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ABSTRACT The inbreeding depression of fitness traits can be a major threat to the survival of populations
experiencing inbreeding. However, its accurate prediction requires taking into account the genetic purging
induced by inbreeding, which can be achieved using a “purged inbreeding coefficient”. We have devel-
oped a method to compute purged inbreeding at the individual level in pedigreed populations with
overlapping generations. Furthermore, we derive the inbreeding depression slope for individual logarithmic
fitness, which is larger than that for the logarithm of the population fitness average. In addition, we provide
a new software, PURGd, based on these theoretical results that allows analyzing pedigree data to detect
purging, and to estimate the purging coefficient, which is the parameter necessary to predict the joint
consequences of inbreeding and purging. The software also calculates the purged inbreeding coefficient
for each individual, as well as standard and ancestral inbreeding. Analysis of simulation data show that this
software produces reasonably accurate estimates for the inbreeding depression rate and for the purging
coefficient that are useful for predictive purposes.
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Due to the increase in the frequency of homozygous genotypes for
(partially) recessive deleterious alleles under inbreeding, inbreeding
depression for fitness is a major threat to the survival of small pop-
ulations (Falconer and Mackay 1996; Saccheri et al. 1998; Hedrick and
Kalinowski 2000; Frankham 2005). However, as these alleles become
more exposed under inbreeding, an increase in the efficiency of natural
selection against them is also expected, which is known as genetic
purging and tends to reduce the frequency of deleterious alleles, and,
consequently, the fitness decline induced by inbreeding (Templeton
and Read 1984; Hedrick 1994; Ballou 1997; García-Dorado 2012, 2015).

The first models developed to detect the consequences of purging on
inbreeding depression from pedigree data accounted for purging by
using an ancestral purging coefficient,Fa, that represents the proportion

of an individual’s genome that is expected to have been exposed to
homozygosis by descent in at least one ancestor (Ballou 1997; Boakes
and Wang 2005). The rationale is that, due to genetic purging, inbred
individuals with inbred ancestors would have fewer deleterious alleles
than individuals with the same inbreeding but noninbred ancestors.

More recently, a theoretical Inbreeding-Purging (IP) approach has
beendeveloped that predicts the evolutionoffitness under inbreedingby
taking purging into account bymeans of a purged inbreeding coefficient
g. This IP model considers that purging acts against a purging coeffi-
cient (d) that quantifies the component of the deleterious effects that are
expressed only under inbreeding (García-Dorado 2012). For a single
locus model, d represents the per copy excess of the deleterious effect in
the homozygous over that expected on an additive hypothesis, and its
value ranges from d = 0 (no purging) to d = 0.5 (purging against
recessive lethal alleles). In practice, as d varies across loci, a single value,
known as the effective purging coefficient (denoted by de in García-
Dorado 2012; here denoted by d for simplicity), can be used to compute
approximate predictions for the overall consequences of purging over
the whole genome. Estimating this effective d value is ofmain interest as
it will provide a measure of the purging occurred, and will allow us to
use the model to predict the expected evolution of fitness.

Until now, the only empirical estimates of the purging coefficient
d have been obtained from the evolution of fitness average in Dro-
sophila bottlenecked populations (Bersabé and García-Dorado 2013;
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López-Cortegano et al. 2016). However, in conservation practice, fitness
data are often available for pedigreed populations. Two versions of the IP
model were originally proposed, one aimed to predict mean fitness as a
function of the number of generations under a reduced effective pop-
ulation size Ne, the other one aimed to predict individual fitness from
pedigree information. Nonetheless, the latter version was developed only
for data with nonoverlapping generations, which imposes serious limi-
tations to its use in experimental and conservation practice.

Here we extend the IP model to compute the purged inbreeding
coefficient g for individuals in pedigrees with overlapping generations.
Furthermore, we derive a new expression that gives the expected indi-
vidual log-fitness as a function of g, and of the initial inbreeding load d,
deriving the slope of inbreeding depression for individual logarithmic
fitness, which is larger than that for the logarithm of average population
fitness. In addition, we present the new free software PURGd, based on
this IP approach, that is able to use data for fitness traits in pedigreed
samples to test for purging, and to estimate the corresponding effective
purging coefficient d. This software also estimates the inbreeding de-
pression rate for individual fitness, and computes the standard (F),
ancestral (Fa), and purged (g) inbreeding coefficients for the pedigreed
individuals.

METHODS

The Model

The rate of inbreeding depression estimated from individual
fitness: In order to analyze and interpret the consequences of inbreeding
and purging at an individual level, we must first consider the relationship
between individual fitness and inbreeding in a neutral model with no
natural selection.

Assume a population where a number of deleterious alleles segregate
at a low frequency, q, at different loci acting multiplicatively on fitness.
From here onwards we will concentrate just on (partially) recessive
deleterious alleles, which are assumed to be responsible for inbreeding
depression. Each locus has two alternative alleles, the wild one and the
mutant deleterious allele. It has three genotypes, with average fitness
1, 1-hs, and 1-s for the wild homozygous genotype, the heterozygous
genotype, and the deleterious homozygous genotype, respectively.
Therefore, the population inbreeding load, which can be measured
by the number of lethal equivalents (Morton et al. 1956), is

d ¼
X

2dqð12 qÞ; (1)

where d = s(1/22h), and the sum is over all the relevant loci.
For simplicity, we will assume that the initial frequency of each

deleterious allele is small enough that homozygous genotypes are pro-
duced only due to inbreeding. Furthermore, in this section, we will also
assume completely recessive gene action (h = 0; s = 2d). This as-
sumption smooths the explanation below, but is not necessary for the
validity of the conclusions.

