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Multiclass classification of breast 
cancer histopathology images 
using multilevel features of deep 
convolutional neural network
Zabit Hameed1*, Begonya Garcia‑Zapirain1, José Javier Aguirre2,3,4 & 
Mario Arturo Isaza‑Ruget5

Breast cancer is a common malignancy and a leading cause of cancer‑related deaths in women 
worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. 
To this end, histopathological diagnosis is usually followed as the gold standard approach. However, 
this process is tedious, labor‑intensive, and may be subject to inter‑reader variability. Accordingly, 
an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a 
deep learning approach to automatically classify hematoxylin‑eosin‑stained breast cancer microscopy 
images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected 
dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) 
network to retrieve robust and abstract features from input images. First, we optimized the proposed 
model on the original (unnormalized) dataset using 5‑fold cross‑validation. Then, we investigated its 
performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane 
stain normalization. For original images, our proposed framework yielded an accuracy of 98% along 
with a kappa score of 0.969. Also, it achieved an average AUC‑ROC score of 0.998 as well as a mean 
AUC‑PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity 
of 96% and 99%, respectively. For normalized images, the proposed architecture performed better 
for Makenko normalization compared to the other three techniques. In this case, the proposed model 
achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average 
AUC‑ROC score of 0.997 and a mean AUC‑PR value of 0.991. Especially, for in situ carcinoma and 
invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that 
our proposed model outperformed the baseline AlexNet as well as state‑of‑the‑art VGG16, VGG19, 
Inception‑v3, and Xception models with their default settings. Furthermore, it can be inferred that 
although stain normalization techniques offered competitive performance, they could not surpass the 
results of the original dataset.

According to Global Cancer Statistics 2020, breast cancer is the most common malignancy and the primary 
cause of cancer-related mortalities in the female population  worldwide1. Specifically, 2.26 million (11.7% of the 
total cancer incidence) women were diagnosed, with a mortality of 0.69 million (6.9% of the total cancer deaths) 
during  20201. Therefore, the premature understanding of breast tumor pathophysiology is crucial, which may 
help in reducing the morbidity and mortality rates in women worldwide. This malignancy is considered a het-
erogeneous collection of diseases with distinct biological, clinical, and treatment response  behaviors2. It mainly 
occurs due to abnormalities in the epithelial tissues of the breast and may invade the adjacent stroma, mammary 
duct, or  lobes3. The routine clinical analysis of breast cancer can be carried out by exploiting numerous radiology 
images, including ultrasound, mammography, and Magnetic Resonance Imaging (MRI)4,5. Nevertheless, these 
non-invasive methodologies might not characterize the heterogeneous behaviors of breast tumors effectively. 
Therefore, the pathological study is followed as a benchmark to comprehend the pathophysiology of breast 
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tumors. In this method, tissue samples are collected and mounted on glass slides, and subsequently stained 
these slides for a better portrayal of tumoral morphological and inmunophenotypical  characteristics6. After that, 
pathologists proceed with the microscopic examination of these slides to conclude a possible diagnosis of breast 
 cancer6. The complete steps of the histopathological procedure have been discussed  in7  and8.

However, the manual interpretation of histopathology images can be a tedious and time-consuming process, 
and may lead to biased results. Moreover, the morphological criteria used during the manual analysis depend on 
the domain experience of the pathologists involved. For instance, one study revealed that the overall concordance 
rate of diagnostic interpretation among participating pathologists was around 75%9. To that end, the computer-
aided diagnosis (CAD)4,6,10 can help pathologists to improve diagnostic accuracy by reducing inter-pathologist 
variations during the diagnostic process of breast cancer. Nonetheless, traditional computerized diagnostic 
approaches, ranging from rule-based systems to machine learning methods, may not be sufficient to deal with 
the inter-class consistency and intra-class variability of complex-natured histopathology images of breast cancer. 
Furthermore, these conventional methodologies usually leverages feature extraction techniques such as scale-
invariant feature  transform11, speed robust  features12 and local binary  patterns13, all of which are dependent on 
supervised information and hence may cause biased results when classifying these images. Therefore, the demand 
for an efficient and effective diagnosis yielded an advanced set of computational models based on numerous 
layers of nonlinear processing units, known as deep  learning14,15.

