested in this MTL
framework, because the above-described results suggest an
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Figure 5: Performance versus sensor selection visualisation for the UAM dataset. The large marker corresponds to the best model along the
regularization path.

important variance in the selected channels for all subjects.
Hence, we believe that this learning problem does not fit into
the prior knowledge considered through (11).

We have followed the same experimental protocol as
for the single task learning except that training and test
sets have been formed as follows. We first create training
and test examples for a given subject by randomly splitting
all examples of that subject and then gather all subject’s
training/test sets to form the multitask learning training/test
sets. Hence, all the subjects are equally represented in these
sets. A 3-fold nested cross-validation method is performed
in order to automatically select the regularization terms (𝜆

𝑟

and 𝜆
𝑠
).

Performances of the different methods have been evalu-
ated for increasing number of training examples per subject
and are reported in Figure 7.We can first see that for the EPFL
dataset, MGSVM-2 and MGSVM-2s yield a slight but con-
sistent improvement over the single-task classifiers (SVM-
Full being a single classifier trained on all subject’s examples
and SVM being the average performances of subject-specific
classifiers).Thepoor performances of the SVM-Full approach
are probably due to the high intersubject variability in this
dataset, which includes impaired patients.

For the UAM dataset, results are quite different since the
SVM-Full and MGSVM-2s show a significant improvement
over the single-task learning. We also note that when only

the joint channel selection regularizer is in play (MGSVM-
2), multitask learning leads to poorer performance than
the SVM-Full for a number of trials lower than 500. We
justify this by the difficulty of achieving appropriate channel
selection based only on few training examples, as confirmed
by the performance of GSVM-2. From Figure 8, we can see
that the good performance of MGSVM-2s is the outcome
of performance improvement of about 10% AUC over SVM,
achieved on some subjects that perform poorly. More impor-
tantly, while performances of these subjects are significantly
increased, those that perform well still achieve good AUC
scores. In addition, we emphasize that these improvements
are essentially due to the similarity-inducing regularizer.

For both datasets, the MTL approach MGSVM-2s is
consistently better than those of other single-task approaches
thanks to the regularization parameters 𝜆

𝑟
and 𝜆

𝑠
that can

adapt to the intersubject similarity (weak similarity for EPFL
and strong similarity for UAM). These are interesting results
showing that multitask learning can be a way to handle
the problem related to some subjects that achieve poor
performances. Moreover, results also indicate that multitask
learning is useful for drastically shortening the calibration
time. For instance, for the UAM dataset, 80% AUC was
achieved using only 100 training examples (less than 1 minute
of training example recordings). Note that the validation
procedure tends tomaximize performances and does not lead
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Figure 6: Selected sensors for the ERP dataset. The line width of the circle is proportional to the number of times the sensor is selected. No
circle means that the sensor has never been selected.
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subject.
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to sparse classifiers forMTL approaches. As shown in Figures
2 and 3, the relevant sensors are quite different between
subjects thus a joint sensor selection can lead to a slight loss
of performances, hence the tendency of the cross-validation
procedure to select nonsparse classifiers.

4. Conclusion

In this work, we have investigated the use of mixed-norm
regularizers for discriminating event-related potentials in
BCI. We have extended the discriminative framework of van
Gerven et al. [19] by studying general mixed-norms and
proposed the use of the adaptive mixed-norms as sparsity-
inducing regularizers. This discriminative framework has
been broadened to the multitask learning framework where
classifiers related to different subjects are jointly trained.
For this framework, we have introduced a novel regularizer
that induces channel selection and classifier similarities.
The different proposed approaches were tested on three
different datasets involving a substantial number of subjects.
Results from these experiments have highlighted that the
ℓ
1
− ℓ
2
regularizer has been proven interesting for improving

classification performance whereas adaptive mixed-norm
is the regularizer to be considered when sensor selection
is the primary objective. Regarding the multitask learning
framework, our most interesting finding is that this learn-
ing framework allows, by learning more robust classifiers,
significant performance improvement on some subjects that
perform poorly in a single-task learning context.

