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Background: The incidence of hepatocellular carcinoma (HCC) is rising worldwide, and
there is limited therapeutic efficacy due to tumor microenvironment heterogeneity and
difficulty in early-stage screening. This study aimed to develop and validate a gene set-
based signature for early-stage HCC (eHCC) patients and further explored specific marker
dysregulation mechanisms as well as immune characteristics.

Methods: We performed an integrated bioinformatics analysis of genomic,
transcriptomic, and clinical data with three independent cohorts. We systematically
reviewed the crosstalk between specific genes, tumor prognosis, immune
characteristics, and biological function in the different pathological stage samples.
Univariate and multivariate survival analyses were performed in The Cancer Genome
Atlas (TCGA) patients with survival data. Diethylnitrosamine (DEN)-induced HCC in Wistar
rats was employed to verify the reliability of the predictions.

Results:We identified a Cluster gene that potentially segregates patients with eHCC from
non-tumor, through integrated analysis of expression, overall survival, immune cell
characteristics, and biology function landscapes. Immune infiltration analysis showed
that lower infiltration of specific immune cells may be responsible for significantly worse
prognosis in HCC (hazard ratio, 1.691; 95% CI: 1.171–2.441; p = 0.012), such as CD8
Tem and cytotoxic T cells (CTLs) in eHCC. Our results identified that Cluster C1 signature
presented a high accuracy in predicting CD8 Tem and CTL immune cells (receiver
operating characteristic (ROC) = 0.647) and cancerization (ROC = 0.946) in liver. As a
central member of Cluster C1, overexpressed PRKDC was associated with the higher
genetic alteration in eHCC than advanced-stage HCC (aHCC), which was also connected
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to immune cell-related poor prognosis. Finally, the predictive outcome of Cluster C1 and
PRKDC alteration in DEN-induced eHCC rats was also confirmed.

Conclusions: As a tumor prognosis-relevant gene set-based signature, Cluster C1
showed an effective approach to predict cancerization of eHCC and its related immune
characteristics with considerable clinical value.
Keywords: early-stage hepatocellular carcinoma (eHCC), immune cells, PRKDC, prognosis, gene-set signature
INTRODUCTION

Liver cancer is the fourth leading cause of cancer-related deaths
worldwide (1). Hepatocellular carcinoma (HCC) accounts for
more than 90% of liver cancers and is non-negligible reason of
most patients’ death (2). Over the past 20 years, the detection of
patients with HCC was increased, and surgical resection
obviously ameliorated the 5-year overall survival (OS) (3),
while even in these cases, the high recurrence ratio and no
effective adjuvant therapies presently available are common (4).
Moreover, the metastasis strength is responsible for most HCC-
associated morbidity and mortality (5, 6). Investigation of
molecular and systematic mechanisms of HCC may be useful
to predict early-stage HCC (eHCC) and prevent the progress to
advanced stage. The HCC tumorigenesis and metastasis are
multistep processes and are known to be regulated by tumor
immune microenvironment (7, 8). Although immune disorder in
HCC has been well studied (9, 10), the dysregulated tumor
immune microenvironment in eHCC is still far from clarified,
especially in immune cell conditions. A better understanding of
how specific cellular tumor transcriptome functions contribute
to HCC stratification and specific tumor microenvironment
(TME) is needed to enable customized treatment design and
novel immunotherapy exploitation.

Oncogene-driven immune mediators allow tumor cells to
immune evasion and thrive in the TME (11). Most studies of
HCC showed that oncogene expression is associated with
patients’ OS, somatic driver mutations, and abnormal immune
cells (12, 13), but whether heterogeneity in different subtypes of
HCC can be stratified by gene set-based signature has not been
well established. Furthermore, genetic alteration-related gene
expression plays an important role in HCC formation, which
was also significantly higher in eHCC (14). Studies have shown
that the treatment response and survival outcome of HCC
patients not merely depend on tumor stage but also are
associated with TME heterogeneous and molecular features
(15–18). Strategies to identify the subset of HCC likely to have
different transcriptome and immune characteristics are
important for diagnosis and additional clinical therapy (19–
21). Biomarkers, especially gene expression in tumor tissues,
are reliably related to HCC prognosis and TME characteristics
(22, 23). Recently, the higher mutation of PRKDC has
been regarded as a new target for checkpoint blockade
immunotherapy, which was identified as one of the top most
frequently mutated DNA repair genes in liver cancer (24). In
addition, knockout PRKDC has shown the ability to enhance
2

anti-PD-1 antibody treatment in tumor models (24). Therefore,
the further analysis based on large and comprehensive datasets in
combination with more potential markers may provide an
opportunity to identify signature for eHCC and to improve
personalized medicine.

The TME context, consisting of heterogeneous populations
including tumor cells themselves, infiltrating immune cells, and
secreted factors, has been reported to highly associate with tumor
progression, prognosis, and therapeutic responses (18, 25, 26).
The interaction between tumor cells and immune cells was
gradually recognized and then updated into the emerging
hallmarks of tumor until 2011 (27). In the liver, it is important
to distinguish between the TME of eHCC, a common condition
in primary HCC, and the TME of non-tumors. The TME
components based on computational evaluation have been
utilized to predict cancer prognosis and design more effective
therapeutic strategy (28–30), which also connects with tumor
subtype stratification (31). Recently, Zeng et al. established a
comprehensive TME model as a prognostic biomarker and
immunotherapeutic benefit indicator of stomach cancer (32).
To date, the comprehensive landscape of TME-related gene set-
based signatures in the eHCC has not yet been elucidated.

To address these issues, we stratify HCC according to clinical
stage and integrated multiple cohorts with gene expression data
to develop and validate individualized gene set-based survival,
and mutational and gene expression signature for eHCC.
Furthermore, the relationship between stratified HCC and the
TME immune characteristics was estimated to investigate the
immune-disorder mechanisms and therapeutic targets. Finally,
we applied eHCC rat models for experimental verification to
prove the stability and reliability of gene-set predictive value and
potential target.
MATERIALS AND METHODS

Samples and Clinical Data Description
We systematically searched for HCC gene expression that were
publicly available and reported with pathological stage
annotations. We downloaded the publicly available expression
data for filtering and analysis. In total, 18 eligible HCC cohorts
were divided into three groups according to the three different
expression platforms, as The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) (bulk RNAseq data),
Affymetrix Human Genome U219, and Affymetrix Human
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Genome U133. We downloaded the raw array Affymetrix®

