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Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common
acute and severe cases of the respiratory system with complicated pathogenesis and
high mortality. Sepsis is the leading indirect cause of ALI/ARDS in the intensive care
unit (ICU). The pathogenesis of septic ALI/ARDS is complex and multifactorial. In the
development of sepsis, the disruption of the intestinal barrier function, the alteration of
gut microbiota, and the translocation of the intestinal microbiome can lead to systemic
and local inflammatory responses, which further alter the immune homeostasis in the
systemic environment. Disruption of homeostasis may promote and propagate septic
ALI/ARDS. In turn, when ALI occurs, elevated levels of inflammatory cytokines and the
shift of the lung microbiome may lead to the dysregulation of the intestinal microbiome
and the disruption of the intestinal mucosal barrier. Thus, the interaction between the
lung and the gut can initiate and potentiate sepsis-induced ALI/ARDS. The gut–lung
crosstalk may be a promising potential target for intervention. This article reviews the
underlying mechanism of gut-lung crosstalk in septic ALI/ARDS.
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INTRODUCTION

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition
of respiratory failure (Matthay et al., 2019). ALI/ARDS is a common clinical critical disease with
rapid onset and high mortality and one of the primary causes of death in critically ill patients
(Griffiths et al., 2019). According to statistics, more than three million ARDS patients are diagnosed
worldwide every year, accounting for 10% of the number of people hospitalized in intensive
care units (ICU) (Abe et al., 2018). The treatment of ALI/ARDS remains elusive. Despite major
recent advances in the supporting care for ARDS, including the use of extracorporeal membrane
oxygenation (ECMO), protective lung ventilation maneuvers, and statins (Fan et al., 2018), the
mortality from ARDS is still high (34.9–46.1%) (Fernando et al., 2021). Sepsis is the leading indirect
cause of ALI/ARDS in the ICU (Bellani et al., 2016), and the lung is the first affected and the
most vulnerable organ during sepsis (Fan and Fan, 2018). Direct sepsis-induced ALI/ARDS arises
from pulmonary infections, and indirect sepsis-induced ALI/ARDS arises from extrapulmonary
infections (Bellani et al., 2016). It is worth noting that the mortality rate of ARDS caused by sepsis
is higher than that of ARDS caused by other factors (Chen et al., 2019). Although the biology
underlying sepsis-induced ALI/ARDS is complicated and multifactorial, our current understanding
involves the release of inflammatory cytokines and the disruption of the lung microvascular barrier
(Huppert et al., 2019).

Severe acute inflammation plays a crucial role in septic ALI/ARDS (Lelubre and Vincent,
2018). Pathogens activate the innate immune response of epithelial cells and alveolar macrophages,
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followed by migration and aggregation of neutrophils and
monocytes, release of the inflammatory cytokines TNF-α, IL-
1β, and IL-6, loss of alveolar-capillary barrier integrity, and
increased permeability, leading to sepsis-associated ALI/ARDS
(Luyt et al., 2020).

The gut microbiome coexists harmoniously with the host and
plays multifarious beneficial roles in the body, such as shaping the
immune system, maintaining homeostasis, and others (Morais
et al., 2021). An increasing body of evidence has illustrated the
role of the gut microbiome in the occurrence, development,
and outcomes of sepsis (Adelman et al., 2020). Sepsis induces
significantly compromised gut barrier integrity (Yoseph et al.,
2016), which allows intact microbes and microbiota products
to translocate, resulting in amplification of the systemic
inflammatory response and contribution to multiple organ failure
(Dickson, 2016). This imbalanced interaction between the gut
barrier, immune system, endogenous microorganisms, and lung
may lead to the deterioration of the systemic inflammatory
response and the potentiation of ALI/ARDS. Hence, a better
understanding of gut-lung crosstalk in sepsis-related ALI/ARDS
may contribute to clarifying this complex disease and laying the
foundation for new treatments.

Effect of Septic Acute Lung Injury/Acute
Respiratory Distress Syndrome on the
Gut
During sepsis, the onset of ALI/ARDS is related to the activation
of a complex inflammatory cytokine cascade. The continuous
recruitment of inflammatory cells perpetuates a vicious cycle
that produces more pro-inflammatory cytokines, which interact
with and influence each other to promote severe damage to
the alveolar-capillary membrane as well as respiratory failure.
Moreover, researchers have broadened the scope of septic
ALI/ARDS to another key factor: the lung microbiome. In
septic-ALI/ARDS, the inactivation of the bactericidal layer of
the alveolar epithelium (Li et al., 2019), the flow of protein-rich
alveolar exudate, the establishment of oxygen gradients, the surge
of inflammatory mediators, and the impairment of local immune
defenses (Dickson et al., 2015) may alter the lung microbiome
that in turn perpetuates a positive-feedback loop of inflammation,
injury, and further dysbiosis (Dickson et al., 2014). Along with
an increase in inflammatory molecules and alteration of the
lung flora, septic-ALI/ARDS is responsible for gut microbiota
imbalance and gut barrier disruption (Figure 1).