In future work, we plan to investigate a different grouping
of the features, such as temporal groups. This kind of group
regularization could be for instance used in conjunction with
the sensors group in order to promote both feature selection
and temporal selection in the classifier. While the resulting
problem is still convex, its resolution poses some issues so that
a dedicated solver would be necessary.

Another research direction would be to investigate the
use of asymmetrical MTL. This could prove handy when
a poorly performing subject will negatively influence the

other subject performances inMTL while improving his own
performances. In this case one would like subject classifier
to be similar to the other’s classifier without impacting their
classifiers.

Appendices

A. Proof of Lipschitz Gradient of
the Squared Hinge Loss

Given the training examples {x
𝑖
, 𝑦
𝑖
}, the squared Hinge loss is

written as

𝐽 =

𝑛

∑

𝑖=1

max(0, 1 − 𝑦
𝑖
x𝑇
𝑖
w)
2

(A.1)

and its gradient is

∇w𝐽 = −2∑
𝑖
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𝑖
𝑦
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max (0, 1 − 𝑦

𝑖
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The squaredHinge loss is gradient Lipschitz if there exists
a constant 𝐿 such that

∇𝐽 (w1) − ∇𝐽 (w2)
2 ≤ 𝐿

w1 − w
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Theproof essentially relies on showing that x
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w) is Lipschitz itself; that is, there exists 𝐿 ∈ R such that
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Now let us consider different situations. For a given w
1

and w
2
, if 1 − x𝑇

𝑖
w
1
≤ 0 and 1 − x𝑇

𝑖
w
2
≤ 0, then the left-hand

side is equal to 0 and any 𝐿 would satisfy the inequality. If
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A similar reasoning yields to the same bound when 1 −
x𝑇
𝑖
w
1
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w) is Lipschitz with a constant
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2. Now, we can conclude the proof by stating that ∇w𝐽 is

Lipschitz as it is a sum of Lipschitz function and the related
constant is ∑𝑛
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𝑖
‖
2

2
.

B. Lipschitz Gradient for the Multitask
Learning Problem

For themultitask learning problem, we want to prove that the
function
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is gradient Lipschitz, 𝐿(⋅, ⋅) being the square Hinge loss. From
the above results, it is easy to show that the first term is
gradient Lipschitz as the sum of gradient Lipschitz functions.

Now, we also show that the similarity term
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is also gradient Lipschitz.
This term can be expressed as
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where w𝑇 = [w𝑇
1
, . . . ,w𝑇

𝑚
] is the vector of all classifier

parameters and M ∈ R𝑚𝑑×𝑚𝑑 is the Hessian matrix of the
similarity regularizer of the form

M = I − 1

𝑚
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∑
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D
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with I the identity matrix and D
𝑡
a block matrix with D

𝑡
a

(𝑡−1)-diagonal matrix where each block is an identity matrix
Iwith appropriate circular shift.D

𝑡
is thus a (𝑡−1) row-shifted

version of I.
Once we have this formulation, we can use the fact that

a function 𝑓 is gradient Lipschitz of constant 𝐿 if the largest

eigenvalue of its Hessian is bounded by 𝐿 on its domain [36].
Hence, since we have

‖M‖2 ≤ ‖I‖2 +
1

𝑚
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D𝑡
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the Hessian matrix of the similarity term 2 ⋅ M has conse-
quently bounded eigenvalues. This concludes the proof that
the function w𝑇Mw is gradient Lipschitz continuous.

C. Proximal Operators

C.1. ℓ
1
Norm. Theproximal operator of the ℓ

1
norm is defined

as
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and has the following closed-form solution for which each
component is
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The minimization problem can be decomposed into several
ones since the indices 𝑔 are separable. Hence, we can just
focus on the problem

minx
1

2
‖x − u‖2

2
+ 𝜆‖x‖2 (C.4)

whose minimizer is

0 if ‖u‖2 ≤ 𝜆

(1 −
𝜆

‖u‖2
) u otherwise.

(C.5)
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