“CEL” files (Table S7) from the Gene Expression Omnibus
(GEO) accession viewer and adopted a robust multiarray
averaging method with the affy package default parameters to
perform background adjustment and quantile normalization.
Gene expression values of all probes were adjusted by dplyr
software in each dataset. To identify the risk of HCC
development and most likely to suffer from genetic
dysregulation, we defined the eHCC (Bclc 0-A or early marker)
and advanced-stage aHCC (Bclc B-C or advanced marker)
patients in GEO dataset. As to datasets in TCGA and GTEx,
TCGA tumor and GTEx non-tumor sample RNAseq expression
data (transcripts per million reads (TPM) value) were
downloaded from the UCSC Xena browser; the data were
extracted and preprocessed with Toil workflow software in
default parameters [a reproducible, open-source scientific
workflow for big biomedical data analysis in UCSC (33)]. Toil
pipeline uses the single script to compute gene- and isoform-level
expression in multiple platforms, which can efficiently decrease
the batch effect with the normalized TPM value. The baseline
information of each eligible ESCA data was obtained from
TCGA, such as available follow-up time and pathological
stages. The eHCC (Stage I–II) and aHCC (Stage III–IV) from
TCGA dataset were used in the current study. The batch effects
between different datasets within the same platform were
adjusted by ComBat algorithm (34). Then, we use three
different platform data for analysis: 1) TCGA and GTEx;
2) Affymetrix Human Genome U219 platform: GSE63898; and
3) Affymetrix Human Genome U133 platform: GSE101685,
GSE45436, GSE6222, GSE62232, GSE6764, GSE9843,
GSE102079, GSE121248, GSE49516, GSE112790, GSE19665,
GSE29721, GSE45267, GSE58208, GSE84402, and GSE88839.

Somatic Mutation and Copy
Number Variation
The somatic mutation data (MuTect2) of TCGA LIHC patients
were also achieved from TCGA dataset (https://portal.gdc.
cancer.gov/) and summarized using maftools (35). For each
gene, the mutation frequency in corresponding eHCC patients
was ranked in order. The LIHC dataset from Affymetrix SNP 6.0
was applied for individual copy number variation (CNV)
analysis. The sequence data for the cis-expression quantitative
trait locus (cis-eQTL) study was filtered based on somatic
mutation files, and forward stepwise conditional analysis
implemented in MatrixEQTL was conducted (36).

Unsupervised Clustering for
Prognostic Subtypes
“Favorable prognostic genes” (n = 15) and “Poor prognostic
genes” (n = 38) were used as favorable prognosis genes and poor
prognosis genes, respectively. Consensus clustering was
evaluated on favorable prognosis and poor prognosis genes
with ConsensusClusterPlus (parameters: reps = 100, pItem =
0.8, pFeature = 1) (37). Ward.D2 and Spearman’s distances were
used for clustering algorithm and distance metric, respectively.
With selected Clusters C1 and C3, median expression levels of
Frontiers in Oncology | www.frontiersin.org 3
co-expressed favorable prognosis and poor prognosis genes were
used to assign quiescent (Cluster C1 ≤ 0, Cluster C3 ≤ 0), poor
prognosis (Cluster C1 > 0, Cluster C3 ≤ 0), favorable prognosis
(Cluster C1 ≤ 0, Cluster C3 > 0), and mixed (Cluster C1 > 0,
Cluster C3 > 0) subgroups to each sample. For each subgroup,
each of the sample was tested, computing a Fisher’s exact test to
determine whether Cluster C1/C3-based stratification functions
were significant in eHCC and aHCC patients.

Generation of Immune Cell Infiltration
We partially established a predictive immune infiltration pattern
from the immune cells metagenes, which were combined with
the sources reported by Ru et al. (38) and Bindea et al. (39). The
selected immune cell metagene includes 15 categories according
to T cell-related immune cells, such as regulatory T cells (Tregs),
dendritic cells (DCs), and subtypes of T cells. To quantify the
proportions of immune cells in the HCC samples, we used the
single-sample gene-set enrichment analysis (ssGSEA) algorithm
to evaluate the relative abundance of each cell infiltration from
three independent cohorts.

Correlation Between Cluster Gene
Signature and Other Related
Biological Processes
For crosstalk analysis of the different elements in HCC, we
integrated the Cluster gene signatures to further investigate its
function in subtypes of HCC, and we termed it as signature score.
The expression of each gene in the Clusters was first transformed
into a z-score. Then, a principal component analysis (PCA) was
used to predict selected Cluster gene signature, and principal
component 1 was extracted to serve as the signature score. This
approach has the advantage of focusing the score on the set with the
largest block of well-correlated (or anticorrelated) genes in the set
while down-weighting contributions from genes that do not track
with other set members. Subsequently, the estimated signature score
was used to infer the correlation between different clusters and
immune cell infiltration in subtypes of HCC. The correlation
coefficients were computed by Pearson’s test.

Construction of Overall Survival and
Prognostic Signature
After removal of the patients without complete clinical
information in TCGA, 365 samples with complete OS
information were finally obtained and used for further analysis.
Survival analysis associated with selected differentially expressed
genes (DEGs) was performed by the Kaplan–Meier analysis, and
the cutoff point of each dataset subgroup was determined using the
survminer R package. The “surv-cutpoint” function, which
iteratively tested all possible cut points in order to find the
maximum rank statistic, was adopted to dichotomize patients
into low- and high-risk groups based on the maximally selected
log-rank statistics to decrease the batch effect of calculation
(threshold filtering >30%). Meanwhile, according to cluster
subgroups, pathological stage, and immune infiltration, patients
were divided into multiple groups. The multivariate survival
curves for the above groups were generated via the Kaplan–
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Meier method and log-rank tests to determine significance of
differences. Moreover, based on “surv-cutpoint” function, we
obtained immune cells related a higher-risk group with
maximum rank statistic for poor prognostic signature analysis.
The poor prognostic signature frequencies were calculated by
maximum rank statistic in both tumor and non-tumor samples.

Functional and Pathway
Enrichment Analysis
The Gene Ontology (GO) function (40) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway (41) enrichment
regarding the DEG expression in different stratifications of
HCC were analyzed using the Clusterprofiler R package (42).
The GO function including biological process (BP), molecular
function (MF), and cellular component (CC). To explore the
underlying function between high- and low-immune infiltration
groups, GSEA (http://software.broadinstitute.org/gsea/index.jsp)
was implemented to determine the enrichment of a certain gene
rank in the pre-defined BPs. p < 0.05 was chosen as the cutoff
criterion. A developing R package enrichplot (https://github.
com/GuangchuangYu/enrichplot) implements several
visualization methods to help in interpreting enrichment
results and was adopted to visualize immune-relevant gene
clusters. Furthermore, we measure the functional similarity
among Cluster C1 proteins by ranking their average value
inside the interactome. Functional similarity, which is defined
as the geometric mean of their semantic similarities in BP, MF,
and CC aspects of GO, is designed for measuring the strength of
the relationship between each protein and its partners by
GOSemSim package (43) using the Wang method.

Protein–Protein Interaction
Network Analysis
The genomic association between Cluster C1 genes and PRKDC
was querying in STRING (44) and exploring their relevant
network, which was based on retrieval of interacting Genes/
Proteins. The combined score was generated from co-expression,
experimentally determined interaction, homology, database
annotation, and automated textmining.

