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Nrf2 is the key transcription factor regulating the antioxidant response which is crucial for cytoprotection against extra-
cellular stresses. Numerous in vivo studies indicate that Nrf2 plays a protective role in anti-inflammatory response. 3-(3-
Pyridylmethylidene)-2-indolinone (PMID) is a synthesized derivative of 2-indolinone compounds. Our previous study suggested
that PMID induces the activation of Nrf2/ARE pathway, then protecting against oxidative stress-mediated cell death. However,
little is known regarding the anti-inflammatory properties of PMID in severe inflammatory phenotypes. In the present study
we determined if PMID treatment protects mice from dextran sodium sulphate- (DSS-) induced colitis. The result suggests that
treatment with PMID prior to colitis induction significantly reduced body weight loss, shortened colon length, and decreased
disease activity index compared to control mice. Histopathological analysis of the colon revealed attenuated inflammation in PMID
pretreated animals. The levels of inflammatory markers in colon tissue and serum were reduced associated with inhibition of NF-
𝜅B activation. The expression levels of Nrf2-dependent genes such as HO-1, NQO1, and Nrf2 were increased in PMID pretreated
mice. However, PMID pretreatment did not prevent DSS-induced colitis in Nrf2 knockout mice. These data indicate that PMID
pretreatment in mice confers protection against DSS-induced colitis in Nrf2-dependent manner, suggesting a potential role of
PMID in anti-inflammatory response.

1. Introduction

Chronic inflammation has been identified as a potential
risk factor for colorectal and other cancers. Inflammatory
bowel diseases (IBD) are forms of chronic, recurrent colitis,
most commonly Crohn’s disease and ulcerative colitis, and
many epidemiologic and clinical studies have shown that
IBD increases the risk of colorectal cancer [1]. Reactive oxy-
gen and nitrogen species are thought to be a major factor

underlying the contribution of chronic inflammation to
neoplastic transformation [2].

Nrf2 is the key transcription factor regulating the antiox-
idant response which is crucial for cytoprotection against
extracellular stresses. Upon oxidative or electrophilic insults,
Nrf2 will translocate into the nucleus where it binds with
antioxidant response elements and transactivates phase II
detoxifying and antioxidant genes [3]. Numerous in vivo
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studies indicate that Nrf2 may play a role in the regulation
of inflammation. Nrf2 protects against chemical-induced
pulmonary injury and inflammation [4–6], whereas genetic
ablation of Nrf2 enhances the susceptibility to cigarette
smoke-induced emphysema and to severe airway inflamma-
tion and asthma in mice [6, 7]. In addition, Nrf2 was found
to be a crucial regulator of the innate immune response and
survival during experimental sepsis [8].Moreover, disruption
of Nrf2 gene renders animals more susceptible to dextran
sodium sulphate- (DSS-) induced colitis and to AOM-DSS-
induced colon carcinogenesis [9–11].Therefore, Nrf2 pathway
appears to mediate a strong anti-inflammatory response,
besides induction of detoxification and antioxidant enzymes.

Oxidative and inflammatory injuries are closely linked
to each other in the process of multistage carcinogene-
sis. Thus, compounds with anti-inflammatory activities are
anticipated to inhibit oxidative stress, and vice versa. 3-
(3-Pyridylmethylidene)-2-indolinone (PMID) is a synthe-
sized derivative of 2-indolinone compounds. Our previous
study suggested that PMID induces the ARE-mediated genes
expression through stabilization of Nrf2 protein and acti-
vation of Nrf2/ARE pathway and protects against oxidative
stress-mediated cell death, indicating that PMID is a novel
antioxidant agent by triggering the induction of antioxidant
and defensive genes [12]. However, little is known regarding
the anti-inflammatory properties of PMID in severe inflam-
matory phenotypes. In the present study we determined
if PMID treatment protects mice from dextran sodium
sulphate- (DSS-) induced colitis.