In vision-related tasks, the convolutional neural network (CNN)16 is considered superior to traditional 
multilayer perceptron for having translational equivariance and translational invariance properties, the former 
resulting from parameter sharing and the latter from pooling  operations14,15. Especially, deep CNN architectures 
have made significant progress over the last decade among which  AlexNet17 is considered as the earliest deep 
CNN model to achieve decent accuracy on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
during 2012. Subsequently, VGG  network18 was presented with a novel idea of utilizing a deep network with 
small-sized convolutional filters, and it secured second position at the ILSVRC during 2014. At this point, Sze-
gedy et al.19 introduced the Inception architecture by staking multiple smaller convolutional filters to obtain an 
effective receptive field, and attained first place at the ILSVRC in 2014. The following year, He at al.20 pointed out 
that increasing the network depth after certain level may degrade its performance and they employed residual 
connections to overcome this problem, and earned first position at the ILSVRC in 2015. Consequently, numer-
ous state-of-the-art studies leveraged the aforementioned architectures, pre-trained on ImageNet, to accurately 
classify breast cancer histopathology images using publicly available datasets, including  BreakHis21 and  BACH22 
datasets. For instance, Jiang et al.23 proposed a modified ResNet  model20 and achieved state-of-the-art accuracy 
for multiclass classification on BreaKHis  dataset21. Similarly, the top studies of the BACH  challenge22 exploited 
either a single pre-trained network or an ensemble of pre-trained architectures for multiclass classification of 
breast microscopy images. Recently, Elmannai et al.24 acknowledged the effectiveness of Inception modules and 
residual connections as feature extractors, and achieved state-of-the-art performance on the BACH  dataset22. 
To this end, we leveraged the Xception  model25, stands for extreme inception, which is based on the efficient 
utilization of Inception and residual connections (see “Proposed model” section). As a feature extractor, it can 
provide consistent results in the classification of histopathology images of different magnification  levels26. Our 
approach effectively utilizes the concepts introduced  in25–29 to extract salient features from histopathology images 
using the pre-trained Xception  model25 as a feature extractor.

The rationale and significance of this study are as follows: 1) To annotate and prepare a private dataset 
aimed to classify breast cancer histopathology images into normal tissue, benign lesion, in situ carcinoma, and 
invasive  carcinoma22. It should be noted that the dataset prepared in this study is an extension of our previously 
published work on binary  classification8. 2) To evaluate the performance of four widely used stain normaliza-
tion  methods28. 3) To propose a deep learning model based on multilevel features extracted from intermediate 
layers of the pre-trained Xception  model25. 4) To optimize the proposed model for the accurate classification of 
breast cancer histopathology images on the original and normalized images, especially for carcinoma classes. 
To our knowledge, this is the first study that annotated a new private dataset, proposed a generalized as well 
as a computationally efficient model based on the Xception  network25 as a feature extractor, and evaluated 
the results of four widely used stain normalization  approaches28. In summary, our proposed model provided 
consistent results for the definite classification of breast cancer histopathology images into four classes and also 
outperformed state-of-the-art results.

The remaining sections of this paper are organized as follows. “Methods” section describes materials and 
methods along with the proposed model. “Results” section explains the findings, and “Discussion” section com-
pares the results of our proposed framework to state-of-the-art research. Finally, “Conclusion” section summa-
rizes the conclusion as well as the future prospects of this work.

Methods
In this section, we presented the dataset used in this study, followed by the analysis of four stain normalization 
techniques. Then, we elucidated the training criteria and in-place data augmentation used in this work. Next, 
we explained the proposed model and its implementation setup. Lastly, we described the model evaluation and 
the hyperparameter optimization of our proposed model.

Colsanitas dataset. In this study, we used the same dataset as presented  in8 which contains 544 whole 
slide images (WSIs), retrieved from 80 breast cancer patients at the pathology department of Colsanitas clinic 
with a dependence of the Sanitas University, Bogotá, Colombia. The protocols followed to convert histology 
samples into their corresponding digital images are discussed  in8, including collection and fixation, dehydra-
tion and clearing, paraffin embedding, staining and mounting, and  digitalization30. The tissues were scanned at 
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high magnification (40) using a Roche iScan HT scanner (https:// diagn ostics. roche. com/ global/ en/ produ cts/ 
instr uments/ venta na- iscan- ht. html). The WSI images are stained with hematoxylin and eosin (H &E) and illus-
trate multiple cases from each patient, as explained  in8. It is worthy to mention that the dataset annotated for 
our previously published  work8 contained merely 845 images aimed at binary classification. Whereas the dataset 
annotated for the current study includes 2250 images formulated for multiclass  classification22. Two experienced 
pathologists examined the H &E-stained WSI images and extracted 2250 images, including 600 normal tissues, 
250 benign lesions, 250 in situ carcinoma, and 1150 invasive carcinoma. These images were exported as original 
pixels in .tiff format using Qupath 0.2.3  software31. The dimensions of these images are same as that of the BACH 
 dataset22 ( 2048× 1536 pixels), with a pixel size of 0.46µm× 0.46µm . The complete characteristics of our cre-
ated dataset is provided in Table 1. Also, the examples of normal tissue, benign lesion, in situ carcinoma, and 
invasive carcinoma images from the Colsanitas dataset are illustrated in Fig. 1.