Intestinal Barrier Disruption by Increased Cytokines
During Sepsis
During septic ALI/ARDS, increased cytokine levels may cause
impairment of the intestinal barrier. This selective barrier is
composed of intestinal mucosal epithelial cells and inter-cell
connections. When the selective barrier functions normally,
it allows the cell-side movement of water, solutes, and
immunomodulatory factors but prevents the movement of
macromolecules and microorganisms (Weström et al., 2020).
Tight junctions between cells play a critical role in the gut
barrier function, and the cells are connected to the intracellular

cytoskeleton by tight junction proteins [e.g., occludin, claudin
family, junctional adhesion molecules (JAM), myosin light chain,
zonula occludens (ZO); Krug and Fromm, 2020]. The increase
of inflammatory cytokines during sepsis results in intestinal
hyperpermeability through the up-regulation of claudin 2 and
JAM and down-regulation of claudin 5 and ZO-1 (Yoseph et al.,
2016). Alternatively, sepsis can also redistribute claudins 1, 3,
4, 5, and 8, resulting in intestinal barrier dysfunction (Li et al.,
2009). Claudins are a protein family of up to 27 members
in mammals. Expression of claudins 1–19 has been examined
throughout the rat and mouse intestine and that of claudins 20–
24 in the mouse upper small intestine. Members of the claudin
family are major driving forces in the formation of paracellular
barriers (Günzel and Yu, 2013). Claudins can be roughly divided
into sealing or pore-forming claudins. Alteration of claudin
expression may result in a decreased or increased paracellular
transport of solutes as well as an increased permeability to
macromolecules (Günzel, 2017). To date, claudin-2, -10b, and
-15 qualify as cation pores and claudin-10a and -17 as anion
pores, which are both acknowledged as pore-forming claudins
(Odenwald and Turner, 2013). Therefore, an increase in a
pore-forming protein, such as claudin-2, would directly cause
hyperpermeability and deterioration of the barrier function,
while a decrease in a sealing protein, such as claudin-5, would
lead to the same result in a mechanistically complementary
manner. Beyond that, the activation of myosin light chain kinase
(MLCK) by inflammatory cytokines (TNF-α, IL-6, and IL-1β)
is also associated with paracellular hyperpermeability. Cytokines
further activated MLCK in a feed-forward mechanism, partly
via altering ZO-1 and claudin 15 (Lorentz et al., 2017). MLCK
phosphorylates the myosin regulatory light chain, which leads
to contraction of the actin-myosin ring, increasing intestinal
permeability (Su et al., 2020). Indeed, the significant increase of
the intestinal permeability is closely interrelated to the occurrence
and development of sepsis (Assimakopoulos et al., 2018), such
as sepsis secondary intratracheal instillation of Pseudomonas
aeruginosa due to gut mucosal and microvascular injury and
gut barrier dysfunction (Yu and Martin, 2000). Recent studies
have reported that gut microbes, represented by Bacteroidetes
and Enterobacteriaceae, translocate across the intestinal mucosa
and even enter the lung in sepsis and ARDS patients (Dickson
et al., 2016; Panzer et al., 2018). However, there is no direct
evidence that gut-derived bacteria or bacterial products, such as
endotoxin, are present in the blood of septic patients (Haussner
et al., 2019). Studies have suggested that ligation of mesenteric
lymphatic vessels attenuates lung injury and neutrophil activation
and improves survival in mice with endotoxemia (Badami
et al., 2008). Moreover, mesenteric lymphatic vessels collected
from critically ill mice induces lung injury upon intravenous
injection in healthy mice (Senthil et al., 2007). Thus, translocation
via intestinal lymphatic vessels is regarded (Haussner et al.,
2019), which is called gut–lymph hypothesis. In detail, bacterial
translocation gives rise to a local activation of the mucosal
immune system (MIS). MIS stimulates the production of
inflammatory substances that enter the lung and systemic
circulation through the mesenteric lymphatics. These danger-
associated molecular patterns (DAMPs) are recognized by innate
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FIGURE 1 | Effect of increased inflammatory cytokines and lung microbiome
alteration on the gut in septic ALI/ARDS.