2. Materials and Methods

2.1. Animals. Nrf2−/− (C57BL/6J) mice were purchased from
The Jackson Laboratory (USA). Nrf2+/+ (C57BL/6J)mice and
adult male ICRmice were obtained from the Beijing Institute
of Radiation Medicine (BIRM) Animal Center (Beijing,
China). All the mice were housed in a climate-controlled,
circadian rhythm-adjusted room and allowed food and water
ad libitum. The animals were, on average, 6 to 8 weeks of age
and weighed between 30 and 34 g at the time of experiment.
PMID was dissolved in 0.5% CMC-Na as a 10 𝜇mol/mL stock
solution. Mice were gavaged with 2.2, 11, or 22mg PMID/kg
body weight using a vehicle of 0.2mL 0.5%CMC-Na once
daily for one week. Model control (MC) mice were gavaged
with 0.5% CMC-Na only. All injections were administered
orally by gavage using a sonde. All treatment procedures were
approved by the Animal Care Committee of BIRM. Animals
received humane care according to the criteria outlined in the
“Guide for theCare andUse of LaboratoryAnimals” prepared
by the National Academy of Sciences and published by the
National Institutes of Health.

2.2. Colitis Induction and Determination of Clinical Scores
in ICR Mice. Acute colitis was induced by the application
of 3% DSS via the drinking water for 7 days. During DSS
treatment, body weight, stool consistency, and the presence
of blood were examined daily, the combined scores of
which are summarized as the disease activity index (DAI)

provided in Supplementary Table S1 available online at
http://dx.doi.org/10.1155/2015/959253. DAI = (weight loss +
stool consistency + stool blood)/3 [13, 14].

2.3. Histopathological Analysis. At the end of the experiment
(1 week DSS exposure in drinking water), all the mice were
sacrificed. For histopathological analysis, 1 cm distal colon
samples were fixed in 4% paraformaldehyde, sectioned, and
stained with hematoxylin/eosin. Colon images were captured
under 100x magnification.

2.4. RNA Isolation and Real-Time Polymerase Chain Reaction
(PCR). Total RNA isolation and reverse-transcription were
applied according to the manufacture’s protocol (Promega
Corp., Madison, WI, USA). The cDNA was analyzed using
real-time PCR with SYBR Green Real-Time PCR Master
Mix (TOYOBO, Osaka, Japan). The level of GAPDH mRNA
was used as an internal standard. Differential expression was
calculated according to the 2−ΔΔCT method. The abundance
of mRNA of each gene was normalized to GAPDH. The
sequences of the primers are provided in Supplementary
Table S2.

2.5. Cytokine Analysis. For cytokine analysis, orbital blood
was isolated from the mice for 400 𝜇L, followed by centrifu-
gation at 3500 rmp × 15min; the supernatant was detected
(Mouse Inflammation Kit, BD, USA) in a BD FACSCalibur.
Protein extracts from mouse tissues were determined by
ELISA (Boster Bio-Engineering Co., Wuhan).

2.6. Western Blot Analysis. Cell extracts were prepared in
RIPA buffer (Beyotime, China). Nuclear extracts were pre-
pared with a Nuclear Extract Kit (Thermo Scientific, USA)
according to the manufacturer’s recommendations. Then,
Western blot analysis was performed according to standard
procedures. Antibodies were used at the following concen-
trations: Nrf2 (Abcam), 1 : 1000; HO-1 (Santa Cruz), 1 : 500;
c-jun (Santa Cruz), 1 : 1000; Histone H2B (Abcam), 1 : 1000;
GAPDH (Santa Cruz), 1 : 1000; p65 (Santa Cruz), 1 : 1000; c-
Jun (Santa Cruz), 1 : 1000.

2.7. NF-𝜅B Assay. For measurement of NF-𝜅B activation,
nuclear extracts were isolated from snap frozen mouse
colonic tissues using a Nuclear Extract Kit (Thermo Sci-
entific, USA) according to the manufacturer’s instructions.
After measurement of protein concentration by the Bradford
method, 1 𝜇g of nuclear extract was used to measure the NF-
𝜅B activity usingThermo Scientific NF-𝜅B p65 Transcription
Factor Kit (Thermo Scientific, USA) according to the man-
ufacturer’s instructions. Chemiluminescent intensities were
calculated as relative light units (RLU) and normalized with
the mean RLU from untreated animals.