Preprocessing. The datasets used in this work contain breast cancer histopathology images retrieved from 
H &E-stained whole-slide images. However, the stain concentration cannot be maintained in all the slides which 
may result in contrast differences among the exported images. These colour variations in acquired images may 
affect the performance of computer-aided diagnostic  systems30. Lyon et al.36 highlighted the need for the nor-
malization of reagents and procedures in histopathological practice. Therefore, various colour preprocessing 
techniques, including colour-transfer and colour-decovolution, are introduced in the literature to standardize 
the stain appearance. For instance, Reinhard et al.32 developed a colour-transfer methodology in which RGB-
format images are mapped to the colour distribution of a target image. In this method, a natural RGB image is 
first converted to a perceptual colour space with decorrelated axes, called lαβ . The mean values and standard 
deviations of each channel are then adjusted in both the images (source and target) in the colour space. Finally, 
the lαβ colour space is converted to get a normalized RGB image. However, this type of global normalization 
is based on the unimodal distribution of pixels in each channel of colour space, which may not be appropriate 
when using multiple coloured stains. Therefore, numerous studies have concluded that stain separation prior to 
stain normalization has a relatively significant impact on the experimental results. For instance, Ruifrok et al.33 
introduced a colour-deconvolution method to separate the stains. For each stain in a histopathology image, the 
individual RGB channels are first transformed to their respective optical density (OD) values using Lambert-

Table 1.  Characteristics of our collected Colsanitas dataset.

Image Quantity Size ( w × h× c) Pixel size Colour Staining

Normal 600 2048× 1536× 3 0.46µm× 0.46µm RGB H &E

Benign 250 2048× 1536× 3 0.46µm× 0.46µm RGB H &E

In situ 250 2048× 1536× 3 0.46µm× 0.46µm RGB H &E

Invasive 1150 2048× 1536× 3 0.46µm× 0.46µm RGB H &E

Total 2250 2048× 1536× 3 0.46µm× 0.46µm RGB H &E

Figure 1.  An example of H &E stained normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma 
from our collected dataset.

https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html
https://diagnostics.roche.com/global/en/products/instruments/ventana-iscan-ht.html
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Beer’s law. Then, the orthogonal transformation of OD values is carried out to get independent information 
regarding individual stains. Next, the OD vectors are normalized to achieve an unbiased absorption factor for 
each stain. After that, the normalized OD vectors are combined to form a normalized OD matrix. Lastly, a nor-
malized image is created by leveraging the normalized OD matrix. In the following years, Macenko et al.34 also 
followed a colour-deconvolution approach and concluded that H &E stains can be separated linearly in an OD 
colour space. First, a histology image is converted to its OD values using the logarithmic transformation. Then, 
singular value decomposition (SVD) is applied to OD tuples to obtain a two-dimensional plane corresponding to 
the two largest singular values. Next, these OD-transformed pixels are projected onto the plan and normalized to 
unit length. After that, an angle is calculated at each point with respect to the first SVD direction, yielding a his-
togram that depicts the intensity of each stain. At this point, all of the intensity histograms are scaled to the same 
pseudo-maximum and compared to each other. Lastly, the concentration of each stain is determined by using 
the H &E matrix of the OD values and stain normalization is performed. Ultimately, using the H &E matrix with 
the normalized stain concentration, a normalized image is created. Recently, Vahadane et al.35 developed a stain 
separation framework, called structure-preserving colour normalization (SPCN), which aimed to preserve the 
structure information of the source image. First, an RGB image is converted to OD values using Lambert-Beer’s 
law. Then, for stain separation, a sparseness constraint ( � ) is added to the optimization problem to reduce the 
solution space of the non-negative matrix factorization (NMF), called Sparse NMF (SNMF). In other words, a 
sparse constraint ( � ) is added to the NMF to effectively separate the stains. Next, the proposed SNMF is used to 
estimate the color appearances and stain density maps of source and target images. Finally, a normalized image 
is generated by combining the scaled density map of a source image with the color appearance of a target image. 
Further theoretical and mathematical details of the aforementioned normalization techniques can be found in 
their respective original  works32–35 as well as in the review  paper37. For the implementation, we utilized War-
wick’s Stain Normalization Toolbox (https:// github. com/ Tissu eImag eAnal ytics/ tiato olbox). Figure 2 depicts an 
example of a source image, a target image, and four normalized images using the above-mentioned practices.