After some inbreeding, the fitness of an individual that is homozy-
gous by descent for deleterious alleles at n loci is

W ¼ Wmaxð12 eÞð122dÞn; (2)

where Wmax is the maximum possible fitness value, and e is the pro-
portional reduction of the fitness of that individual due to all kinds of
environmental and genetic factors, excluding inbreeding depression.

If the inbreeding load is due to many loosely linked deleterious loci,
and deleterious alleles segregate at low frequency, the number, ni, of
deleterious alleles in homozygosis for an individual i with standard

Wright’s inbreeding coefficient Fi should be Poisson distributed. Since
the probability of being homozygous for a deleterious allele in non-
inbred individuals is assumed to be negligible, the expected value of this
number should be E(ni) =

P
Fi q(12q) (Falconer and Mackay 1996).

Thus, substituting
P
q(12q) from Equation (1), we obtain that the

mean of this Poisson distribution is

l ¼ EðniÞ ¼ Fid=2d: (3)

Therefore, from Equation 2, and assuming that e and F are inde-
pendent, the expected fitness of an individual i that has genealogical
inbreeding Fi is

EðWiÞ ¼ EðW0Þ
XN

n¼0

e2lln

n!
ð122dÞn

where E(W0) = E[Wmax(12e)] is the expected fitness of a noninbred
individual. The equation above can be rewritten as

EðWiÞ ¼ EðW0Þe2l2d
XN

n¼0

e2lln el2d

n!
ð122dÞn;

and can be rearranged as

EðWiÞ ¼ EðW0Þe2l2d
XN

n¼0

e2lð122dÞ½lð122dÞ�n
n!

:

Noting that
XN
n¼0

e2lð122dÞ½lð122dÞ�n=n! adds up all the probabilities

for a Poisson distribution with mean l(122d) (i.e., it equals 1), and,
since l = Fi d/2d (Equation 3), we obtain the exponential
expression

EðWiÞ ¼ EðW0Þ e2dFi ; (4)

and, similarly, the average fitness of a population with average in-
breeding Ft in generation t, as far as the number of loci homozygous
for a deleterious allele per individual can be assumed to be Poisson
distributed with mean l = Ft d/2d, is

EðWtÞ ¼ EðW0Þ e2dFt ; (5)

In order to estimate d from observed inbreeding depression, loga-
rithms are usually taken in Equation 4 or Equation 5 to obtain a linear
model of the kind ln(W) = ln(W0)2d F. However, since the average of
the logarithms of a variable is smaller than the logarithm of the average
(see Jensen’s inequality), applying this procedure to individual fitness
values can produce large upwards bias in the estimate of d. Thus, from
Equation 2, the logarithm of fitness (log-fitness hereafter) for an indi-
vidual that is homozygous by descent for n deleterious alleles is

lnðWÞ ¼ ln½Wmaxð12 eÞ� þ ln½ð122dÞn�;
so that, using the Poisson distribution of ni, the expected value for
log-fitness for an individual i that has genealogical inbreeding Fi is

E½lnðWiÞ� ¼ E½lnðW0Þ� þ
XN

n¼0
ln½ð122dÞn� e2lln

n!
; (6)

where the intercept E[ln(W0)] = E{ln[Wmax (12e)} represents the
average of individual log-fitness at the noninbred population. Since
the second term equals ln(122d)E(ni), using Equation 3, Equation 6
gives
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E½lnðWiÞ� ¼ E½lnðW0Þ� þ lnð12 2dÞ
2d

dFi: (7)

On the other hand, in agreement with classical theory (Morton et al.
1956), Equation 4 and Equation 5 imply

ln½EðWiÞ� ¼ ln½EðW0Þ�2 dFi (8)

and

ln½EðWtÞ� ¼ ln½EðW0Þ�2 dFt (9)

It is interesting to note that, as indicated byMorton et al. (1956), the
two equations above produce good approximation in so far as each
individual locus makes a small contribution to the overall expected
inbreeding load.

Equation 8 allows d to be estimated from the decline in average
fitness for a given inbreeding level, as in designswhere fitness ismeasured
in a sample of outbred and a sample of inbred individuals (for example,
full sib offspring). Equation 9 allows d to be estimated, generally using
linear regression, from the decline in average fitness through generations
of inbreeding, as in a population that has experienced a reduction in size.
Both approaches induce no bias in the estimate of d, in so far as natural
selection can be ignored and sample sizes are sufficiently large that the
expected value of the logarithm of the sample’s average is close to the
logarithm of the expected average {i.e., to ln[E(Wt)] or ln[E(Wi)]}.

However, Equation 5 shows that the slope of linear regression for
the logarithm of individual fitness on individual inbreeding is

b ¼ lnð12 2dÞ
2d

d; (10)

where the limit of ½lnð12 2dÞ�=2d as d approaches 0 is21. Therefore,
unless d is very small, 2b provides an upwardly biased estimate for
the inbreeding load d.