2.8. Statistical Analysis. Differences between the groups were
determined utilizing GraphPad Prism 5 software. Data were
reported as mean ± SD and the statistical significance was
assessed by one-way analysis of variance (ANOVA) with a
Kruskal-Wallis test and Newman-Keuls posttest. A value of
𝑃 ≤ 0.05 was considered to be significant.
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3. Results

3.1. PMIDPretreatment Attenuates DSS-InducedColitis in ICR
Mice. Mice that received 2.2, 11, or 22mg PMID/kg body
weight (BW) per os for 7 days prior to colitis induction by 3%
DSS developed less severe symptoms of colitis in comparison
to model control (MC) mice. Mice without any treatment
were used as normal control (NC). Weight loss during DSS
treatment was significantly lower in animals pretreated with
PMID compared to those given 0.5% CMC-Na (Figure 1(a)).
Furthermore, DAI (denoting a combined score of weight loss,
diarrhoea, and rectal bleeding) was also significantly lower in
PMID pretreated animals (Figure 1(b)). Compared to normal
control, the model control mice showed reduced length
of colon, while the colons of PMID pretreated mice were
shortened to a greater extent (Figure 1(c)). Microscopic anal-
ysis of colon tissue also showed that colitis mice pretreated
with PMID had noticeably lower levels of inflammatory cell
infiltration into their distal colon mucosa, loss of colonic
crypts, and epithelial cell necrosis compared to MC mice
(Figure 1(d)). When PMID treated mice alone, no effect
was observed on the colon length, colorectal epithelia, and
inflammation (data not shown). These results suggest that
PMID pretreatment attenuates the severity of DSS-induced
colitis.

3.2. PMID Pretreatment Lessens Proinflammatory Biomarkers
in Serum of DSS-Induced ICR Mice. The levels of various
proinflammatory biomarkers, IL-6, TNF𝛼, MCP-1, and IFN-
𝛾, in serum of DSS-induced ICR mice were analyzed using
ELISA. As shown in Figure 2, DSS treatment led to increased
serum levels of IL-6, TNF𝛼, MCP-1, and IFN-𝛾, and PMID
pretreatment significantly lessens the levels of these biomark-
ers.

3.3. PMID Pretreatment Lessens Proinflammatory Biomarkers
in Colon Tissue of DSS-Induced ICR Mice. Furthermore, the
mRNA levels of TNF𝛼, IFN-𝛾, and IL-6 in the colons of the
mice exposed to DSS were analyzed using real-time PCR
(Figure 3). Consistent with the result from serum, the mRNA
levels of these genes in colon tissue were upregulated after
DSS treatment, and PMID pretreatment resulted in a signifi-
cant downregulation of the mRNA level of these biomarkers
compared to model control (Figure 3(a)). The protein levels
of these biomarkers were measured using ELISA and the
similar results were obtained (Figure 3(b)). These results
suggest that PMID pretreatment lessens proinflammatory
biomarkers in colon tissue of DSS-induced ICR mice.

3.4. NF-𝜅B Activation Is Decreased in Colon Tissue of DSS-
Induced ICRMicewith PMIDPretreatment. The link between
inflammation and NF-𝜅B signaling pathway has been widely
reported and the transcription of inflammatory cytokines
is largely mediated by the NF-𝜅B. Thus, we examined the
NF-𝜅B activation using a chemiluminescence-based assay
kit after 7 days of DSS treatment. As shown in Figure 4(a),
DSS treatment led to significant increase of NF-𝜅B activity,
and PMID pretreatment attenuated the activation level of

NF-𝜅B. Furthermore, we investigated the p65 protein level
in nuclear extracts (Figure 4(b)), and the similar results
were obtained. These data highlight that, with decreased
inflammatory response in PMIDpretreatment group, theNF-
𝜅B signaling pathway activation was also inhibited.

3.5. PMID Induces the Nrf2/ARE Pathway Activation in DSS-
Treated ICR Mice. Our previous study suggested that PMID
induces Nrf2/ARE pathway through accelerating Nrf2 pro-
tein accumulation. Therefore, we investigated the Nrf2 pro-
tein level after PMID and DSS treatment. As shown in Fig-
ure 5(a), DSS treatment led to downregulation of Nrf2
protein level and PMID pretreatment significantly increased
Nrf2 protein level, which was consistent with our previous
study. We further detected the mRNA levels of Nrf2 target
genes includingNAPDH-quinone oxidoreductase-1 (NQO1),
heme oxygenase-1 (HO-1), and Nrf2 in DSS-treated mice.
As shown in Figure 5(b), DSS treatment led to downregu-
lation of Nrf2 and NQO1, but the levels of HO-1 did not
changed significantly, which was consistent with previous
study [9]. In PMID pretreated mice, the expression levels of
NQO1, HO-1, and Nrf2 were elevated significantly in a dose-
dependent manner compared to model control group. With
the increasedNrf2 protein accumulation, the protein levels of
HO-1 and NQO1 were also increased (Figure 5(a)).