Training procedure. We selected 80 percent of the images for training and the remaining 20 percent for 
testing, with an equal percentage of images from each of the four classes. Next,  following8,38 we applied 5-fold 
cross-validation on the training dataset, which means that the training dataset (80%) is split into five equal sub-
sets. Among these, four parts (64%) were used for training and one part (16%) was used for validating (evaluat-
ing) the model. After finalizing the model, we included the validation part into the training dataset and retrained 
the model with all 80% of the images. Of note, the test subset is always the same for all the models. All these 
details are given in Table 2 and illustrated in Fig. 3.

In‑place data augmentation. In-place data augmentation or on-the-fly data augmentation is a technique 
in which a batch of original images is transformed into its new variation during each and every epoch of the 
training process. By employing this approach, we want to ensure that the model experiences new variations of 
input images at each epoch during the training process. To achieve this, we employed ImageDataGenerator 

Figure 2.  An example of H &E-stained source image, target image, and four preprocessed images resulting 
from  Reinhard32,  Ruifrok33,  Macenko34, and  Vahadane35 stain normalization.

https://github.com/TissueImageAnalytics/tiatoolbox
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provided by Tensorflow deep learning  library39. The whole process of in-place data augmentation is as follows: 
(1) First, ImageDataGenerator takes a batch of input images. (2) Then, it transforms every image in the input 
batch by applying a series of random translations and rotations. In this work, we set “rotation range = 0.2” which 
corresponds to a random rotation between [− 20, 20] degrees. However, it usually rotates some pixels out of the 
image frame, leaving empty pixels within the image, which we filled using “fill mode = reflect mode”. Similarly, 
we specified “ width and height shift range = 0.2” which indicates the percentage of width or height of the image 
to be shifted randomly, either towards left/right for width or up/down for the height. Also, we selected “zoom 
range = 0.2” which specifies random zoom-in operation. However, we did not apply horizontal or vertical shifts 
operation because we already did these shifts when expanding the Colsanitas dataset. (3) Finally, it returns the 
randomly transformed batch of images. All the parameters and their selected values are provided in Table 3.

Proposed model. A straightforward way to increase the performance of a neural network is to increase the 
number of layers (length) and the number of units at each layer (width). However, the downsides of uniformly 
increasing network size include a larger number of parameters and computational  resources19. Therefore, to 
address the issues of computational efficiency and the number of parameters, Szegedy et al.19 introduced the 
concept of Inception in 2015. The inception module leverages the idea of “network-in-network”40 for dimension-
ality reduction. Also, it convolves an input with different sized filters and concatenates the output. Specifically, 
the Inception-v1 or GoogleNet, based on inception modules, utilized 12 times fewer parameters than  AlexNet17 
and won the ILSVRC in 2014. In the following years, Inception-v2 or Batch  Normalization41, Inception-v342, and 
Inception-v443 were introduced, which are considered to be the improved versions of Inception-v119. In addition 
to the Inception-v4 architecture, the Inception-ResNet-v1 and Inception-ResNet-v2 models were introduced, 
which utilized residual connections together with Inception  modules43. Leveraging inception modules in con-
junction with residual connections led to the development of an efficient architecture, called Xception network, 
which stands for “Extreme Inception”25. The Xception is an efficient network which mainly depends on two 
crucial things: 1) depthwise separable convolution and 2) shortcuts between convolution blocks as in ResNet 

Table 2.  Selection criteria for training, validation, and test images.

Colsanitas dataset Extended colsanitas dataset

Percentage (%)Nor. Ben. Ins. Inv. Nor. Ben. Ins. Inv.

Train 384 160 160 736 384 640 640 736 64

Valid 96 40 40 184 96 160 160 184 16

Test 120 50 50 230 120 50 50 230 20

Total 600 250 250 1150 600 850 850 1150 100

Table 3.  Parameters and their values used in in-place data augmentation.

Parameters of ImageDataGenerator Selected values

Zoom range 0.2

Rotation range 0.2

Width shift range 0.2

Height shift range 0.2

Horizontal flip False

Vertical flip False

Fill mode Reflect

Figure 3.  An illustration of the training process based on 5-fold cross-validation.
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 architecture20. Overall, the Xception model has 36 convolutional layers structured together into 14 modules, 
with each module having a linear residual connection around it, except the first and last one, as shown in Fig. 4.