Here, we present a software package (PURGd) that estimates the purging
coefficientandthe inbreeding loadfromtherelationshipbetweenindividual
fitnessand individual inbreedingusing twoalternativeapproaches.Thefirst
approach estimates b from the linear regression of log individual fitness on
individual genealogical inbreeding. The second approach estimates d by
numerical least squares (LS) from untransformed fitness, directly using
Equation 4. In addition to allowing the use of individual fitness data in-
cluding 0 values (as in the case of a dichotomous 0–1 variable for dead-
alive records), this procedure allows direct estimation of d, instead of b.

The inbreeding-purging (IP) model: computing purged
inbreeding and purged coancestry from pedigrees
According to the IP approach, in order to incorporate the consequences
of purging, the evolutionoffitness under inbreeding shouldbepredicted
by replacing the standard inbreeding coefficient, F, with a purged in-
breeding coefficient, g, where F is weighted by the reduction in fre-
quency of deleterious alleles induced by purging. Thus, Equation 4 and
Equation 5 become:

EðWiÞ ¼ EðW0Þ e2dgi : (11)

EðWtÞ ¼ EðW0Þ e2dgt : (12)

García-Dorado (2012) derived equations allowing to compute gi for
individuals in pedigrees with nonoverlapping generations. These gi

values depend on the pedigree and on the d value defined above as
d = s(1/22h), which here represent the purging coefficient. For multi-
locus models where d varies across loci, it has been shown empirically
using extensive simulations that d can be replaced with an effective
purging coefficient that accounts for purging across the whole genome
to a good approximation. This effective purging coefficient was denoted
de in García-Dorado (2012) but here, for simplicity, it will be denoted
d and referred to just as purging coefficient.

In what follows, we derive more general expressions to compute
approximate gi values for individuals in arbitrary pedigrees that can
include overlapping generations.

The purged inbreeding coefficient gi is defined as gi = E(Fi qi)/q0 ,
where E stands for “expected value” and q0 (qi) is the frequency of the
deleterious alleles in the base population (expected in individual i). In
other words, (q0 gi) is the probability that individual i is homozygous by
descent for the deleterious allele. In order to settle notation, we will use
A and B to denote individual X’s parents, C and D to denote individual
A’s parents, and E and H to denote individual B’s parents, as shown in
Figure 1.

Let f(A,B) beMalécot’s coancestry between individuals A and B; i.e.,
the probability that a random allele from a neutral locus in A, and,
independently, a random allele from the same locus in B, are identical
by descent (IBD) (Malécot 1948). By analogy to García-Dorado (2012),
we will assume that the probability that two copies sampled from
different individuals are IBD is unaffected by the fitness values of the
copies.

As in García-Dorado (2012), let g(A,B) be the purged coancestry
between A and B, which are assumed to have survived purging selec-
tion. In other words, [q0 g(A,B)] is the probability that two alleles, one
randomly sampled from A, and the other independently sampled from
B, at the same locus, are IBD for the deleterious allele. Therefore, the
purged inbreeding coefficient for an individual X that has still not un-
dergone purging, can be computed as the purged coancestry between
their parents; i.e., gx = g(A,B).

Note that q0 � g(A,B) could be defined as the probability that an
allele sampled randomly fromA is deleterious and IBD to another allele
sampled randomly from B, i.e., q9A f(A,B), where q9A denotes the
frequency of the deleterious allele in individual A conditional to it
having survived purging selection. Alternatively, [q0 � g(A,B)] could
also be defined as the probability that an allele sampled randomly from
B is deleterious and IBD to an allele sampled randomly from A, i.e., q9B
f(A,B). Therefore, by averaging both alternatives we obtain

q0 � gðA;BÞ ¼ 1=2
�
qA9þ qB9 Þf ðA;BÞ (13)

Finally, let g(A,B|E) be the purged coancestry between A and B
conditional to sampling from B the copy inherited from E. In other
words, [q0 g(A,B|E)] is the probability that one allele sampled randomly
from A is deleterious and IBD to the copy that B inherited from E.

Therefore, [q0 � g(A,B)] is the probability that the copy sampled
from B was inherited from E (i.e., 1/2), and then the two copies (one
sampled from A and the other one from B) are IBD for a deleterious
allele, plus the analogous probability corresponding to sampling from
B the copy inherited from H, i.e.:

q0   gðA;BÞ ¼ 1=2  q0   gðA;BjEÞ þ 1=2  q0   gðA;BjHÞ (14)

Thus, we need a systematic procedure to compute g(A,B|E) that
can be used recurrently to obtain g(A,B) and gx. To achieve this, we
note that the probability that one allele randomly sampled fromA and
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the copy that B inherited from E are IBD for the deleterious allele can
be computed in two ways:

1. After B survives purging, the copy in B inherited from E is the
deleterious allele. Since purging is expected to reduce deleterious
frequency in B by a factor (122d FB) (García-Dorado 2012), this
occurs with probability q9E � [122�d�FB]. Furthermore, this copy
is IBD to that sampled from A. Taking into account that f(A,E) is
assumed to be independent on the allelic state (i.e., is the same
for deleterious as for wild alleles), this occurs with probability
q9E � [122�d�FB] � f(A,E).