Animal Model
Five-week-old male Wistar rats (Nomura Siam International,
Bangkok, Thailand) were housed and acclimated in specific
pathogen-free cages of laboratory animal center, Chiang Mai
University, under a 12-h light/dark cycle at 21°C ± 1°C and 50%
± 10% humidity. All animals had free access to food and water.
Quality of life of all animals was monitored during the
experiments according to the suggestion of the animal ethical
committee. For construction of HCC model, rats were
intraperitoneally injected with diethylnitrosamine (DEN;
Sigma) at 50 mg/kg (b.w.) once a week and were continuously
housed without DEN induction for 4 weeks (defined as eHCC)
and for 8 weeks (defined as aHCC). For healthy rats, the rats were
intraperitoneally injected with normal saline (4 ml/kg, b.w.) once
a week for 4 weeks and were continuously housed without any
Frontiers in Oncology | www.frontiersin.org 4
induction for 8 weeks. At the time of sacrifice, rats were
anesthetized using isoflurane, and liver tissues were collected
for histological analysis and RNA sequencing. Animal
experiment has been approval by Animal Ethics Committee of
Chiang Mai University.

To verify our prediction in such HCC rat model, two rats per
group (normal, eHCC, and aHCC) were selected to perform
RNA sequencing. Selection criteria for eHCC and aHCC initially
relied on gross appearance of tumor nodules in the liver at the
time of sacrifice. Livers of DEN-induced rats without clear
appearance of tumor nodule was chosen as the eHCC model,
while that having several tumor nodules was chosen as the aHCC
model. In addition, H&E staining was also conducted to
investigate morphological change in each group.

RNA Isolation and Library Preparation
Total RNA from liver tissue of normal, eHCC, and aHCC rats
was isolated using NucleoSpin RNA Plus kit (Macherey-Nagel,
Catalog no. 740984.50). The quality and integrity of total RNA
were checked by an Agilent Bioanalyzer 2100 system and agarose
gel electrophoresis. After a quality control (QC) procedure was
performed to check quality and integrity of total RNA, mRNA
was purified using poly-T oligo-attached magnetic beads; and the
cDNA libraries were constructed, according to manufacturer’s
recommendations (Novogene Corporation, Beijing, China). All
libraries were sequenced using the Illumina HiSeq PE150
platform bp. The library construction and sequencing were
performed by the Novogene Corporation. The raw RNAseq
data were first processed by the Hisat2 software (default
parameters) to remove the rRNA contamination and filter the
user-specified adaptor sequences by Python. The purified data
were used for QC tool (tmkQC.py) with both quality check (base
threshold >20, proportion of low-quality bases in reads <10%)
and data processing capability. Then, the high-quality and clean
reads were aligned (mm10 mouse reference) with UCSC
assembly and aligned by Hisat2 software with default
parameters. Raw read counts for rat model were assigned to
gencode.vM23 genes. The gene expression values were fragments
per kilobase of exon per million mapped fragments (FPKM)
normalized by htseq-counts software and converted to TPM.

Statistical Analysis
All statistical analyses were performed using R (version 4.0.2)
with several publicly available packages and GraphPad Prism 8.0.
The Kruskal–Wallis tests were used to conduct difference
comparisons of three or more groups (45). IGV software was
used for sequencing data visualization (46). Correlation
coefficients between the expression of genes were computed by
Pearson’s and distance correlation analyses. The package pROC
(47) was used to construct receiver operating characteristic
(ROC) curves to ascertain the area under the curve (AUC) and
confidence intervals to estimate the diagnostic accuracy of
specific genes in eHCC and immune characteristics. p-Values
of less than 0.05 were considered statistically significant, and the
p-values were two-sided.
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RESULTS

Development and Identification of the
Specific Early-Stage Hepatocellular
Carcinoma Gene Set in The Cancer
Genome Atlas and Gene Expression
Omnibus Cohorts
At present study, we managed three major steps to establish
accurate and reliable gene-set signature for eHCC (Figure 1).
First, DEGs in both TCGA (train set) and GEO (validation set)
were filtered and integrated to conform those with higher
mutation frequency and significant prognosis. Then, selected
DEGs were clustered into three groups in the train set and
validated in the two independent validation sets. The significant
cluster group was further used for immune characteristics
analysis. Next, through the GO function analysis, we identified
the selected signature genes biological functions and interactions.
The core marker PRKDC-related expression, immune
characteristics, and genic alteration were also analyzed. Finally,
we construct HCC rat model; the sequencing data were used for
the validation of the signature and PRKDC functions and related
characteristics. The immune cell characteristics from different
subtypes of HCC and connection to the specific gene set-based
Frontiers in Oncology | www.frontiersin.org 5
signature were investigated. A total 879 patients with HCC and
529 non-tumor samples from 19 independent gene expression
datasets with available clinical information were applied for the
study (Table S1). DEN-induced HCC rat model was constructed
to verify the reliability of the predictions.

By investigating TCGA and GEO patients’mRNA expression,
three platform cohorts—1) TCGA&GTEx, 2) Affymetrix Human
Genome U219, and 3) Affymetrix Human Genome U133 DEGs
—were obtained, independently. After the three independent
cohorts of DEGs were integrated and overlapped, 686 DEGs were
obtained, among which 414 genes were upregulated and 272
downregulated (Table S2). The significantly altered gene
expression between HCC and non-tumor tissues across the
three independent cohorts was interactively compared using
the limma package. The detectable DEGs were identified with
the cutoffs |Log fold-change| > 1 and Benjamini–Hochberg-
adjusted p < 0.05. Somatic mutational profiles of 166 eHCC
and 49 aHCC patients from TCGA were analyzed. Overall, the
overexpressed and lower-expressed DEGs between two group
were presented in rank order (partly data not shown)
(Figure 2A). Apart from well-known driver oncogenes, we
identified the selected DEGs that possessed a significantly
altered somatic tumor mutation load in eHCC. Compared with
aHCC, upregulated-DEG PRKDC (11% vs. 8%), HERC2 (9% vs.
2%), BPTF (6% vs. 0%), MKI67 (5% vs. 2%), and MCMs (2% vs.
0%) were found to have a higher frequency of somatic mutations
in the eHCC patients, whereas downregulated-DEG mutation
frequencies were notably lower in eHCC patients, such as STAB2
(3% vs. 8%), PCDH9 (3% vs. 6%), SUTRPK6 (2% vs. 4%), and
MEFV (2% vs. 4%). The relationship between the tumor driver
mutation and different stages revealed that mutation burden was
most close to upregulated DEGs.