Our proposed model leveraged the Xception  network25 to retrieve robust and abstract features from the 
intermediate layers, as shown in Fig. 4. First, the model takes an RGB image of height 512 and width 682 at 
its input layer. We reduced the dimension of original images in such a way that the ratio of height and width 
remained the same. In this way, we preserve the original structure of images, unlike Kassani et al.29 that used the 
dimension of 512× 512 . Then,  following25,27,29, we utilized global average pooling (GAP) on six different layers 
to obtain the corresponding feature vectors. GAP layers help to decrease the number of parameters and to reduce 
the  overfitting26. It is worth mentioning that before finalizing these six layers, we checked the results of different 
layers from the last seven blocks of the Xception network on the original dataset using k-fold cross-validation. 
We found that these six layers offered consistent performance in classifying each class with minimal variation. 
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Figure 4.  The complete framework of our proposed model is illustrated along with all the layers. For every 
input image, six different features are extracted followed by the global average pooling. These multilevel 
features are then concatenated (merged) horizontally to form a single vector of 1× 1× 5472 which is used for 
classification.
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After that, we concatenated (merged) these vectors horizontally to acquire the finalized vector of the dimension 
5472 pixels for each image. After the images are converted to their corresponding feature vectors, we trained 
two dense layers of 512 nodes with Rectified Linear Unit (ReLU) activation function. Lastly, the output layer is 
comprised of four nodes with Softmax activation and is used for the classification of the given images into four 
categories. The Softmax function transforms a vector k real-valued numbers into a vector of k probabilities that 
sum to 1, as explained  in15. In our case, the input to the Softmax function is a real-valued vector with k = 4 , 
whereas its output is a vector of k = 4 probabilities that sum to 1. The mathematical explanation of softmax 
function is given in equation 1 and is described  in15.

Where z = (z1, z2, z3, z4) is the input vector to the Softmax function and k is the number of classes. Moreover, 
exp(zi) shows the exponential of the ith real-valued number in the input vector and its value is always positive. 
Laslty, the normalization term 

∑k
j=1 exp(zj) depicts the sum of exponential of all the input real-valued numbers 

and its value is also always positive. In this way, we get a vector of probabilities that sums to 1.

Implementation setup. We implemented all the experiments using Python version 3.8.5 and TensorFlow 
2.4.139, installed on a standard computer machine with two Nvidia GeForce GTX 2070 graphical processing 
units (GPUs) support. Furthermore, the machine has a RAM of 32.0 GB and holds a 3.60 GHz Intel® Core™ 
i9-9900K processor with 16 logical threads and 16 MB of cache memory. We followed the distributed train-
ing approach of  TensorFlow39 by using both the GPUs using “tf.distribute.MirroredStrategy(devices=[’/gpu:0’,’/
gpu:1’])” strategy.

Model evaluation. The classification performance of the proposed framework leverages the elements of 
confusion matrix, also known as contingency  table8,44. For multiclass classification problem, we defined the ele-
ments of the confusion matrix in terms of the target class and non-target class, which can be applied to every 
individual  class44. For instance, the target class could be invasive and non-target class could be non-invasive. 
True Positive (TP) refers to the images that are correctly classified as the target class (invasive), and False Posi-
tive (FP) shows the non-target images (non-invasives) that are falsely classified as the target class (invasive). 
Whereas, False Negative (FN) indicates the images of target class (invasive) classified as non-target class (non-
invasive), and True Negative (TN) denotes the correctly classified non-target images (non-invasive). Of note, FP 
is also called type I error and FN is also called type II error in the literature. Furthermore,  following45, we assessed 
the performance of our proposed model using receiver operating characteristic (ROC) curves and precision-
recall (PR) curves along with their area under the curve (AUC) values for every class (one-vs-rest method) for 
the original and normalized datasets. Lastly, we computed the Cohen’s kappa statistic for the original as well as 
normalized datasets.

• Precision: It calculates the exactness of a model and defines the ratio of images correctly classified as the 
target class (invasive) out of all predicted same-class images. 

• Sensitivity: Sensitivity, also known as recall, evaluates the completeness of a model. It determines the ratio 
of images accurately classified as the target class (invasive) out of all actual same-class images. 

• Accuracy: It computes the correctness of a model and is defined as the proportion of the number of accurately 
classified images out of total actual test images. 

• F1-score: It indicates the harmonic average of precision and recall and is commonly employed to optimize 
a model for either precision or recall. 

• ROC Curve: The ROC curve shows a relationship between true positive rate (TPR) and false positive rate 
(FPR) at different thresholds. TPR is also called sensitivity or recall, whereas FPR is equivalent to 1-specificity. 
An ROC curve depicts that increasing TPR results in also increasing FPR and vice versa. The mathematical 
formula of TPR is shown in equation 3 whereas that of FPR is provided in equation 6. 