In addition to Nrf2, the transcription factor AP-1 binds
to some ARE sites and activates transcription of antiox-
idant/phase II detoxifying enzymes, including HO-1 and
NQO-1 [15]. AP-1 is a dimeric transcription factor composed
of c-Jun, c-Fos, or activating transcription factor subunits.
We investigated the protein level of c-Jun in nuclear extracts
of colon tissue. As shown in Supplementary Figure 1, PMID
treatment did not affect the level of AP-1.

These results suggest that PMID induces Nrf2/ARE path-
way in DSS-treated ICR mice.

3.6. PMID Prevents DSS-Induced Colitis in Nrf2-Dependent
Manner. To further investigate if PMID prevents DSS-
induced colitis via Nrf2/ARE pathway, the effect of PMID on
DSS-induced Nrf2−/−mice was measured. Nrf2−/−mice were
received 22mgPMID/kg BW per os for 7 days prior to colitis
induction by 3% DSS and the weight loss was measured.
Nrf2+/+ mice were used as control. As shown in Figure 6,
Nrf2−/− mice showed increased sensitivity to DSS-induced
colitis compared toNrf2+/+micewith higherweight loss (Fig-
ure 6(a)), shortened colon length (Figure 6(b)), and elevated
level of inflammatory cell infiltration with destroyed colon
structure (Figure 6(c)). However, no difference was observed
between Nrf2−/− mice and PMID pretreated Nrf2−/− mice.
These data suggest that PMID prevents DSS-induced colitis
in Nrf2-dependent manner.

4. Discussion

Increased free radicals and impaired antioxidant defenses
in the intestines have been linked to the pathogenesis of
inflammatory bowel diseases (IBD) [16]. The dextran sulfate
sodium- (DSS-) induced mouse model of colitis is one of
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Figure 1: PMID pretreatment attenuates DSS-induced colitis in ICR mice. Following treatment with the indicated doses of PMID per os for
7 days, colitis was induced by DSS (3%) via drinking water for 7 days. During DSS exposure weight loss of the animals was recorded daily
(a). Mice without DSS and PMID treatment were used as normal control (NC) and mice treated with DSS only without PMID were used as
model control (MC). DAI incorporating BW loss, diarrhoea, and rectal bleeding score was assessed daily (b) (𝑛 = 10, data are expressed as
mean ± SD). Following sacrifice, colons length was measured (c) and then colon samples were fixed in 4% paraformaldehyde, stained with
hematoxylin/eosin, and visualized at 10xmagnification (d). Representative images of severely inflammatory cell infiltration (arrowheads) and
loss of colonic crypts in MC group compared to NC group. Results represented mean ± SD. 𝑛 = 10/group. The statistical difference between
the samples was demonstrated as ∗𝑃 ≤ 0.05 or ∗∗𝑃 ≤ 0.01 or ∗∗∗𝑃 ≤ 0.001.
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Figure 2: PMID pretreatment attenuated the levels of proinflammatory markers in serum of DSS-induced ICR mice. Following treatment
with the indicated doses of PMID per os for 7 days, colitis was induced by DSS (3%) via drinking water for 7 days. Then the serum was
collected and the protein levels of TNF𝛼, IL-6, IFN-𝛾, andMCP-1 were analyzed using CBA just as “Section 2” described. Results represented
mean ± SD. 𝑛 = 10/group. The statistical difference between the samples was demonstrated as ∗𝑃 ≤ 0.05 or ∗∗𝑃 ≤ 0.01.