immune cells to promote pro-inflammatory pathways. A massive
release of DAMPs accelerates the progression of organ damage
and multiple organ dysfunction syndrome (MODS), further
aggravating gut injury, forming a vicious cycle (Deitch, 2012;
Assimakopoulos et al., 2018; Haussner et al., 2019). Therefore,
the destruction of the gut barrier contributes to the translocation
of gut microbes and/or their products to the systemic circulation
via the mesenteric lymphatics, exacerbating significant host
inflammation and acute pulmonary edema with a positive
feedback (Figure 2).

Notably, toll-like receptor 4 (TLR4) is widely expressed in
intestinal stem cells and regulates their proliferation or apoptosis
(Chen et al., 2018). During sepsis, increased cytokine levels
inhibit intestinal cell regeneration and promote apoptosis in
a TLR4-dependent manner (Mazmanian et al., 2008). At the
cellular level, crypt cell proliferation is markedly decreased
(Coopersmith et al., 2003), with increased intestinal epithelial
cells (IECs; Coopersmith et al., 2002) and crypt cell apoptosis
(Perrone et al., 2012) following sepsis. Although IECs migrate in
a TLR-4-dependent manner (Neal et al., 2013), changes in IEC
proliferation and apoptosis far exceed this slow course, leading
to a shorter villi length (Dominguez et al., 2011). Moreover,
cytokines cause an abnormal intestinal and barrier function of
the mucous layer, characterized by reduced thickness, diminished
lumen coverage, and poor adhesion (Chang et al., 2012). All of
these factors further decrease the effectiveness of the gut barrier.

All in all, an increase of inflammatory cytokines induces
gut barrier dysfunction, intestinal hyperpermeability, bacterial
translocation, and amplification of the inflammatory responses.
Subsequently, this expansion of the systemic inflammatory
response contributes to lung injury.

Role of Lung Dysbiosis in the Gut–Lung Axis
Sepsis-associated ALI/ARDS results in the alteration of lung
microbiota both in the mice model and in patients. The etiology

of pulmonary dysbiosis in sepsis patients is complex and includes
endogenous (e.g., hypoxia and ischemia-reperfusion injury)
and external factors (e.g., endotracheal intubation, mechanical
lung ventilation, inhaled oxygen, and antibiotics). Poroyko
et al. (2015) showed in an ALI mouse model induced by the
intratracheal instillation of lipopolysaccharide (LPS) that the
bacterial DNA burden in bronchoalveolar lavage (BAL) was
increased fivefold, whereas the community complexity measured
by the Shannon diversity index was significantly decreased.
The major trend in the microbial community reaction to
LPS-induced ALI was the loss of Firmicutes, represented by
Alicyclobacillaceae, and the bloom of Proteobacteria, represented
by Brucellaceae and Xanthomonadaceae. Dickson et al. (2016)
also found that the community richness was also higher in
a mouse model of sepsis induced by caecal ligation and
puncture (CLP). The lower respiratory tract was rapidly
enriched with bacteria in the gastrointestinal tract, including
members of the Bacteroidales order, Enterococcus species, and
Lachnospiraceae species, and remained in this status for 5
days. Furthermore, they sequenced lung microbiota of mice
exposed to intratracheal LPS to model direct lung injury and
observed enrichment of Enterobacteriaceae-classified OTU in
post-sepsis lungs. Based on the above experimental evidence, they
further analyzed bacterial communities from the BAL fluid of
68 patients with ARDS. The gut-associated Bacteroides OTU,
the most abundant genus in the human gut microbiome, were
common in the lungs of ARDS patients (41%) but absent
in the lungs of the healthy controls. Furthermore, the gut-
associated Bacteroides OTU are most strongly correlated with the
severity of systemic and alveolar inflammation. Another study
conducted by Dickson reconfirmed prior findings (Dickson et al.,
2020). They found the bacterial load was greater in patients
with ARDS. In addition, they compared the lung bacterial
community composition in BAL specimens from ARDS and
non-ARDS patients. The predominant clusters in non-ARDS
patients were Streptococcaceae, Veillonellaceae, Prevotellaceae,
Verrucomicrobiaceae, and Flavobacteriaceae, which are common
in healthy lungs and negative sequence control samples.
However, in ARDS patients, the bacterial community in the lungs
was characterized by Pasteurellaceae and Enterobacteriaceae.
Similar to their prior results, gut-derived Enterobacteriaceae
are also correlated with the ARDS status. Notably, the
Enterobacteriaceae taxonomy was highly aligned with the ARDS-
associated bacterial taxon, as identified by Panzer et al. (2018).
They also proved that the microbiome is associated with ARDS
development. A recent clinical study (Schmitt et al., 2020)
compared the pulmonary microbiota in 15 patients with sepsis-
induced ARDS undergoing abdominal surgery and 15 patients
post esophagectomy. In the ARDS group, the α-diversity index
of the pulmonary microbiome was significantly decreased, which
was related to the length of the ICU stay and the need for
ventilator use, suggesting that alteration of the lung microbiome
may represent a mechanism of pathogenesis in septic ALI/ARDS.