(1)Softmax(z)i =
exp(zi)

∑k
j=1 exp(zj)

(2)Precision =

TP

TP + FP

(3)Sensitivity =

TP

TP + FN

(4)Accuracy =
TP + FN

TP + TN + FP + FN

(5)F1-score =
2 ∗ Precision ∗ Recall

Precision+ Recall

(6)FPR =

FP

FP + TN
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• PR Curve: The PR curve shows an inverse relationship between precision and recall at different thresholds. 
A PR curve illustrates that increasing precision value results in decreasing recall score and vice versa. The 
mathematical formula of precision is given in equation 2 whereas that of recall is given in equation 3.

• Cohen’s kappa: It calculates the degree of agreement between the true values and predicted values. It is widely 
used in to handle multiclass and imbalanced dataset problems. Its mathematical formula is provided in equa-
tion 7 where po and pe represent observed and expected agreements, respectively. 

Hyperparameter optimization. Neural networks can learn complicated patterns between their inputs 
and outputs  automatically14,15. However, many of these input-output connections,  may be the result of sam-
pling noise that prevailed during training, but may not exist in the test dataset. This can result in an overfitting 
problem and thus reduce the prediction ability of a deep learning model. To that end, it is crucial to follow the 
process of hyperparameter tuning to obtain the generalized predictive performance of the proposed network. In 
this paper, we followed the 5-fold cross-validation approach (see “Training procedure” section) to get the best 
set of hyperparameters. The procedure followed to obtain the optimum hyperparameters values is as follows: For 
our multiclass classification task, we first selected categorical cross-entropy as an objective function. Then, we 
employed Adam (adaptive moment estimation)  algorithm8,46 during the training to optimize the model through 
1000 epochs. At this point, we checked three variants of learning rates (0.001, 0.0001, 0.00001) and three dis-
tinct batch sizes (16, 32, 64) based on recently published  studies8,29. We found that the learning rate of 0.00001 
together with a batch size of 64 worked well in reducing the generalization gap between training and validation 
loss. Next, we saved the weights of five models which resulted from the lowest validation loss, and evaluated the 
predictive performance of each model on the unseen test dataset. Importantly, we aimed to maximize the mean 
value of test accuracy while minimizing the standard deviation after checking the predictive abilities of five 
individual models. For the final model, we trained the proposed framework with all the training images (train-
ing and validation) and saved the weights of the optimum model based on the minimum validation loss. Lastly, 
we employed these weights to predict the classes of the test images. Importantly, we used the default parameters 
specified in the original architecture of the Xception paper for the convolutional filters, pooling filters, strides, 
and  padding25. All the hyperparameters and their optimal values used in this study are presented in Table 4.

Results
In this section, we explained and compared the classification performance of our proposed framework by con-
sidering the original (unnormalized) and normalized images.

Results without normalization. For the original (unnormalized) dataset, the performance metrics of 
our proposed model are provided in Table 5. During the cross-validation, we reported the highest accuracy 
of 96.88% during folds 1, 2, and 4, whereas the lowest accuracy of 95.33% during fold 5, which led to a mean 
accuracy of 96.22% (±0.66) . The finalized model offered an accuracy value of 98.00%, as shown in Table 5. Spe-
cifically, for in situ and invasive carcinomas, we reported sensitivity values of 96.00% and 99.00%, respectively. 
Similarly, for benign lesions, we found a sensitivity score of 96.00% which is similar to that of in situ carcinoma. 
The finalized results of all the four classes using the original dataset are shown in Fig. 5. Furthermore, the ROC 
and PR curves for every class of the original dataset along with their AUC scores are depicted in Fig. 6. The 
AUC-ROC values vary from 0.998 to 0.999 whereas the AUC-PR values range from 0.990 to 0.999, as displayed 
in Fig. 6. Of note, the accuracy and loss curves of the original dataset are provided with every normalized dataset 
for a better visualization and comparison, and are discussed within the next subsections.

(7)k =

po − pe

1− pe

Table 4.  The optimal hyperparameters of our proposed model.