the most widely used models that mimics ulcerative colitis-
like disease in humans [17]. This model system has been
used to reveal important events leading to IBD and colorectal
carcinogenesis. It was suggested that Nrf2 plays an important
role in protecting intestinal integrity via regulation of proin-
flammatory cytokines and induction of phase II detoxifying
enzymes [9], indicating thatNrf2may serve as novel target for
designing therapies to prevent and treat inflammatory bowel
diseases such as Crohn’s disease and ulcerative colitis. In the
present study, we showed that pretreatment with an inducer

of Nrf2 pathway named PMID significantly attenuates symp-
toms of DSS-induced colitis including DAI, body weight,
colon length, and histology. The levels of inflammatory
markers in colon tissue and serum were reduced associated
with reduced activation of NF-𝜅B pathway. Furthermore, the
expression levels of Nrf2 target genes such as HO-1, NQO1,
and Nrf2 were increased in PMID pretreated mice. Our
results provide the first line of evidence that PMID confers
protection from DSS-induced colitis in mice, suggesting a
potential role of PMID in anti-inflammatory response.
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Figure 3: PMID pretreatment lessens expression levels of proinflammatory markers in colon tissue of DSS-induced ICR mice. Following
treatment with the indicated doses of PMID per os for 7 days, colitis was induced by DSS (3%) via drinking water for 7 days. Then the mice
were sacrificed and the colons were excised. Total RNA was extracted and the mRNA levels of the genes indicated were analyzed using real-
time PCR.The relative expression levels of genes in normal control (NC)mice were set as 1.The data were normalized to GAPDH expression.
(b) Cell lysates were prepared and the protein levels of the indicated genes were measured using ELISA. Results represented mean ± SD.
𝑛 = 10/group. The statistical difference between the samples was demonstrated as ∗𝑃 ≤ 0.05 or ∗∗𝑃 ≤ 0.01.

The protective role of Nrf2 activation has also been
established in many human disorders including cancer,
Alzheimer’s and Parkinson’s diseases, chronic obstructive
pulmonary disease (COPD), asthma, atherosclerosis, dia-
betes, IBD, multiple sclerosis, osteoarthritis, and rheumatoid
arthritis [18]. Regulation of Nrf2-ARE signaling has also been
implicated in the determination of health span, longevity, and
aging [19]. The emerging role of Nrf2 pathway in oxidative
stress-related pathologies offers novel therapeutic oppor-
tunities. Pharmacological interventions are being actively
pursued for the discovery of modulators of this pathway as
potential preventive and therapeutic agents. In recent years,
research has been highly focused toward the discovery of new
Nrf2-related drugs. Andrographolide possesses antioxidative
properties against cigarette smoke-induced lung injury via
augmentation of Nrf2 activity and may have therapeutic

potential for treating COPD [20]. CDDO-Me has been stud-
ied for its Nrf2 activation properties and has been deemed
a promising drug candidate for treating many different
degenerative illnesses, including diabetic complications [21,
22]. A small molecule Nrf2 activator called VEDA-1209 was
under preclinical pharmacokinetic and pharmacodynamics
testing studies in animal models of ulcerative colitis [23].
Sulforaphane (SFN) is known to induce Nrf2 which plays
a central role in chemoprevention and anti-inflammatory.
A synthetic sulforaphane-cyclodextrin complex, called Sul-
foradex, with improved shelf stability over sulforaphane alone
has been developed and a first-in-man clinical study of
Sulforadex has been completed, and a prostate cancer trial
is planned for 2014 [23]. Our present study suggests that
PMID shows preventive effect on DSS-induced colitis via
inducing Nrf2/ARE activation; it is an interesting question
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Figure 4: NF-𝜅B activation is decreased in colon tissue of DSS-induced ICR mice with PMID pretreatment. Mice were treated with the
indicated doses of PMID per os for 7 days and then induced to colitis by DSS via drinking water for 7 days. Then the mice were sacrificed
and nuclear extracts were prepared for NF-𝜅B activity assay just as “Section 2” described (a). The RLU was normalized with the mean RLU
from normal control group. Results represented mean ± SD. 𝑛 = 3/group.The statistical difference between the samples was demonstrated as
∗

𝑃 ≤ 0.05 or ∗∗𝑃 ≤ 0.01. (b) The p65 protein level in nuclear extracts was measured by Western blotting. Histone H2B was used as internal
control.

that whether PMID can be developed as a therapeutic agents
in treating colitis.