Changes in the lung flora may affect the composition
of the gut flora in sepsis-induced ALI/ARDS. One previous
study manifested that lung microbiota imbalance in a sepsis-
related ALI murine model increased the total bacterial count
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FIGURE 2 | Intestinal barrier disruption by increased cytokines during sepsis. Tight junctions between cells play a critical role in gut barrier function. In sepsis, tight
junctions are destructed by inflammatory cytokines production.

in the cecum (Sze et al., 2014). In clinical cases, the
most common source of sepsis is the lung (Wang et al.,
2013). Rosa et al. (2020) found that Vancomycin treatment
of acute Pseudomonas aeruginosa pneumonia in mice can
induce intestinal dysbacteriosis, resulting in an increase in the
number of Proteus, a decrease in the number of bacteroides,
and inflammatory changes in the intestinal tract. After fecal
microbiota transplantation, the susceptible phenotype and
tissue injury phenotype were reversed in mice. Moreover, the
pulmonary allergic response also influences the composition
of the intestinal microbiota (Vital et al., 2015). In the context
of experimental influenza infection, it has been reported that
the IFN-γ produced by lung-derived CCR9 + CD4 + T cells
changed the composition of the gut microbiota, and caused
intestinal immune injury (Wang et al., 2014). Moreover, the
pulmonary production of IFN-Is promotes the consumption of
obligate anaerobic bacteria and the enrichment of proteobacteria
in the gut, leading to significant intestinal dysregulation (Deriu
et al., 2016). Thus, lung inflammation directly changes the
intestinal bacterial community structure and further worsens
lung inflammation (Vital et al., 2015). However, only very
limited data have been reported on how long dysbiosis in sepsis-
induced ALI/ARDS causes gut dysbiosis. The alveolo-capillary
membrane becomes increasingly permeable in sepsis-induced
ALI/ARDS as a result of a direct (primarily epithelial) or indirect
(primarily endothelial) injury. It is reasonable to posit that
alveolo-capillary permeability might be at the highest risk of

gut–lung bacterial translocation. Considerable efforts are needed
to increase our knowledge about the influence of post-sepsis lung
injury on gut microbiota.

Effect of Gut Microbiome on Gut-Lung
Crosstalk
Role of Gut Microbiota on the Sepsis
The human gastrointestinal tract is the harbor of 100 trillion
bacteria, which are ten times more abundant than somatic
and germ line cells of the human body (Morais et al., 2021).
Regarding human health, the gut microbiota contributes to
prevent infections caused by pathogens, provide nutrients,
participate in metabolism, shape the immune system, and serve
as a biological barrier (Haak et al., 2018). In turn, the immune
system will affect the microbiota composition (Honda and
Littman, 2016). In various disease states, the loss of “health-
promoting” bacteria and overgrowth of “disease-promoting”
pathogenic bacteria make patients more succumb to sepsis and
MODS (Alverdy and Krezalek, 2017). A multi-center study has
shown that patients with sepsis have an increased abundance of
intestinal microbiota, which is closely related to inflammation
caused by Parabacteroides, Clostridium, Bilophila, and other
species. Concomitantly, researchers have detected an increased
abundance of Enterococcus and other pathogenic bacteria in
sepsis patients who died, suggesting that these bacteria may be
potential biomarkers for ICU care (Agudelo-Ochoa et al., 2020).