Hyperparameters Optimal values

Train approach 5-fold cross-validation

Loss function Categorical cross-entropy

Optimizer Adam

Learning rate 0.00001

Batch size 64

Convolution 1× 1, 3× 3, 5× 5

Maxpooling 2× 2 with stride 2

Epochs 1000

Dropout 0.1

Regularizer L2
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Results of Reinhard normalization. For the Reinhard normalization, the performance metrics of our 
proposed architecture are given in Table 6. During the cross-validation, we noted higher accuracy of 97.11% at 
fold 4 and lower accuracy of 95.33% at fold 5, yielding a mean accuracy of 96.44% (±0.68) . The finalized model 
attained an accuracy of 97.33%, as stated in Table 6. Especially for in situ carcinoma, we observed a sensitivity 
of 96.00% which is equivalent to that of the original dataset. Whereas for invasive carcinoma, we noted a sen-
sitivity of 98.00% which is 1.00% lower than the original dataset. These finalized results of all the four classes 
using the Reinhard-based normalized dataset are portrayed in Fig. 7. In addition, the ROC and PR curves for 
each class of the Reinhard normalization together with their AUC values are illustrated in Fig. 8. In this case, 

Table 5.  Evaluation metrics of our proposed model using the original dataset.

Folds

Confusion matrices Performance evaluation

Predict → Actual ↓ Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa

Fold 1

Benign 43 3 2 2 1.00 0.86 0.92 50

96.88 0.951
In situ 0 49 1 0 0.91 0.98 0.94 50

Invasive 0 1 226 3 0.98 0.98 0.98 230

Normal 0 1 1 118 0.96 0.98 0.97 120

Fold 2

Benign 48 1 1 0 0.96 0.96 0.96 50

96.88 0.952
In situ 2 48 0 0 0.89 0.96 0.92 50

Invasive 0 4 222 4 0.99 0.97 0.98 230

Normal 0 1 1 118 0.97 0.98 0.98 120

Fold 3

Benign 47 0 2 1 0.98 0.94 0.96 50

96.00 0.937
In situ 1 48 1 0 0.96 0.96 0.96 50

Invasive 0 1 226 3 0.95 0.98 0.97 230

Normal 0 1 8 111 0.97 0.93 0.94 120

Fold 4

Benign 47 1 0 2 0.94 0.94 0.94 50

96.88 0.952
In situ 2 47 1 0 0.94 0.94 0.94 50

Invasive 0 1 226 3 0.99 0.98 0.98 230

Normal 1 1 2 116 0.96 0.97 0.96 120

Fold 5

Benign 46 2 1 1 0.85 0.92 0.88 50

95.33 0.928
In situ 3 47 0 0 0.90 0.94 0.92 50

Invasive 0 2 224 4 0.99 0.97 0.98 230

Normal 5 1 2 112 0.96 0.93 0.95 120

Final

Benign 48 1 0 1 0.98 0.96 0.97 50

98.00 0.969
In situ 1 48 1 0 0.96 0.96 0.96 50

Invasive 0 0 227 3 0.99 0.99 0.99 230

Normal 0 1 1 118 0.97 0.98 0.98 120

Figure 5.  The final normalized confusion matrix of original dataset.
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the AUC-ROC values range from 0.997 to 0.999 whereas AUC-PR scores vary from 0.989 to 0.998, as shown in 
Fig. 8. The accuracy curves of Reinhard normalization along with the original ones are shown on the left side of 
Fig. 9, whereas their corresponding loss curves are depicted on the right side of Fig. 9. It can be seen that there 
is no significant difference in these curves. Based on these results, we concluded that although the Reinhard 
normalization achieved a competitive classification performance, it could not outperform results of the original 
(unnormalized) dataset.

Results of Ruifrok normalization. For the Ruifrok normalization, the performance metrics of our 
proposed framework are presented in Table  7. During the cross-validation, we observed a highest accuracy 
of 96.88% during fold 2 and a lowest accuracy of 96.00% during fold 5, which resulted in a mean accuracy of 
96.31% (±0.37) . The finalized model yielded an accuracy of 97.33%, as mentioned in Table 7. Particularly, the 
sensitivity for in situ class is 96.00%, which is equal to both the original and the Reinhard normalization. Like-

Figure 6.  For the original dataset, the left side shows ROC curves for each class with an average AUC-ROC of 
0.998. Whereas the right side depicts its PR curves for every class with a mean AUC-PR of 0.995.