Increasing evidence has shown that Nrf2 could play an
important role in defense against oxidative stress possibly
by activation of cellular antioxidant machinery as well as
suppression of proinflammatory pathways mediated by NF-
𝜅B signaling. Interplay between Nrf2 signaling pathway and
NF-𝜅B pathway has been observed. NF-𝜅B was shown to
prevent the transcription of Nrf2-dependent genes by reduc-
ing available coactivator levels and promoting recruitment
of a corepressor [24]. Nrf2 has been implicated in NF-𝜅B
control through attenuation of phosphorylated I𝜅B, which
causes NF-𝜅B degradation [8]. Increased NF-𝜅B activation
in Nrf2−/− mice when compared with wild-type after stimuli
such as traumatic brain injury [25], LPS [8], TNF𝛼 [8],
ovalbumin [7], and respiratory syncytial virus [26] was
observed. In vivo and in vitro data suggest that many Nrf2
activators confer protective effect against oxidative stress and
inflammatory response through suppressing NF-𝜅B signal
activation. Ethanol extract of Alismatis Rhizoma reduces
LPS-induced acute lung inflammation by suppressing NF-
𝜅B and activating Nrf2 [27]. Docosahexaenoic acid pro-
tects against inflammation partially via cross talk between
Nrf2/heme oxygenase-1 and IKK/NF-𝜅B pathways [28]. The
protective effects against methamphetamine-induced neu-
roinflammation of melatonin result from the inhibition
of activated NF-𝜅B in parallel with potentiated antioxi-
dant/detoxificant defense by activated Nrf2 pathway [29].
Schisandrin B exhibits anti-inflammatory activity in vitro and

in vivo through activation of Nrf2 pathway and inhibition of
I𝜅B𝛼 degradation and nuclear translocation of NF-𝜅B [30].
Cyclo (His-Pro) is an endogenous cyclic dipeptide that exerts
oxidative damage protection by selectively activating the
transcription factor Nrf2 signaling pathway. In a mouse ear
inflammationmodel, Cyclo (His-Pro)was found to reduce 12-
otetradecanoylphorbol-13-acetate-induced oedema via sup-
pressing NF-𝜅B signaling and inducing Nrf2-mediated heme
oxygenase-1 expression [31]. Our present study suggests
the PMID pretreatment decreases the expression levels of
inflammatory biomarkers such as TNF𝛼, IFN-𝛾, and IL-6
and attenuates the activation of NF-𝜅B with reduced nuclear
accumulation of p65, indicating that PMID might also mod-
ulate NF-𝜅B pathway in vivo. Whether PMID regulates NF-
𝜅B pathway depending on induction of Nrf2/ARE pathway
needs further confirmation.

In summary, the present study provides evidence that
PMID confers protection against DSS-induced colitis in
Nrf2-dependent manner in vivo.

Abbreviations

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase
DSS: Dextran sodium sulphate
PMID: 3-(3-Pyridylmethylidene)-2-indolinone
Nrf2: Nuclear factor (erythroid-derived 2)-like 2
ARE: Antioxidant response element
NQO1: NAD(P)H quinone oxidoreductase-1
HO-1: Heme oxygenase-1
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Figure 5: PMID induces the Nrf2/ARE pathway activation in DSS-treated ICR mice. Mice were treated with the indicated doses of PMID
per os for 7 days and then induced to colitis by DSS via drinking water for 7 days. Then the mice were sacrificed and total cell lysates were
prepared for analyzing the protein levels of Nrf2, HO-1, and NQO1 (a). GAPDH was used as internal control. Total RNA was extracted for
analyzing the mRNA levels of the genes indicated using real-time PCR (b). The relative expression levels in normal control (NC) group mice
were set as 1. The data were normalized to GAPDH expression. Each bar represented the mean ± SD for 7 mice of each group. The statistical
difference between the samples was demonstrated as ∗𝑃 ≤ 0.05 or ∗∗𝑃 ≤ 0.01.
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Figure 6: PMID prevents DSS-induced colitis in Nrf2-dependent manner. Nrf2−/− mice were received 22mgPMID/kg BW per os for 7 days
prior to colitis induction by 3% DSS and the weight loss was measured. Nrf2+/+ mice were used as control. During DSS exposure weight
loss of the animals was recorded daily (a). Following sacrifice, colons length was measured (b) and then colon samples were fixed in 4%
paraformaldehyde, stained with hematoxylin/eosin, and visualized at 10x magnification (c). The statistical difference between the samples
was demonstrated as ∗𝑃 ≤ 0.05.

IBD: Inflammatory bowel diseases
NF-𝜅B: Nuclear factor kappa B.
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