For commonly altered genes in eHCC, the survival analysis
via the Kaplan–Meier method revealed that the expression levels
of 53 DEGs were significantly associated with prognosis in
TCGA HCC. Among which, the polarized prognostic risk
signature between two types of DEGs was concurrent
(Figure 2B), including 38 poor prognosis indicators
(upregulated DEGs) and 15 favorable prognosis indicators
(downregulated DEGs) (Table S3). The PCA utilizing all
prognostic risk signature DEGs reveals clear separation for
eHCC/aHCC and non-tumor groups (Figure 2C). However,
the same trend was not observed for HCC patients in early
and advanced stages. To explore the biological behaviors among
these distinct DEG patterns, we performed gene-set variation
analysis (GSVA) enrichment analysis between three groups. As
shown in Figure 2D and Table S4, these were markedly enriched
in cell cycling carcinogenic activation pathways such as E2F-
target, PI3K/AKT/mTOR pathway, and Wnt/Beta-Catenin
pathway (48–50).
Dual Analysis of Prognostic Indicator Gene
Expression Identifies Subgroup Function
of Hepatocellular Carcinoma
In order to stratify eHCC and aHCC based on these prognostic
indicator gene expression levels, we utilized transcriptome data
FIGURE 1 | Flowchart of the study. Nineteen public HCC datasets
containing 1,408 tumor and non-tumor cases were included and categorized
into three independent cohorts according to the data platform. We developed
the eHCC-related gene-set signature in the training set and two validation
sets. Further, we integrated gene-set signature with immune characteristics,
prognosis, genic alteration, and biological functions to investigate the
prognostic value. HCC, hepatocellular carcinoma; eHCC, early-stage
hepatocellular carcinoma.
October 2021 | Volume 11 | Article 740484
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from TCGA and validated in GEO database. To enrich for
tumor-specific mRNA, filtering was performed to exclude the
non-tumor samples in three cohorts. Genes belonging to
reactome gene sets “upregulated DEGs” (n = 38) and
“downregulated DEGs” (n = 15) were selected for analysis.
Previous studies have demonstrated HCC heterogeneity in
gene expression, including metastasis, relapse, and prognosis,
between biologically distinctive tumor types (51, 52). To aid in
selecting genes co-regulated within each group and relevant to
subtypes of HCC, we applied consensus clustering to identify two
groups of robustly co-expressed upregulated DEGs (Cluster C1;
n = 13) and downregulated DEGs (Cluster C3; n = 15) to be used
for eHCC evaluation in TCGA (Figure 3A). The unsupervised
cluster results showed a concordance in both TCGA (Figure 3A)
and GEO datasets (Figure S1). In TCGA, the median expression
of Cluster C1 and Cluster C3 genes was calculated for each
sample and used in assigning one of four prognostic signature
Frontiers in Oncology | www.frontiersin.org 6
profiles associated with these to cluster subtypes: quiescent, poor
prognosis, favorable prognosis, and mixed (Figure 3B).
Expression levels of Cluster C1 and Cluster C3 genes across
the subgroups are presented in Figure 3C, including non-tumor
samples. The poor prognosis phenotype defined the largest
group of cases (137/365; 37.5%), over than mixed (30/365;
8.2%), quiescent (118/365; 32.3%), and favorable prognoses
(80/365; 21.9%) in TCGA dataset. Moreover, the proportion of
samples belonging to each subtype was statistically significant
(Fisher’s exact test p = 0.016) between aHCC and eHCC samples
(Table 1), and the poor prognosis phenotype of aHCC (45/91;
49.5%) is obviously higher than that of eHCC (92/274; 33.5%).

In order to determine if Cluster C1- and Cluster C3-based
DEGs have an impact on different subgroups of HCC, we
performed multi-Kaplan–Meier survival curves using the
identified four phenotypes in TCGA eHCC (log-rank test; p =
0.028) and aHCC (log-rank test; p = 0.034) (Figure 3D).
A

B D

C

FIGURE 2 | Identification of differentially expressed HCC-related genes and prognostic signature. (A) Mutational landscape of significant upregulated/downregulated
DEGs of HCC patients with two clinical pathological stages (left profile, eHCC; right profile, aHCC). The right panel is mutation frequency. The top panel shows
mutation load of each patients. The middle panel depicts mutation types color coded differently. The bottom panel displays clinical features such as tumor grade,
radiation, gender, and vital status. (B) Kaplan–Meier survival analyses of selective mutational DEGs. Top 10 mutational DEGs are shown in the graph, the top panel
shows upregulated DEGs, and bottom panel show downregulated DEGs. Patients are stratified into low (orange) and high (green) immune risk groups with a cutoff of
the maximum value from survminer package. Patients are stratified into low-risk (red) and high-risk (blue) groups with a cutoff of the maximum statistic value in
TCGA. (C) Principal component analysis (PCA) for the transcriptome profiles of significant prognostic DEG patterns, including eHCC, aHCC, and non-tumor groups.
(D) GSVA enrichment analysis showing the activation states of specific DEG biological process in distinct subgroups of HCC. The heatmap was used to visualize
these biological processes; and the brown color represents activated processes, and navy blue represents inhibited processes. The three independent cohorts were
used as sample annotations. Top: eHCC vs. aHCC. Bottom: eHCC vs. non-tumor. HCC, hepatocellular carcinoma; DEG, differentially expressed gene; eHCC, early-
stage hepatocellular carcinoma; aHCC, advanced-stage hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; GSVA, gene-set variation analysis.
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Notably, a poor survival outcome was observed in cases with
aHCC associated with the shorter median survival (log-rank test;
p < 0.0001, left). Moreover, Cluster C1 determined that poor
prognosis cases had the shortest median OS in both eHCC and
aHCC subgroups (Figure 3D, right panel). Meanwhile, Cluster
Frontiers in Oncology | www.frontiersin.org 7
C1 contributed to a worse OS in aHCC compared with eHCC
[hazard ratio (HR) = 2.943, p = 0. 0001]. In addition, quiescent
cases had the shorter OS in aHCC (HR = 1.756, p = 0.2873 vs.
mixed), while mixed cases showed a poor outcome than
quiescent in the eHCC group (HR = 1.016). Herein, Cluster C1
A B

D

C

FIGURE 3 | Stratification of HCC tumors based on significant prognostic DEGs. (A) Heatmap depicting consensus clustering solution (k = 3) for significant prognostic
DEGs (poor/favorable) in the advanced and early diagnostic HCC patients (n = 365). (B) Scatter plot showing median expression levels of Cluster C1 (x-axis) gene and
Cluster C3 gene (y-axis) in each HCC patient. Signature subgroups were assigned based on the relative expression levels of selected Cluster genes. (C) Heatmap
depicting expression levels of Cluster C1 and Cluster C3 genes across each subgroup in different pathological stages. (D) Kaplan–Meier survival analysis of early-stage
and advanced-stage HCC patients (left). Multiple survival curve analysis of advanced-stage (med) and early-stage (right) HCC divided by signature subgroup Cluster C1.
Log-rank test p-values are shown. HCC, hepatocellular carcinoma; DEG, differentially expressed gene.
TABLE 1 | The clusters defined phenotype in HCC stratification.