2. The copy sampled fromA is deleterious and is IBD to the copy that
B has inherited from E. This occurs with probability q9A � f(A,E)

Thus, we compute [q0 � g(A,B|E)] by averaging these two proba-
bilities above, which gives

q0 � gðA;BjEÞ ¼ 1=2

�
qA9þ qE9

�
f ðA; E; Þ2 qE9 � f ðA;E; Þd � FB: (15)

Now, if inbreeding progresses slowly, the last q9E in the above expres-
sion can be replaced with 1/2 (q9A + q9E) to a good approximation,
and Equation 15 approaches

q0 � gðA;BjEÞ �
h
1=2

�
qA9þ qE9

�
f ðA; EÞ

i
ð12 d � FBÞ; (16)

which, applying Equation 13 to A and E, gives the approximate
expression

gðA;BjEÞ ¼ gðA;EÞð12 d � FBÞ (17)

Therefore, substituting the conditional purged coancestry given by
Equation 17 into Equation 14, we obtain

gðA;BÞ ¼ 1=2½gðA;EÞ þ gðA;HÞ�ð12 d � FBÞ: (18)

As in the case of classicalMalécot’s coancestry (f), purged inbreeding
arises from the pedigree knots where g(A,B) happens to represent a
self-coancestry (A and B are the same individual). In those cases, as
previously shown (García-Dorado 2012),

gðA;AÞ ¼ 1=2
�
1þ gA

��
12 2d   FA

�
: (19)

Equation 18 is analogous to the classical recurrent expression that
gives the coancestry between A and B as the average coancestry be-
tween A (which should not be younger than B) and both parents of
B { f(A,B) = [ f(A,E) + f(A,H)]}, except that Equation 18 accounts
for the purging occurred in B. Thus, Equation 18 can be used recur-
rently together with Equation 19 to compute purged coancestry be-
tween pairs of individuals that have survived purging, which equates
the purged inbreeding expected for their offspring [gx = g(A,B)].

To compare this approach with that previously derived for non-
overlapping generations, we note that, analogously to Equation 18, we
can write

gðA; EÞ ¼ 1=2½gðC; EÞ þ gðD;EÞ�ð12 d   FAÞ; (20)

and

gðA;HÞ ¼ 1=2½gðC;HÞ þ gðD;HÞ�ð12 d   FAÞ: (21)

And, substituting Equation 20 and Equation 21 into Equation 18,
we obtain

gðA;BÞ ¼ 1=4½gðC; EÞ þ gðD;EÞ þ gðC;HÞ
þ gðD;HÞ�ð12 d   FAÞð12 d   FBÞ:

This expression slightly overrates the purged coancestries (and, there-
fore, the purged inbreeding coefficients) derived by García-Dorado
(2012) for nonoverlapping generations, which gave

gðA;BÞ ¼ 1=4½gðC;EÞ þ gðD;EÞ þ gðC;HÞ
þ gðD;HÞ�½12 dðFA þ FBÞ� (22)

The overrate is due to the use of the approximation q9E � 1/2 (q9A +
q9E) to derive Equation 16, which, on average, underrates the dele-
terious frequency against which purging is operating. The bias should,
however, be small, since the squared term (d2 FA FB) can be important
only where d and F values are large, which implies small g and g
values. Using simulated pedigrees in bottlenecked populations with
nonoverlapping generations, we found that the correlation between
g(A,B) computed from Equation 18 and from García-Dorado (2012)
was always larger than 0.999 for a wide range of different purging
coefficients from d = 0 to d = 0.5 (results not shown).

Finally, it must be noted that, for IP predictions to be reliable, drift
should be relatively unimportant compared to purging. Thus, when
considering the consequences of inbreeding and purging on average
fitness, predictions are reliable for dNe . 1, where Ne is the drift
effective population size (García-Dorado 2012). For panmictic popu-
lations of constant size, drift effective size is equal to inbreeding effec-
tive size (Ne = 1/2DF, whereDF is the per generation inbreeding rate),
so that we can expect IP predictions to be reliable if, through the whole
process, d . 2DF. This rate can be computed for consecutive time
periods with length equal to the average generation interval. Thus, at
each interval, DF = (F92F)/(12F), where F and F9 are the average
inbreeding in the population at the beginning and the end of the
interval.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article. PURGd
software and example data are available in https://www.ucm.es/genetica1/
mecanismos.

THE SOFTWARE
We present a new software package (PURGd, available from https://
www.ucm.es/genetica1/mecanismos) that uses the IP model to
jointly estimate the effective purging coefficient, d, and the inbreed-
ing load in the base population, or its related parameter, b, defined in
Equation 10, that better account for the fitness values of a set of
pedigreed individuals. Additional details are given in the user’s
guide included in the package.