Frontiers in Microbiology | www.frontiersin.org 4 December 2021 | Volume 12 | Article 779620

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-779620 December 18, 2021 Time: 12:45 # 5

Zhou and Liao Gut-Lung Crosstalk

It has also been shown that septic patients have a decreased
abundance of Faecalibacterium associated with reduced
intestinal inflammation (Lankelma et al., 2017). In a single-
center case control study of children, the abundance of the
following 13 bacteria in septic children were significantly higher
than that in the healthy control group: Proteobacteria, Bacilli,
Gammaproteobacteria, Enterobacteriales, Pseudomonadales,
Lactobacillales, Enterococcaceae, Enterobacteriaceae,
Moraxellaceae, Enterococcus, Clostridium innocuum group,
Acinetobacter, and Enterococcus durans. Among these bacteria,
Enterococcaceae, Enterococcus, and Enterococcus durans
showed an increase in their abundance that is positively
correlated with the inflammatory indicators CRP and
WBC. Furthermore, the abundance of the following seven
bacteria was significantly decreased in the guts of septic
children: Bifidobacteria, Selenomonas, Aminococcus acidaceae,
Daentosaceae UCG-003, Dialister, Dorea longicatena, and
Ruminococcus sp.5_1_39bFAA. The decrease of intestinal
bifidobacteria abundance is negatively correlated to WBC
(Liu et al., 2021). The mechanisms behind these shifts in the
microbiota composition are unclear (Haak and Wiersinga,
2017). One of the reasons for this phenomenon may be clinical
intervention, such as enteral/parenteral feeding, selective oral
decontamination/selective decontamination of the digestive
tract, as well as the administration of antibiotics, proton
pump inhibitors, opioids, catecholamines, and sedatives (Haak
and Wiersinga, 2017). In addition, due to the acute phase of
inflammatory response and intestinal dysfunction, critically ill
patients with sepsis have a greater risk of malnutrition (Liu
et al., 2014). Nutritional deficiency is associated with intestinal
dysbiosis, characterized as an increase in proteus numbers and a
decrease in α-diversity, and it makes epithelial barrier function
weaken, which predisposes to bacterial translocation (Ralls et al.,
2015; Levesque et al., 2017). And decreased gastrointestinal
motility and loss of intestinal epithelial integrity in sepsis patients
cause a decrease in anaerobic bacteria (e.g., Lachnospiraceae and
Ruminococcaceae), which further impairs the intestinal epithelial
function and allows the proliferation of opportunistic pathogenic
bacteria (Haak et al., 2018). Fay et al. (2019) examined genetically
identical septic C57BL/6 mice from two vendors with different
microbiome compositions. Following CLP, significant differences
were noted in the mortality and immunophenotype (especially
splenic IFN-γ + CD4 + T cells, effector memory CD4 + T
cells, central memory CD4 + T cells, and Peyer’s patch effector
memory CD4 + T cells). In addition, CLP was performed of
naive mice from different suppliers after 3 weeks of cohousing,
and the differences in the mortality and immunophenotype
disappeared. These findings suggest that the microbiome plays
a critical role in the survival of sepsis and the host immune
response. This conclusion has also been confirmed by other
studies. Depletion of intestinal microbiota with broad-spectrum
antibiotics could exacerbate lung and intestinal damage and
increase the mortality in sepsis (Xu et al., 2021). Notably, the
differential immune responses to sepsis are determined by
the microbiome (Cho and Blaser, 2012). A recent study has
shown that the lung microbiome is enriched with gut-derived
bacteria in murine sepsis and in human patients with ARDS. The

presence of gut-specific communities (Bacteroides) is correlated
with the intensity of systemic inflammation (Dickson et al.,
2016). When the bacterial burden of the gut is minimized, the
inflammation and injury sustained with distal organs are lessened
during sepsis (Cuevas et al., 1972). Imbalance of the intestinal
microbiome regulates the Toll-like receptor 4 (TLR4)/nuclear
factor-κB (NF-κB) signaling pathway in the lung immune
system, which activates pulmonary oxidative stress and mediates
lung injury (Tang et al., 2021). Enhancing the α-diversity of the
intestinal flora in mice changes the immune response to sepsis
and improves the survival rate of sepsis, which is mediated
by the powerful CD4 + T cell response (Fay et al., 2019). The
intestinal flora affects not only the cellular immunity but also
the humoral immunity. Commensal bacteria directly produce
IgA, which has a protective activity against mucosal barrier
disruption and the resulting sepsis (Wilmore et al., 2018). These
studies indicate that the gut is the predominant motor of sepsis
(Klingensmith and Coopersmith, 2016).