Stages Poor prognosis Mixed Quiescent Favorable prognosis c2 p-Value

eHCC 92 22 91 69 10.24 0.016
aHCC 45 8 27 11
October 2021
 | Volume 11 | Article
HCC, hepatocellular carcinoma; eHCC, early-stage HCC; aHCC, advanced-stage HCC.
740484

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Early-Stage Hepatocellular Carcinoma Genes
gene expression was mostly associated with changes in eHCC
development. Our results indicate selected prognostic signature
DEGs relevant to the tumor type stratification in HCC from
TCGA, where tumors with higher rates of these Cluster C1
dysregulation may be aggressive than those of Cluster C3
determined phenotype.

Construction of the Prognostic Gene
Signature and Immune Functional
Annotation
To identify the underlying biological characteristics of these
prognostic gene modification phenotypes in the eHCC, we fix
our attention on TCGA cohort and validated results in two GEO
cohorts, which comprised more than 590 eHCC, 210 aHCC, and
600 non-tumor cases and offered the most comprehensive
functional annotation. There were significant distinct patterns
of Cluster C1 and Cluster C3 signature in three proposed
subtypes of TCGA and consistent with the above outcomes
(Figure 4A). Higher Cluster C1 signature score was associated
with poor overall OS (Figure 4B). The stratification between
non-tumor, eHCC, and aHCC was significantly accompanied
with decreased Cluster C1 and increased Cluster C3 signature
score. Then, we evaluated the association between two clusters
and T cell-related immune cells infiltration from transcriptomic
data in both TCGA and GEO validation sets. The eHCC patients
were characterized by the type of dysregulated immune cells and
presented variable association with different cluster types;
Cluster C1 signature showed negative association with
activated CD8 T cell (CD8 Tam), Effector memory CD8 T cell
(CD8 Tem), and cytotoxic T cell (CTL) infiltration levels in
eHCC and aHCC groups and simultaneously presented positive
correlation in non-tumor group; Cluster C3 signature showed
positive association with CD8 Tam, CD8 Tem, and CTL
infiltration levels in eHCC, aHCC, and non-tumor groups
(Figure 4C). In addition, differences in clinical subgroups of
HCC were assessed in TCGA series, and a lower CD8 Tem and
CTLs level was significantly associated with tumor development
from normal to aHCC (Figure 4D). Consistent with these
findings, the correlation analyses between Cluster C1 signature
and CD8 Tem and CTLs in two GEO validation cohorts also
showed an inspiring result (Figure 4E), and the CD8 Tem and
CTLs also negatively associated with HCC development in two
independent cohorts (Figure 4F).

To further characterize and understand the immune cell
clinical differences among these HCC patients, we proposed
subdividing tumor into two subtypes as high-infiltration group
and low-infiltration group. Differences in the CD8 Tem- and
CTL-based molecular subtypes were evaluated in TCGA cohort,
and lower infiltration in HCC was significantly associated with
poor prognosis (HR, 1.606; 95% CI: 1.112–2.321; p = 0.002;
Figure 4G). The specific immune cell infiltration was also
investigated in between eHCC and aHCC patients to explore
whether the association of immune disorder affected the ability
of Cluster C1 to predict the eHCC and survival outcomes, and
the survival shortcoming of the low infiltration in both patients
who suffer from eHCC and aHCC was the most obvious
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(log-rank test; p < 0.0001) (Figure 4H). In addition, within the
mRNA expression of the eHCC and non-tumor samples, we used
CD8 Tem- and CTL-related high/low infiltration as a pattern
recognition variable. Based on 13 Cluster C1 members from
TCGA and 25 Cluster C1 members from GEO validation set 2,
the clustering and changing trends of each sample were visually
displayed on the PCA map (Figure 4I). Despite individual
variability, the graphics show appreciable separation of
infiltration condition between two cohorts.

We next interrogated TCGA and GEO validation cohorts’
prediction value with Cluster C1 and Cluster C3 signature. We
evaluated the diagnostic performance of two clusters in
discriminating the eHCC from non-tumor group. In TCGA
cohort, the analysis demonstrated that Cluster C1 (AUC =
0.946; 95% CI: 0.924–0.968) and Cluster C3 (AUC = 0.977;
95% CI: 0.963–0.99) signature possessed a high accuracy in
predicting eHCC (Figure 4J, upper left). Moreover, combining
Cluster C1 and Cluster C3 signatures improved the predictive
value compared with that of Cluster C1 or Cluster C3 alone in
both TCGA and GEO validation set 2 (Figure 4J, upper right).
We then evaluated the predictive value of Cluster C1 and Cluster
C3 signature in TCGA eHCC group; and the predictive value of
Cluster C1 (AUC = 0.647; 95% CI: 0.569–0.725) to CD8 Tem-
and CTL-related immune infiltration was also confirmed
(Figure 4J, lower left). Meanwhile, combining Cluster C1 and
Cluster C3 slightly improved the predictive value and presented a
similar tendency in three independent cohorts (Figure 4J, lower
right). Moreover, GO enrichment analysis of Cluster C1/C3
signature gene function in eHCC immune subgroups (TCGA)
was conducted using the R package clusterProfiler, which was
used to discover the potential regulatory relationships among
these signature genes in biological functions. The BPs with
significant enrichment are summarized in Table S6. These
Cluster genes showed distinct BPs between high- and low-
infiltration groups (Figure 4K), especially in cell cycling and
proliferation regulation in eHCC TME. Surprisingly, the PRKDC
showed enrichment of BPs remarkably related to transition of
mitotic cell cycle and DNA replication and break repairing-
related MCM family member genes (Figure 4L). Consistent with
Figure 2A of gene mutation frequency, the cell regulation
potential confirmed again that PRKDC played a non-negligible
role in the eHCC TME. These findings could demonstrate that
Cluster C1 signature and PRKDC modification patterns
potent ia l ly predict the eHCC and tumor immune
microenvironment formation.

Association of PRKDC Dysregulation and
Immune-Related Prognosis Risk
Interactomics holds great promise in understanding the
molecular mechanism of cells affected by biological factors. To
examine Cluster C1-related proteins and their protein–protein
interaction (PPI), the STRING database (53) was used to deduce
enriched proteins and generated a PPI network (Figure 5A). The
PPI network depicted functional attributes of PRKDC to Cluster
C1-related proteins, including CDC25C, MCM4, and TOP2A.
To further identify the essential of PRKDC interactome in
October 2021 | Volume 11 | Article 740484
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eHCC, we ranked Cluster C1 members by their average
functional similarity relationships within the interactome (54).
The MCM2/3/4 and PRKDC (cutoff value >0.54) were two types
of top-ranked proteins potentially playing central roles in Cluster
C1 (Figure 5B). PRKDC, which has not yet been previously
identified as an important partner of eHCC, has been previously
Frontiers in Oncology | www.frontiersin.org 9
reported to play an important role in HCC (55) and T cell-related
immunodeficiency (56). As the PRKDC possessed the highest
average functional similarity in our analyses, it is eligible for
further investigation.