Figure 1 General pedigree notation.
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The program computes standard coancestry and inbreeding (f and
F values), as well as Ballou’s ancestral inbreeding coefficient (Fa) for
each individual. Furthermore, for each d value considered, it recur-
rently uses Equation 18, Equation 19 and Equation 22 to compute
the corresponding purged inbreeding coefficients (g). Using these co-
efficients, the program obtains LS estimates for the d value, and for
the remaining parameters in the model. As the predictive model may
incorporate additional factors potentially affecting fitness, and since
fitness is assumed to be a multiplicative trait, Equation 11 is general-
ized to include an arbitrary number of additional factors (say x, z. . .),
giving the general model

EðWiÞ ¼ Wmaxð12 eiÞeb1   giþb2   xiþb3   zi :::; (23)

where b1 = 2d is the regression coefficient on purged inbreeding
g, g is a function of d, and the remaining bj values measure the effect
of the corresponding additional factors, which may include the ma-
ternal purged inbreeding coefficient.

This software numerically searches for the d value that minimizes
the squared deviations from observed fitness to model predictions (i.e.,
for the LS estimate). However, regarding the remaining parameters, the
model can be fitted using two different approaches, as explained below.
In the first approach (linear regression method, LR), for each d value
considered, a LR model is fitted for log-transformed fitness. In the
second approach (numerical nonlinear regression method, NNLR),
the above model for untransformed fitness (Equation 23) is explored
numerically, searching for the joint numerical LS estimates of d and of
the nonlinear regression coefficients. Although the NNLR method is
computationally more demanding, the program runs quickly, and has
low RAM requirements under both approaches. Optionally, the initial
average for fitness or log-fitness and/or for the regression coefficient on
g can be introduced by the user, allowing incorporation of independent
estimates of these parameters when available.

Additionally, the software will also give the results for the corre-
sponding analysis conditional to d = 0, so that the user can observe the
consequences of considering/ignoring purging in the analysis, and can
check how the model improves under the estimate of d, compared to
the assumption of no purging (d = 0).

LR method
To perform LR analysis, the model represented by Equation 23 is lin-
earized by taking logarithms. This leads to the linear predictive equation

lnðWiÞ ¼ b0 þ b1   gi þ b2   xi þ b2   zi. . . :;

where the different b values estimate the corresponding regression
coefficients. Since logarithms are taken for individual fitness, instead

of for average fitness, by analogy to Equation 7, the intercept b0
estimates E[ln(W0)], and b1 estimates [ln(122d)/2d]d (Equation 10).

However, as it has been noted (García-Dorado 2012), the IPmodel is
a conservative approach that tends to underrate the long-term fitness
expected from inbreeding and purging. For this reason, when the esti-
mate of the expected log-fitness for noninbred individuals (b0) is
obtained jointly with b1 and with the purging coefficient (d), the
method tends to overfit the model by estimating too low an initial
fitness, and, simultaneously, too small values for the decline of log
fitness with Fi (i.e., for 2b1) and for the purging coefficient d. Thus,
this procedure tends to give b1 and d estimates that will produce poor
predictions when extrapolated to populations with different rates of
inbreeding, or to periods of different length. On the contrary, when E
[ln(W0)] is not simultaneously estimated, the estimates b and d have
much smaller bias and good predictive properties.

Therefore, b0 is obtained by PURGd in a previous step as the aver-
age of log-fitness for noninbred individuals with noninbred ancestors
(F = Fa = 0), or is introduced by the user as a known value. Then, in a
second step, the software searches for the d value that optimizes the
fitting of the data to the linear regression equation

Yi ¼ b1   gi þ b2   xi þ b2   zi . . . :  ;

where the dependent variable is Yi = ln(Wi) – b0, so that regression is
forced through the origin.

Regression analysis is performed for all the possible d values in a grid
corresponding to the interval 0 # d # 0.5 with step 0.01, which is
the default accuracy. If higher accuracy is requested, PURGd first finds
a preliminary estimate with precision 0.01 as before, and then uses the
Golden Section Search (GSS) algorithm in an interval 6 0.01 around
that estimate (Press et al. 1992).

Finally, the software returns the d estimate that minimizes the residual
sum-of-squares in the corresponding LR analysis of individual log-fitness.
For each analysis, the program also gives the corresponding results of
the above LR, with statistic contrasts assuming normality and indepen-
dence of residual errors, and with the adjusted determination coefficient
and the corrected Akaike information criterion, computed taking into
account howmany parameters are being estimated in the whole process.

Table 1 reproduces the software’s output for the LR approach,
where estimates have been averaged for the analysis of a set of 50 sim-
ulated lines. Each line is derived from a large panmictic population at
the Mutation-Selection-Drift balance (N = 1000), and is maintained
with size N = 10 during 50 generations. Completely recessive delete-
rious mutations with homozygous effect s = 0.3 occur at a rate of 0.1
new mutations per gamete and generation in unlinked sites. Since
h = 0, this implies that the theoretical value for the purging coefficient

n Table 1 Averaged results obtained using the linear regression method (LR) for the set of 50 simulated lines described in the main text
that were maintained with size N = 10 during 50 generations, where the true values for the inbreeding load and the purging coefficients
in the base population are d = 4.217 and d = 0.15, respectively

Pedigree File Analysis d Coefficient RSS P-Value (F) aR2 AICc lnW0 SD(lnW0) b(g) SD[b(g)] P-Value(t)