Role of Gut Microbiota Metabolites on the Sepsis
In recent years, with the developed in-depth understanding of gut
microecology, studies have shown that not only gut microbiota
itself but also the metabolites of gut microbiota are involved in
various functions of the intestinal microenvironment. Bacteria
can produce a variety of metabolites, including: SCFAs, vitamins,
bile acids, choline metabolites, aromatic compounds, amines,
etc., (Van Treuren and Dodd, 2020). In the following sections,
we summarized several metabolites affecting the occurrence and
development of sepsis.

Short-Chain Fatty Acids
Short-chain fatty acids (SCFAs), including butyric acid, acetic
acid, and propionic acid, are the most abundant and beneficial
metabolites of the intestinal flora (Zhao et al., 2018; Adelman
et al., 2020). Several studies have confirmed significantly
decreased SCFA concentrations in sepsis patients (Shimizu
et al., 2011, 2018; Yamada et al., 2015; Valdes-Duque et al.,
2020). Butyric acid reduces the nuclear NF-κB activity, IL-6
and TNF-α levels, and lung tissue neutrophil infiltration by
inhibiting the expression of high mobility group protein 1,
TLR4, or histone deacetylase to reduce sepsis-related ALI (Li
et al., 2018; Liu et al., 2019; Parada Venegas et al., 2019).
In addition, acetic acid alleviates septic ALI by regulating the
mitogen-activated protein kinase (MAPK) pathway, improving
the alveolar permeability, reducing inflammatory factors, and
inhibiting oxygen free radical production (Xu et al., 2019). SCFA
reverses the progression of sepsis by restoring host immunity
and promoting pathogen clearance in an interferon regulatory
factor 3-dependent manner (Kim et al., 2020). Moreover, it
has been reported that SCFAs contribute to maintain intestinal
barrier integrity. SCFAs enhance the immune function of
intestinal mucosa by promoting the production of antimicrobial
peptides (AMPs; Li et al., 2020). The underlying mechanism
may be the promotion of the expression of RegIIIγ and
β-defensins 1, 3, and 4 by SCFAs in a GPR43-dependent manner
(Zhao et al., 2018). AMPs in the gut, including defensins,
cathelicidins, and regenerating gene (Reg)IIIa/b/g, are a class
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of basic peptides with antibacterial activity secreted by Paneth
cells and enterocytes (Zong et al., 2020). Studies have shown
that gut-derived AMP deficiency is associated with intestinal
barrier failure, leading to bacterial translocation (Zong et al.,
2020). In CLP-induced sepsis model mice, cathelicidins gene
knockout resulted in increased mortality, impaired intestinal
barrier, increased permeability, increased bacterial DNA content
of blood, up-regulated expression of intestinal cytokines and
inflammatory pathways, and increased M1-type macrophages
and neutrophils (Ho et al., 2020).

Choline Metabolites
Trimethylamine N-oxide (TMAO) derives primarily from the
gut metabolite of choline, carnitine, and phosphatidylcholine
(Jiang et al., 2021). Excessive increases in TMAO lead to the
release of large amounts of inflammatory mediators that activate
the MAPK pathway and the nuclear transcription factor (NF-
κB), which mediates vascular inflammation (Kapetanaki et al.,
2021). A large number of studies have shown elevated TMAO
levels accelerate the progression of inflammatory diseases such as
diabetes, atherosclerosis, and heart failure (Gatarek and Kaluzna-
Czaplinska, 2021). However, a recent single-center prospective
study reveals that TMAO may play different roles in CV and
infectious diseases (Chou et al., 2021). A total of 95 patients with
sepsis using mechanical ventilation were enrolled in this study
and divided into three groups based on TMAO concentration.
This study found that plasma TMAO concentration was an
independent predictor of successful weaning in mechanically
ventilated patients with sepsis after adjustment for APACHE
II score and CRP concentration. Septic patients in the lowest
TMAO concentrations were at greater risk of non-cardiovascular
death and unsuccessful ventilator weaning than were those in
higher concentrations. In addition, TMAO concentration was
positively correlated with daily energy intake, albumin and
prealbumin concentration. These findings suggest that TMAO
may be a novel risk biomarker and nutritional indicator for
patients with sepsis.

Phenolic
One of the degradation products of flavonoids and amino acids
by commensal bacteria is desaminotyrosine (DAT; Steed et al.,
2017). Flavonoids have anti-inflammatory properties (Peluso
et al., 2015). Recently, Wei et al. conducted an experiment that
LPS-induced septic mice were intraperitoneally injected with
DAT and vehicle control. They found that the survival rate
was significantly improved in the DAT-treated group, along
with decreased hypothermia and improved clinical scores (Wei
et al., 2020). It suggests that DAT modulates systemic immune
homeostasis. Nonetheless, whether a flavonoid-enriched diet is a
key component to sepsis remains to be studied.