Previous studies have identified that PRKDC genetic
alteration is associated with gene expression signature and
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FIGURE 4 | Characteristics of Cluster signatures in HCC immune environment and biological functions. (A) Distribution of Cluster C1 and Cluster C3 signature
scores in groups with different pathological stages (aHCC, eHCC, and non-tumor). The differences among groups were compared through the Kruskal–Wallis test
(Kruskal–Wallis, p < 0.001). (B) Kaplan–Meier survival analyses of Cluster C1 signatures scores (log-rank test, p < 0.001). (C) Correlations between Cluster C1/C3
signatures and 15 types of immune cell in different pathological stages patients from TCGA. Negative correlation was marked with gray and positive correlation with
orange. Red arrow indicates the potential immune cells associated with Cluster C1 signature. (D) The infiltration of CD8-Tam/Tcm/Tem and CTL immune cells in
three HCC groups from TCGA. Within each group, the scattered dots represent immune cell prediction values. The lines in the boxes represent median value. The
statistical difference of three groups was compared through the one-way ANOVA. (E) Correlations between Cluster C1 signature and 15 types of immune cells in
different pathological stage patients form GEO. Data from validation set 1 (upper) and set 2 (lower) platform were used. (F) The infiltration of CD8-Tem and CTL
immune cells in three HCC groups from GEO. Data from validation set 1 (left) and set 2 (right) platform were used. (G) Kaplan–Meier survival analysis of CD8-Tem/
CTL-based immune infiltration levels (log-rank test, p = 0.012). Red, high infiltration; green, low infiltration. (H) Kaplan–Meier curves for patients with eHCC/aHCC in
TCGA cohort stratified by CD8-Tem/CTL-based immune infiltration. Log-rank test shows an overall p < 0.0001. (I) Principal component analysis (PCA) for the
transcriptome profiles of Cluster C1 genes in different immune infiltration patterns from eHCC and non-tumor samples. (J) ROC curves measuring the predictive
value of Cluster C1, Cluster C3 (left), and combination of Cluster C1 and C3 (right) in eHCC diagnosis and CD8-Tem/CTL-related infiltration. (K) Functional
annotation for Cluster C1 genes between different infiltration groups in eHCC patients. The color depth of the barplots represents the number of genes enriched.
(L) Subnetworks that contain higher selective marker-regulated nodes implicated in the biological functions. The grade of the color represents the expression level of
genes. Count size indicates the nodes enriched in each category. *p < 0.05; **p < 0.01; ***p < 0.0001; ns, no significant difference. HCC, hepatocellular carcinoma;
aHCC, advanced-stage hepatocellular carcinoma; eHCC, early-stage hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CTL, cytotoxic T cell; GEO, Gene
Expression Omnibus.
October 2021 | Volume 11 | Article 740484

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Early-Stage Hepatocellular Carcinoma Genes
influenced immune cell-related immunodeficiency (24, 55–57).
To determine oncogenic events across the different subgroups,
we investigated the indels and CNVs affecting gene expression
in eHCC. There was a moderate correlation of the expression of
PRKDC genes with copy number-altered values in TCGA
cohort, which presented a higher correlation in eHCC
(Spearman’s correlation rho = 0.2, p = 0.012) compared with
aHCC (Spearman’s correlation rho = 0.04, p = 0.77)
(Figure 5C). Meanwhile, we noted a significant increase of
PRKDC expression between eHCC and non-tumor samples,
which was associated with single-nucleotide polymorphism
(SNP). The eQTL analysis observed that snp_01 site (statistics r:
2.263; b-Score: 2.726) and snp_07 site (statistics r: 1.952; b-Score:
2.355) were positively associated with PRKDC expression in
eHCC (Figure 5D). Furthermore, poor prognostic signature
analysis based on the obtained different immune cells profile in
adaptive and innate immunity, as well as pathological stages and
Frontiers in Oncology | www.frontiersin.org 10
PRKDCCNVs, was examined in TCGA. Each type of immune cell
corresponding maximum rank survival statistic was selected as a
poor prognostic indicator and dichotomized the HCC and non-
tumor samples. In TCGA cohort, the CD8 Tem (40% vs. 34%) and
CTLs (55% vs. 53%) related risk frequencies were higher in the
PRKDC genetic altered group of HCC patients (Figure 5E).
Concurrently, the CD8 Tem (non: 22%, early: 34%, advanced:
45%) and CTLs (non: 21%, early: 51%, advanced: 62%) were
observed to have lower risk frequencies in non-tumor and eHCC,
compared with aHCC (Figure 5F).