Purged_lines IP model 0.102 147.291 ,1.0e216 0.758 804.642 20.124 0.206 23.298 0.081 ,1.0e216
No-purging model 0 253.130 ,1.0e216 0.586 1069.500 20.124 0.206 21.222 0.041 ,1.0e216

Relaxed_lines IP model 0.003 188.396 ,1.0e216 0.966 921.812 20.122 0.201 25.177 0.040 ,1.0e216
No-purging model 0 195.72 ,1.0e216 0.964 944.204 20.122 0.201 24.965 0.039 ,1.0e216

These results are shown in the same format as in the PURGd output. Pedigree File, name of the data file; Analysis, the model used in the analysis; d coefficient, the
purging coefficient estimated in the IP analysis or assumed by the No-purging model; RSS, residual sum of squares; P-value(F), the P-value in the F-test for the
regression analysis; aR2, adjusted determination coefficient; AICc, the corrected Akaike Information Criterion; lnW0, the estimate of the expected log-fitness in
the base noninbred population; SD(lnW0), SD of lnW0; b(g), linear regression coefficient on g (it is denoted b1 in the predictive equation and estimates [ln(122d)/2d]d,
as defined in Equation 10; its expected value in this case is25.014, very close to the IP estimate obtained for the relaxed lines); SD[b(g)], SD of b(g); P-value(t), P-value
for the t-test on the significance of this linear regression coefficient.
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is d = 0.15. The simulation details can be found in Bersabé et al.
(2016). Output is presented for two different simulation sets; in the
first, natural selection is operating during the maintenance of the lines,
so that purging is expected to occur. In the second set, natural selection
is relaxed, implying no purging. To achieve this, when simulating each
offspring, all individuals had the same probability of being sampled as
parents of the next generation, regardless of their fitness values. The
software estimates a purging coefficient d = 0.102 6 0.009 in the first
case, and d = 0.003 6 0.001 in the second (SE computed from
50 replicates). Therefore, the method has discriminated between situ-
ations with or without purging, although it has underestimated the
actual purging coefficient. Furthermore, for lines undergoing purging,
the data fit the IP model prediction computed using the corresponding
estimate of d much better than when using the condition d = 0 that
assumes no purging, as shown by the higher determination coefficient
and the smaller residual sum of squares and Akaike criterion.

The analysis of additional simulated lines maintained with size
N = 50 (not shown) produced similar results, again discriminating
between purged and relaxed lines and providing better fitting for
purged lines when using the corresponding estimates of d. For purged
lines, the estimate for the regression coefficient of fitness on purged
inbreeding was b(g) = 23.590 6 0.276 which, solving Equation 10,
gives an estimate d = 3.019 for the inbreeding load, close to the value
obtained for N = 10 (d = 2.774), but the estimate for the purging
coefficient was larger (d = 0.218 6 0.029).

NNLR method
Theprevious logarithmic transformationcannotbeapplied tofitness traits
presenting null values, as in the case binary of 0/1 variables for dead/alive
records. In suchcases, inbreedingdepressionhasbeenanalyzedpreviously
using a logit transformation offitness in order to performmultiple logistic
regression (Ballou 1997; Boakes andWang 2005).However, that statistical
approach assumes a model of the kind ln[Wi/(12Wi)] = b0 2 b1 gi,
while our genetic model has the form ln(Wi) = b0 2 b1 gi. Therefore,
PURGd gives the user the option of obtaining LS estimates for the pa-
rameters in the genetic model given by Equation 23 by numerically
optimizing the fitting of the untransformed fitness data to the predictions
of the nonlinear regression equation given by

Wi ¼ W0 e
b1giþb2   xiþb3   zi...;

where the different b values are the estimates of the corresponding b
parameter in Equation 23, so that b1 estimates 2d, and W0 is the
estimate of the expected fitness value for the noninbred base popu-
lation. For the same reasons as in the LR method,W0 is obtained in a
previous step as the average W for the set of individuals with F =
Fa = 0, or is introduced by the user.

After estimatingW0, the Numerical Least Square option of PURGd
uses the Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk
2007) to search simultaneously for the LS estimate of the purging co-
efficient d (where each d value considered determines a set of gi values),
and for the set of b coefficients that produces the lowest residual sum of
squares (RSS), calculated as:

RSS ¼
X

i

�
Wi2W0   e

b1   giþb2   xiþb3   zi ...
�2

This algorithmhas been used successfully for estimating parameters in
nonlinear systems in different kinds of disciplines, such as image
processing, engineering, and neural networks, among others
(Karaboga et al. 2014), using �500 generations and 250 bees in the
colony. Although we have always found consistent solutions, it is
recommended to repeat the analysis several times to check the stabil-
ity of the method, and to change running parameters and range
values, looking for a consistent solution.

Therefore, the output gives a LS estimate for d, and for the remaining
bj parameters in the model (Equation 23). An important advantage
of this approach is that, besides allowing 0 fitness values to be
dealt with, 2b1 directly estimates the inbreeding load d, instead of
estimating 2[ln(122d)/2d]d. Furthermore, although LS estimates for
nonlinear regression are not expected to be unbiased, preliminary un-
published simulated results suggest that this method usually gives esti-
mates of the purging coefficient and of the inbreeding load that produce
predictions at least as accurate as those obtained using estimates com-
puted from linear regression on log-fitness data, although it is compu-
tationally more demanding. Although this approach does not allow
standard F-tests for statistical significance to be performed, the RSS
and the corrected Akaike information criterion values (the latter again
relying on the assumption of normality and independence for residual
errors) are reported in the output as a measure of the fitting quality.