Indole Derivatives
Indoles are metabolites of tryptophan metabolism by microbiota
(Rattanaphan et al., 2020). It is noteworthy that indole
is able to modulate expression of pro-inflammatory genes,
increase expression of anti-inflammatory genes and strengthen
the epithelial barrier (Nicholson et al., 2012). Researchers
found that 5-Hydroxytryptamine (5-HT) significantly increase
mortality in a model of sepsis in mice. Furthermore, 5-HT

exacerbated the clinical symptoms, and histological damages in
the lung, liver, kidney, bowel, and heart (Zhang et al., 2017).
Another tryptophan metabolites, indole-3-acetate and indole-
3-propionate, was significantly decreased in the both of septic
mice and patients, which might result from the gut microbiome
disruption in sepsis (Gao et al., 2018; Elmassry et al., 2020). These
studies show that Indole derivatives may be a new therapeutic
target for sepsis.

Vitamin
It is well known that gut microbiota are able to synthesize
vitamin K as well as most water-soluble B vitamins such as
thiamine (vitamin B1), riboflavin (vitamin B2), nicotinic acid
(vitamin B3), pantothenic acid (vitamin B5), pyridoxine (vitamin
B6), cobalamin (vitamin B12), biotin (vitamin H), and folates
(LeBlanc et al., 2013). The potential biological functions of
vitamins include enhancement of immune function, provision
of complementary endogenous sources of vitamins, regulation
of cell proliferation and so on. In recent years, the efficacy of B
vitamins in the treatment of sepsis has received much attention.
Hong et al. (2018) has found that prophylactic administration
of nicotinamide riboside (NR) can protect lung and heart from
injury, and improve the survival rate in sepsis mice, probably
via inhibiting HMGB1 release and oxidative stress through the
NAD + /SIRT1 signaling. In a rat model of polymicrobial sepsis,
vitamin B6 was found to diminish neutrophil infiltration in the
both of lung and liver, oxidative markers in the liver and restore
catalase activity levels in the lung (Giustina et al., 2019). In
addition, vitamin B1 deficiency has been found in patients with
critically sepsis (Donnino et al., 2010). Several clinical trials have
reported that a combination of cortisol, vitamin C, and Vitamin
B1 prevent progressive organ failure, reduce mortality (Marik
et al., 2017; Kim et al., 2018) and ICU length of stay (Mitchell
et al., 2020) in critically ill patients with septic shock or severe
pneumonia. However, an recent single center, retrospective study
didn’t find that vitamin B1 and C supplementation improve
clinical outcomes (mortality rates, ventilator and ICU-free days)
in septic ARDS patients requiring invasive mechanical ventilation
(Yoo et al., 2020). Therefore, vitamin may be beneficial to
the treatment of sepsis, but much more researches will be
needed to verify the clinical benefit of vitamin on patients with
septic lung injury.

The above discussion showed that the changes of the
intestinal flora and its metabolites can affect the severity
of septic ALI/ARDS by regulating the levels of local and
systemic inflammation, oxidative cellular stress, and cell
infiltration/activation.

Effect of Sepsis-Related Intestinal
Failure on the Lung
Structural and functional disruption of intestinal barrier integrity
in sepsis leads to increased intestinal permeability (Jones and
Neish, 2021). Three factors contribute to intestinal barrier
damage: visceral hypoperfusion or ischemia, restoration of
intestinal blood flow during resuscitation leading to ischemia-
reperfusion injury, and loss of the intestinal barrier function,
which allows bacteria, endotoxins, or both to cross the mucosal
barrier (Otani and Coopersmith, 2019). Bacterial translocation
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can activate local intestinal inflammatory responses, producing
DAMPs, which enter the systemic circulation through mesenteric
lymphatic vessels. DAMPS are recognized by cells expressing
intrinsic pattern receptors in the intrinsic immune system,
including macrophages, white blood cells, and dendritic cells,
then secreting pro-inflammatory factors that promote lung
injury and the development of MODS, which further aggravate
intestinal barrier injury and lead to a vicious cycle (Pugin and
Chevrolet, 1991; Figure 3).