Evaluation of Gene-Set Signature and
PRKDC in Different Hepatocellular
Carcinoma Rats
Next, we used the DEN-induced rat eHCC to test if Cluster C1
and PRKDC play prior roles in tumorigenesis. The application of
DEN has an irreversible carcinogenic effect in rodents (58). In
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FIGURE 5 | Identification of PRKDC dysregulation in eHCC and immune-related poor prognostic signatures. (A) The PPI network analysis of Cluster C1-related
differentially expressed proteins. Thicker lines and deeper color represent the closer association between each other. (B) Summary of functional similarities of Cluster
C1 genes. The distributions of functional similarities and ranked central proteins are summarized as boxplots; lines in the boxes indicate the mean of average value.
(C) Scatter plots depicting the positive correlation between PRKDC expression and copy number variation in patients with eHCC and aHCC. Pearson’s correlation
coefficient is shown in the graphs. (D) Cis-eQTLs for PRKDC in two subgroups of HCC patients. Significant novel SNPs are indicated by the red mark and labels (*).
The statistics used is correlation coefficient “r”; and b-Score is the confidence index. The red line corresponds with a threshold of p ≤ 0.05. (E) Immune cell-related
poor prognostic signature profiles. Comparison of immune cell-related poor prognostic signature profiles in HCC patients with altered PRKDC (n = 204) versus non-
altered PRKDC (n = 161). Alteration including somatic mutation and copy number amplification, gain, and shallow deletion. Gray bars indicate the percentage of
patients having immune cell-related poor prognostic signature in altered-PRKDC HCC group, while the gray bars represent the percentage in non-altered PRKDC
group. (F) Comparison of immune cell-related poor prognostic signature profiles in three pathological stage patients: eHCC (n = 91), aHCC (n = 274), and non-tumor
(n = 161). Black bars represent the percentage of aHCC patients, gray bars represent the percentage of eHCC patients, and gray bars represent the percentage of
non-tumor samples. Immune cell signatures were classified to adaptive and innate. eHCC, early-stage hepatocellular carcinoma; PPI, protein–protein interaction;
aHCC, advanced-stage hepatocellular carcinoma; eQTL, expression quantitative trait locus; SNP, single-nucleotide polymorphism.
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addition, repeated injection of low-dose 50 mg/kg DEN could
generate the disease that more closely resembles the human
pathology. H&E staining demonstrated a clear morphological
change of eHCC and aHCC, compared with normal (Figures 6A,
B; Figure S2). Overall, we observed that Cluster C1 from TCGA
presented a higher signature score in eHCC and aHCC groups
compared with control group, which presented an adverse effect
on human health and accelerates HCC malignant behaviors
(Figure 6C). In addition, the higher level of PRKDC can be
significantly detected in eHCC/aHCC compared with normal rat
tissue (p = 0.0036) (Figure 6D). The immune characteristics
Frontiers in Oncology | www.frontiersin.org 11
and dysregulation of biomarker gene expression are very
common and typically have a profound impact on the TME.
Unexpectedly, our result found that the CD8 Tem and CTL cell
infiltration level were obviously decreased in the eHCC/aHCC
rat groups and negatively associated with PRKDC expression
(Figure 6E). In the context of PRKDC dysregulation, structural
alteration results in their genomic mutation and substantial
tumor-regulating roles in eHCC pathogenesis. In support of
this hypothesis, evaluating the mRNA transcripts discovered
read count amplification and nucleotide alterations in the three
exon regions of eHCC/aHCC compared with normal rat tissues
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FIGURE 6 | Cluster C1 signature and PRKDC characteristics of HCC in vivo. (A, B) Liver tissue of aHCC rats; H&E staining demonstrates clear lesions in hepatic
nodules, composed of pleomorphic cells with prominent glandular and trabecular formation, as well as eosinophilic focus of cellular alteration with pale pink cytoplasm.
(C) Relative Cluster C1 signature quantification in DEN-induced eHCC rat model, compared with aHCC and normal. TPM value was applied for gene expression
comparison. (D) Relative mRNA quantification of PRKDC in DEN-induced eHCC rat model. TPM, transcripts per million reads. ** indicates p = 0.0032. (E) Evaluation of
CD8 Tem and CTL infiltration level and relationship to PRKDC in eHCC rat model. Red represents immune status, and blue represents infiltration grades. (F) Landscape
of PRKDC genomic map in three groups of HCC rat models. Three high-frequency nucleotide variation regions of PRKDC were selected to be displayed in the windows.
Different alteration tendencies of A/T/G/C were colored with red, green, gray, and blue. The height of the bar represents the read count number. The splice junction track
between the different exon was connected by an arc. HCC, hepatocellular carcinoma; aHCC, advanced-stage hepatocellular carcinoma; DEN, diethylnitrosamine; eHCC,
early-stage hepatocellular carcinoma; CTL, cytotoxic T cell.
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(Figure 6F). The splice junction track shows the exon interaction
in the genomic landscape map. The above results, in line with our
prediction in public datasets, confirm that, in the eHCC
development, unsupervised Cluster C1 signature and PRKDC
dysregulation were important predictors and associated with
CD8 Tem and CTL characteristics in TME.
DISCUSSION

In the present study, we showed increased gene expression and
mutation in eHCC in association with tumorigenesis and
immune milieu, supporting dysregulated specific metagene
and immune cells as potential mechanism and predictors.
Having demonstrated the tumor-specific DEGs of Cluster C1,
the prior role of PRKDC was found to be associated with CD8
Tem and CTL infiltration levels in eHCC. Of note, we observed
that increased Cluster C1 signature and decreased CD8 Tem and
CTLs were both independent poor prognostic factors for survival
in HCC patients. Due to the absence of specific symptoms in
eHCC and the lack of early diagnostic markers, most patients
with HCC are often diagnosed in an advanced stage with poor
prognosis (59, 60), identifying that the characteristics of HCC
initiation and development in the genomics and immune
environment will contribute to enhancing our understanding
of novel diagnostic markers for eHCC and TME pattern and
guiding more effective immunotherapy strategies.

The role of the tumor field effect of genomic instability and
oncogene overexpression in HCC has gained much interest in
recent years (61–63), and currently an altered TME is considered
a promoter of cancer (64, 65). Although under physiologic
conditions immune disorder is an adaptive response to genetic
alteration (66, 67), when the immune disorder stimuli persist, the
non-resolved immunodeficiency contributes to carcinogenesis
(15, 68). Along with these lines, the concept of genetic alteration
and tumor immune microenvironment, such as TP53/GATA4
mutation, CXCL10 expression, and infiltrating immune cells
(monocytes, T, B, and NK cells), has been previously
associated with cancerization in the liver (61, 69, 70). With this
study, we provide a comprehensive description of a diagnostic
signature and immune microenvironment characteristics
underlying the eHCC. To this end, we first identified 414
upregulated and 272 downregulated DEGs related to HCC
development, as well as constructing mutational significance
with eligible sample to define new biologically and clinically
relevant genes not previously appreciated. From the 77 DEGs
that were shown to have a higher mutation level and an
association with OS, 53 feature genes were further screened.
The analysis showed that PRKDC possessed the highest
mutation frequency in the eHCC group compared with the
aHCC group, which also significantly associated with poor OS
in HCC patients (HR = 1.79, 95% CI: 1.26–2.53). This finding is
in line with previous reports suggesting that PRKDC mutation
was closely connected to various tumors (24). However,
integrated analysis of these feature gene expression revealed
Frontiers in Oncology | www.frontiersin.org 12
the difficult to stratify the pathological stage and functional
annotation in the HCC patients. At the same time, we
recognize that the more rigorous approach should be used to
split the data into different groups with acceptable statistical
power (71, 72).

The heterogeneity in HCC gives rise to distinct
tumor subclasses based on environmental factors, genetic
heterogeneity, inflammation, and immune infiltration (73–76),
leading to a growing interest into translating this information
into clinical practice for HCC treatment and prediction, as well
as developing the personalized therapies based on unique
intrinsic molecular signatures. To identify the most promising
candidates for eHCC diagnosis, we conducted the patient-based
unsupervised analysis using a compendium of feature gene sets
recapitulating the tumor’s specific molecular signature in three
independent cohorts. The association between poor and
favorable prognosis DEG expression and expression level of
Cluster C1/C3 genes provides a biological significance to HCC
stratification and supports targeting tumor specific markers as a
mean to reprogram an aggressive tumor type. Importantly,
Cluster C1 (upregulated DEGs) expression showed a better
ability in distinguishing HCC stratification, which is
significantly associated with the shortest OS in aHCC/eHCC
subgroups and poor prognosis in aHCC compared with eHCC.
Meanwhile, the survival benefit associated with Cluster C3
expression (downregulated DEGs) could be an indirect
evidence to support the prior role of Cluster C1. Therefore, the
correlation of Cluster C1 expression and prognostic subtypes
corroborated the role of unique molecular signatures in tumor
development in HCC.