Table 2 reproduces the software’s output for this NNLR approach,
where estimates have been averaged for analysis of the same sets of
simulated lines analyzed in Table 1. In this case, the estimates of the
purging coefficient for lines maintained with natural selection is
d = 0.092 6 0.007, and that obtained for lines maintained under
relaxed selection is d = 0.007 6 0.001, again discriminating between
purging and no purging cases, but underestimating the purging co-
efficient (SE again empirically estimated from the 50 replicated lines).
As in the LR method, the data for simulated lines undergoing purging
fit the IP model much better than the d = 0 no-purging model.

For simulated lines maintained with size N = 50 (not shown),
NNLR analysis of the data discriminated between purged and re-
laxed lines, and provided better fitting for purged lines when using
the corresponding estimates of d, as in the case of the LR analy-
sis. Again, the estimate for the inbreeding load for purged lines

n Table 2 Averaged results obtained using the numerical nonlinear regression method (NNLR) for the set of 50 simulated lines described
in the main text that were maintained with size N = 10 during 50 generations, where the true values for the inbreeding load and the
purging coefficients in the base population are d = 4.217 and d = 0.15, respectively

Pedigree File Analysis d Coefficient RSS AICc W0 SD(W0) b(g)

Purged_lines IP model 0.092 16.996 2326.399 0.902 0.152 22.898
No- purging model 0 28.387 271.356 0.902 0.152 21.202

Relaxed_lines IP model 0.007 4.072 21037.943 0.903 0.154 24.533
No-purging model 0 4.145 21033.899 0.903 0.154 24.443

These results are shown in the same format as in the PURGd output. Pedigree File, name of the data file; Analysis, the model used in the analysis; d coefficient, the
purging coefficient estimated in the IP analysis or assumed by the No-purging model; RSS, residual sum of squares; AICc, the corrected Akaike Information Criterion;
W0, the estimate of the expected fitness in the base noninbred population; SD(W0), SD ofW0; b(g), nonlinear regression coefficient on g that estimates the inbreeding
load (b(g), denoted b1 in the predictive equation, estimates 2d).
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(d = 2b(g) = 2.756 6 0.241), was very close to that estimated for
N = 10, but the estimate for the purging coefficient was larger
(d = 0.190 6 0.005).

Predictive value of the estimates
Figure 2 gives the evolution of fitness against generation number and
the corresponding IP predictions, computed for each set of lines using,
in Equation 12, the corresponding estimates of d and d obtained by the
software. Good fitting is observed for N = 10 and for N = 50 regard-
less of whether LR or NNLR are used, both for the relaxed lines and
for those maintained under purging.

DISCUSSION
In the present work, we derive a theoretical approach to analyze the
fitness data for pedigreed individuals in order to estimate the inbreeding
load, d, and the purging coefficient, d, necessary to predict the joint
consequences of inbreeding and purging. Furthermore, we present
PURGd, a free software implementing this theoretical approach, and
illustrate its performance, analyzing some results obtained by the soft-
ware for simulated data.

In the first place, since the inbreeding depression rate is usually
estimated from log-fitness data, we derive the expected regression slope
of individual log-fitness on individual inbreeding in the absence of
selection, which amounts to b = [ln(122d)/2d]d. Therefore, using –b
as an estimate of the inbreeding load, d, implies upwardly biased esti-
mation. This first result is interesting because increased effort in field
studies related to conservation of endangered species, together with
molecular techniques, allow us to record and/or reconstruct pedigrees
in wild populations, and offers an interesting opportunity to study
inbreeding depression in the wild (Keller and Waller 2002), but can
induce upwardly biased estimates due to the use of log-transformed
individual fitness. The bias is expected to be small if d values are low,
but the large inbreeding depression rates estimated in wild populations
are likely to be associated with relatively large d values and, therefore, to

substantial bias (Kruuk et al. 2002; Liberg et al. 2005; O’Grady et al. 2006;
Walling et al. 2011; Kennedy et al. 2014; Hedrick et al. 2016). This
phenomenon can contribute to enhancing the perceived difference be-
tween the inbreeding load expressed in wild populations compared to
estimates based on the assay of mean fitness for groups of individuals
with different average inbreeding, as is often the case in experimental
conditions. In order to avoid this bias, an alternative estimation approach
is suggested, based on the numerical LS analysis of the original predictive
IP model for untransformed fitness. This approach is implemented in
the PURGd software, and is used to analyze some simulated data.

In the second place, in order to estimate the purging coefficients (d)
from individual fitness data, we present general expressions to compute
purged inbreeding (g) from pedigrees with overlapping generations.
Although these expressions involve some approximations, we have
found that they produce reliable values for individual g.