Macrophages, commonly polarized into M1 (pro-
inflammatory) and M2 (anti-inflammatory) types according to
responses to environmental stimuli, are key orchestrators in the
pathogenesis of ALI/ARDS (Shapouri-Moghaddam et al., 2018).
In the acute phase of sepsis, macrophages polarize into the M1
phenotype to activate TLRs or other recognition receptors due
to impaired intestinal barrier function, bacterial translocation,
and increased inflammation (Osterberg et al., 1997), releasing
a variety of inflammatory cytokines, such as IL-1β, IL-6, and
TNF-α. Proinflammatory factors induce the recruitment of
neutrophils in the blood circulation, then migrate to the lungs
and alveolar cavities, resulting in lung injury. Accumulating
evidence indicates that some natural or synthetic materials
can ameliorate the prognosis of sepsis-induced ALI in animal
models by inhibiting pulmonary M1 polarization and altering
the macrophage function (Bittencourt-Mernak et al., 2017;
Pinheiro et al., 2017; Wang et al., 2018, 2019; Zhuo et al.,

2019). Thus, the regulation of macrophage polarization from
M1 to M2 may be a novel therapeutic strategy of ALI/ARDS
(Chen et al., 2020).

Prospect
As the intestinal barrier plays an important role in sepsis-induced
lung injury, targeted microbiota has the potential for prevention
and treatment of lung injury. Fecal microbiota transplantation
(FMT) can help the recipient to establish a normal intestinal
microecological environment and may be considered a useful
therapy for sepsis in the future. In the last few years, FMT has
made great strides in correcting microbiota disorders, repairing
the intestinal barrier, and regulating immunity (Ooijevaar et al.,
2019). In the intervention of FMT in lipopolysaccharide (LPS)-
induced ALI, anti-inflammatory and antioxidant mechanisms
may play an important role. FMT intervention could correct
the changes in the intestinal flora and improve lung injury
by inhibiting the activation of the PI3K/AKT/NF-κB signaling
pathway and decreasing the expression of intercellular cell
adhesion molecule-1 (ICAM-1; Yin et al., 2019). In addition,
FMT significantly reduces the TNF-α, IL-1β, and IL-6 levels as
well as inflammatory cell infiltration and interstitial exudate,
thereby improving LPS-induced endotoxic ALI in rats, which is
associated with the decreased expression of TGF-β1, Smad3, and
P-ERK (Li et al., 2020). In the LPS-induced ALI mouse model

FIGURE 3 | Effect of sepsis-related intestinal failure on the lung. Bacterial dysbiosis can activate local intestinal inflammatory responses, producing DAMPs, which
enter the systemic circulation through mesenteric lymphatic vessels. Immune cells recognize DAMPs and secreting pro-inflammatory factors that promote lung injury.
DAMPs: danger-associated molecular patterns.
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of intestinal microbiota imbalance pretreated with antibiotics,
an increased diversity of the intestinal flora and abundance of
beneficial bacteria producing SCFAs that antagonize acute lung
injury was observed by reconstructing the intestinal flora through
FMT. This inhibits the activation of the TLR4/NF-κB signaling
pathway in the lung, inflammation, and the release of oxidative
stress factors in ALI animals (Tang et al., 2021). Therefore, FMT
therapy can be used in the treatment of lung disorder during
sepsis. However, existing research in this field remains limited to
animal experiments. More basic trials are needed to clarify the
mechanisms of FMT in lung injury, as well as large clinical trials
to evaluate the efficacy and safety of FMT therapy.

CONCLUSION

Many aspects of lung injury in sepsis have not been thoroughly
studied, and the interaction between intestine and lung in sepsis
is still a promising research direction. During septic lung injury,
the expression of intestinal tight junction protein, the activity of
MLCK, and the regulation of IECs proliferation and apoptosis
are altered by cytokine storm, leading to gut hyperpermeability.

Increase of the intestinal permeability leads to the translocation
of gut microbiota, resulting in intestinal inflammation and a
cascade of inflammatory reactions driving acute lung injury.
Moreover, lung dysbiosis in sepsis-induced ALI/ARDS may
cause gut dysbiosis. And the changes of the intestinal flora and
reduction of beneficial metabolites in sepsis promote lung injury
exacerbation by regulating local and systemic inflammation.
Persistent inflammation leads to devastating consequences.
Theoretically, therapies that restore the intestinal integrity,
microbiome, and homeostasis balance between the two systems
through FMT are efficient, but so far basic research and clinical
trials are not sufficient. An in-depth understanding of gut–lung
crosstalk may provide clues for the regulation of homeostasis in
sepsis and contribute to the development of effective therapies to
prevent sepsis-induced ALI/ARDS.
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