Emerging data support the idea that the TME cells play a
crucial role in liver cancerization, HCC development,
chemoresistance, and recurrence (15, 77–80). Here, we
revealed a comprehensive landscape of crosstalk between the
specific prognostic clusters, clinical characteristics of HCC, and
immune cell infiltration. With the help of several computational
algorithms, integrated analysis revealed that Cluster C1 not
merely act as a prognostic biomarker for eHCC but also
significantly associated with immune cell dysregulation in
patients of different clinical subtypes. Patients with a lower
level of CD8 Tem and CTLs and presented immunosuppressive
nature of HCC TME and reduced protection against external
stimulus (81–83) were significantly related to Cluster C1
signature scores in eHCC. Moreover, lower T lymphocyte
infiltration in HCC was previously reported to associate with
innate immunosuppression and tumor mutation burdens, such
as Tregs, cytokines (TGF-b and IL-10), and marker gene
mutation frequency (84–86). Considering the changes in the
TME between non-tumor and HCC (87, 88), our Cluster C1
signature has shown a predictive advantage in distinguishing
the specific eHCC immune cell (CD8 Tem and CTLs)
infiltration level from non-tumor samples. In this respect, in
line with previous studies (89–92), these two immune cells
(CD8 Tem and CTLs) markedly elucidated the immune
characteristics of HCC initiation and progress, which has also
shown benefit in improving patient prognosis in both eHCC
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and aHCC. Therefore, we infer that the effect of Cluster C1
signature on the eHCC patients is probably related to the
remodeling of specific immune cells in the TME. By applying
ROC curve analysis (47), we also demonstrated the predictive
value of Cluster C1 signature for the liver cancerization and the
CD8 Tem/CTL-based immune infiltration in three separate
cohorts of patients with eHCC. Of note, combining Cluster
C1 and C3 signaling can slightly improve the prediction
accuracy, although diagnostic accuracy of Cluster C3
signature alone was not acceptable. Taken together, these
results provide new insights for immune cell omics research
on the mechanism by specific genes regulating the survival of
eHCC patients.

To explore potential therapeutic target mechanism for
HCC patients with poor immune infiltration, we further
performed biological functional analysis using gene expression
data from TCGA. The result of Cluster C1 gene-set showed that
the core molecular PRKDC and its associated genes were
significantly correlated with the cell cycling and DNA
replication. Previous studies indicated that both cell cycling
and DNA replication impairment were related to T-cell
inhibition and tumor cell death (93–95). Furthermore, our
verification in TCGA-HCC patients confirmed that PRKDC
dysregulation was mostly associated with its genomic
instability, especially in eHCC patients. In addition to the
transcriptional regulation, SNPs in eHCC are also significant
cis-eQTLs for the PRKDC expression. The SNP locus in cancer
was demonstrated to influence the checkpoint gene-related
immune disorder and target gene expression (96, 97),
suggesting that the locus variation has important role link
between gene expression and tumorigenesis. At present, the
PRKDC heterozygous mutation has been reported to impair
the DNA double-strand break (DSB) repair and contribute to
immunodeficiency (57). Not surprisingly, the PRKDC genetic
alteration is emerging as a predictive biomarker and drug target
for anti-tumor immunotherapy in various malignancies (24).
The PRKDC mutation in patients exhibited a skewed cytokine
response typical of Th2 and Th1 cells (56) and influenced the
immune responses (98). Moreover, higher PRKDCmutation and
expression were correlated with ER− breast cancer immune
pathway functions (99). In HCC, PRKDC expression was
proved to be associated with shorter OS and immune cell
infiltration (100). Our finding is interesting given the
important role of PRKDC in specific immune cells (CD8 Tem
and CTL)-related poor survival rate in the context of elevated
CNV in HCC patients. Consistent with this, for CD8 Tem and
CTLs, the lower prognostic frequencies suggested the immune
cells’ clinical effects in initiation and progression of HCC. On
the other hand, in DEN-induced eHCC rat model, our
experimental verification confirmed that both Cluster
C1 signature and PRKDC expression were shown to be
positively associated with tumorigenesis, as well as
downregulated CD8 Tem and CTL infiltration level. In
principle, somatic mutation shows its primary effects on the
expression of cancer-relevant genes in tumorigenesis, indicating
that it is a powerful driver of intratumoral heterogeneity and
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progression (101). Thus, the evaluation of PRKDC genomic
instability and expression to enable a better understanding of
tumorigenesis is an effort to provide fresh and novel insights for
developing a biomarker in combination with bioinformatics
prediction. Taken together, the preliminary findings suggest a
diversity in HCC TME, offering a comprehensive view of the
relative level of immune subtypes and providing insights about
the crosstalk between specific target genes, eHCC, and
immune characteristics.
CONCLUSION

In conclusion, we identified a gene set-based prognostic
signature using a large number of individuals and effectively
differentiate the eHCC from aHCC and non-tumor controls with
a high accuracy. Our study demonstrated that the eHCC was
characterized by specific immune cell disorder, namely, CD8
Tem and CTLs, both of which were closely associated with
Cluster C1 signature. Of note, given the correlation among the
genome instability, PRKDC expression, and immune cell-related
poor prognostic signature, PRKDC can be a potential candidate
to HCC patients’ early diagnosis and selection for immunotherapy.
These findings have implications in specific gene-signature
and tumor immune environment characteristics in HCC
patient stratification and could be of benefit in developing
novel immunotherapies.
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Supplementary Figure 1 | (A). Heatmap depicting consensus clustering solution
(k = 3) for significant prognostic DEGs (poor/favor) in the advance and early
diagnostic HCC patients (n = 365). Scatter plot showing median expression levels of
poor-prognosis (x-axis) gene and favor-prognosis gene (y-axis) in each HCC
patients. Signature subgroups were assigned based on the relative expression
levels of selected Cluster C1 and Cluster C3 genes. Heatmap depicting expression
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levels of Cluster C1 and Cluster C3 genes across each subgroup in different
pathological stages. (B), Heatmap depicting consensus clustering solution (k = 3)
for significant prognostic DEGs (poor/favor) in the advance and early diagnostic
HCC patients (n = 365). Scatter plot showing median expression levels of poor-
prognosis (x-axis) gene and favor-prognosis gene (y-axis) in each HCC patients.
Signature subgroups were assigned based on the relative expression levels of
selected Cluster C1 and Cluster C3 genes. Heatmap depicting expression levels of
Cluster C1 and Cluster C3 genes across each subgroup in different pathological
stages. (C). Overlap of cluster C1 and C3 genes in TCGA and two GEO datasets.

Supplementary Figure 2 | Histopathological changes in the livers from DEN
induced rats and control rat. (A), liver tissue from control rat; H&E staining revealed
normal cellular architecture where hepatocytes are arranged in cell plates separated
by sinusoids rat, (B), Liver tissue of eHCC rat; H&E staining demonstrated
eosinophilic focus of cellular alteration (left) including small cell change (middle), and
clear cell focus of cellular alteration (right).
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clinical information.
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Supplementary Table 3 | Overview of 53 differently expressed genes detail.

Supplementary Table 4 | Enrichment of DEGs in different stage HCC patients.

Supplementary Table 5 | Fisher’s test of the cluster subtype.
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