Other methods for detecting purging from fitness measured in
pedigreed individuals have been devised previously, based on the idea
that the ancestral purging Fa of an individual is in some way related to
the opportunities of purging upon its genome in previous generations.
Using F and Fa, different linear models have been proposed that have,
on some occasions, detected small levels of purging in simulated and
real pedigrees of captive breeding populations (Ballou 1997; Lacy and
Ballou 1998; Boakes andWang 2005; Swindell and Bouzat 2006; Boakes
et al. 2007; Ceballos and Álvarez 2013). However, these methods were
based on the analysis of statistical models that are not supported by a
predictive genetic model. In addition, a logit transformation was ap-
plied to fitness, just on statistical grounds. Therefore, these models fit
fitness data only poorly. More importantly, they do not allow estima-
tion of a purging parameter that can be used for predictive purposes.
On the contrary, our method is based on the predictive IP model that
was derived on the basis of the genetic mechanisms of inbreeding de-
pression and purging, so that it is expected to fit the data better, and to
allow the estimation of a parameter that can be used for predictive
purposes: the effective purging coefficient d. However, the model

Figure 2 Evolution of mean fitness through generations for simulated lines maintained with size N = 10 (analysis given in Table 1 and Table 2) or
N = 50 during 50 generations (red solid lines), together with IP predictions computed using the estimates obtained by PURGd from the linear
regression method (LR, green dashed lines), or the numerical nonlinear regression method (NNLR, blue dotted lines). Results are given both for
lines that have undergone purging (thick lines), and for lines for which natural selection was relaxed while they were maintained with reduced size
(thin lines, which largely overlap with each other).
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involves some approximations and usually produces conservative pre-
dictions underrating the consequences of purging. Therefore, statistical
methods based on this IP model can overfit the model by inducing
some bias in the estimates.

For illustrative purposes, we have presented here the analysis of a set
of simulated data for a simple situation where inbreeding and purging
occur due to a reduction in population size (Table 1 and Table 2). For
N = 10, the inbreeding load computed using Equation 1 in the base
simulated population was d = 4.217. The LR method estimates
d = 0.102 6 0.009 and b = 23.298 6 0.096 (SE computed from
the 50 replicates analyzed), which using the true simulated value for
d (0.15) into Equation 6 gives an estimate of the inbreeding load of
d = 2.774. Thus, both the inbreeding load and the purging coefficient
are underestimated when they are estimated jointly. The d and d esti-
mates obtained using the numerical method are very similar
(2.898 6 0.115 and 0.092 6 0.007, respectively). Under both meth-
ods, the data fit the IPmodel much better than the no-purging (d = 0)
model. In parallel, we present the analysis for a similar set of simulated
lines where selection, and, therefore, purging, had been relaxed during
the inbreeding period. It is worth noting that the estimates of the
purging coefficient d given by PURGd for these relaxed lines are vir-
tually zero, showing that the method detects whether purging is occur-
ring or not. Furthermore, when natural selection is relaxed during the
maintenance of the reduced size lines, the LR approach gives b =
25.177 6 0.165, so that the estimate of d is 4.354, and the d estimate
obtained using the numerical approach is very similar (4.533). Thus,
the underestimation of d observed when purging is operating in the
lines, can be ascribed to regression overfitting the data through the
underestimation of both d and d, due to the approximate nature of
the IP model. It should be noted that some underestimation of d could
also occur because, for Nd on the order of 1 or smaller, purging effi-
ciency may be somewhat reduced due to genetic drift (García-Dorado
2012). On the contrary, d estimates obtained for simulated purged lines
maintained with N = 50 are larger than the actual d value, while d is
simultaneously underestimated. In all cases, using the d and d estimates
obtained jointly in the same analysis gives appropriate predictions for
the evolution of mean fitness (Figure 2).

The software also allows additional factors, both in the linear and the
nonlinear models, to be included. However, the addition of factors with
a strong associationwith g, asmaternal inbreeding or year of birth, often
causes a slight overfitting, again due to the approximate nature of the
program. The overfitted model gives spurious significant effects for
such factors as well as some distortion in the estimates of b(g) and
d (results not shown) due to confounded effects. Therefore, results
obtained by incorporating additional factors should better be used
when those factors are uncorrelated to g, so that including them just
reduces sampling error. Additional factors should also be tentatively
included when there is external evidence that they have a highly rele-
vant effect, so that including them cause an important improvement of
the fitting statistics. However, when these additional factors are corre-
lated to g, these results should be interpreted with caution, and those
obtained including no additional factors should also be considered.

It is interesting to note that using, in Equation 12, the estimates of
d and d obtained by the software, produces predictions that adequately
fit the evolution of mean fitness through generations in the simulated
lines, both in the absence and in the presence of purging (Figure 2).

Summarizing, we present a version of the IP model that analyzes
individualfitnessdata forpedigreed individuals, is able todetectpurging,
and estimates genetic parameters that are useful in predicting the joint
consequences of inbreeding and purging. However, it is necessary to
explore the properties of this approach more extensively through the

analysis of simulated data with different rates of inbreeding, and with
different distributions of the h and s values of deleterious mutations.
Furthermore, it would be useful to compare its performance with that
of previous methods based on ancestral inbreeding, and to characterize
the possible biases of our method regarding the estimates of d and d

caused by the approximate nature of our IP model, as well as their
predictive implications. This exploration needs to analyze a wide range
of simulated situations, including different population sizes, generation
numbers, and distributions of the deleterious effects, and will be
addressed in a different paper.
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