Table 6.  Evaluation metrics of our proposed model using Reinhard normalization

Folds

Confusion matrices Performance evaluation

Predict → Actual ↓ Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa

Fold 1

Benign 43 4 1 2 1.00 0.86 0.92 50

96.44 0.945
In situ 0 49 1 0 0.89 0.98 0.93 50

Invasive 0 1 225 4 0.98 0.98 0.98 230

Normal 0 1 2 117 0.95 0.97 0.96 120

Fold 2

Benign 46 2 0 2 0.98 0.92 0.95 50

96.88 0.952
In situ 1 49 0 0 0.89 0.98 0.93 50

Invasive 0 3 223 4 1.00 0.97 0.98 230

Normal 0 1 1 118 0.95 0.98 0.97 120

Fold 3

Benign 47 2 1 0 0.98 0.94 0.96 50

96.44 0.944
In situ 1 48 1 0 0.92 0.96 0.94 50

Invasive 0 1 226 3 0.97 0.98 0.97 230

Normal 0 1 6 113 0.97 0.94 0.96 120

Fold 4

Benign 47 2 0 1 0.96 0.94 0.95 50

97.11 0.955
In situ 1 47 1 1 0.94 0.94 0.94 50

Invasive 0 0 227 3 0.99 0.99 0.99 230

Normal 1 1 2 116 0.96 0.97 0.96 120

Fold 5

Benign 47 3 0 0 0.87 0.94 0.90 50

95.33 0.928
In situ 2 47 0 1 0.87 0.94 0.90 50

Invasive 2 2 223 3 0.99 0.97 0.98 230

Normal 3 2 3 112 0.97 0.93 0.95 120

Final

Benign 47 2 0 1 0.98 0.94 0.96 50

97.33 0.959
In situ 1 48 1 0 0.92 0.96 0.94 50

Invasive 0 1 226 3 0.99 0.98 0.98 230

Normal 0 1 2 117 0.97 0.97 0.97 120
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Figure 7.  The final normalized confusion matrix of Reinhard dataset.

Figure 8.  For Reinhard normalization, the left-hand side represents ROC curves for each class with an average 
AUC-ROC of 0.998. Whereas the right-hand side depicts its PR curves for every class with a mean AUC-PR of 
0.992.

Figure 9.  The left-hand side shows a comparison of training and validation accuracy curves of the original 
dataset and Reinhard normalization. Whereas the right-hand side depicts a comparison of training and 
validation loss curves of the original dataset and Reinhard normalization.
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wise, the sensitivity for invasive class is 99.00%, which is the same as that of the original but 1.00% higher than 
the Reinhard normalization. These optimal results of all the classes for the Ruifrok-based normalized dataset are 
depicted in Fig. 10. Moreover, the ROC and PR curves for an individual class of the Ruifrok normalization in 
conjunction with their AUC scores are provided in Fig. 11. In this case, the AUC-ROC values range from 0.997 
to 0.999 whereas the AUC-PR scores range from 0.980 to 0.999, as demonstrated in Fig. 11. The comparison of 
accuracy curves, in this case, is shown on the left block of Fig. 12, whereas their corresponding loss curves are 
illustrated on the right block of Fig. 12. Like the Reinhard normalization, it can be seen that there is no signifi-
cant difference in these curves. Thus, it can be concluded that the classification performance using the Ruifrok 
normalization is the same as Reinhard normalization in terms of accuracy.

Table 7.  Evaluation metrics of our proposed model using Ruifrok normalization

Folds

Confusion matrices Performance evaluation

Predict → Actual ↓ Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa

Fold 1

Benign 42 6 0 2 0.98 0.84 0.90 50

96.22 0.941
In situ 1 48 1 0 0.84 0.96 0.90 50

Invasive 0 2 225 3 0.99 0.98 0.98 230

Normal 0 1 1 118 0.96 0.98 0.97 120

Fold 2

Benign 48 2 0 0 0.98 0.96 0.97 50

96.88 0.952
In situ 1 48 1 0 0.89 0.96 0.92 50

Invasive 0 3 222 5 0.99 0.97 0.98 230

Normal 0 1 1 118 0.96 0.98 0.97 120

Fold 3

Benign 44 3 0 3 0.96 0.88 0.92 50

96.00 0.937
In situ 2 45 3 0 0.94 0.90 0.92 50

Invasive 0 0 226 4 0.97 0.98 0.98 230

Normal 0 0 3 117 0.94 0.97 0.96 120

Fold 4

Benign 46 3 0 1 0.94 0.92 0.93 50

96.44 0.945
In situ 1 47 2 0 0.94 0.94 0.94 50

Invasive 1 0 224 5 0.98 0.97 0.98 230

Normal 1 0 2 117 0.95 0.97 0.96 120

Fold 5

Benign 47 3 0 0 0.90 0.94 0.92 50

96.00 0.938
In situ 1 47 2 0 0.92 0.94 0.93 50

Invasive 1 1 224 4 0.98 0.97 0.98 230

Normal 3 0 3 114 0.97 0.95 0.96 120

Final

Benign 45 3 1 1 0.98 0.90 0.94 50

97.33 0.958
In situ 1 48 1 0 0.94 0.96 0.95 50

Invasive 0 0 227 3 0.98 0.99 0.98 230

Normal 0 0 2 118 0.97 0.98 0.98 120

Figure 10.  The final normalized confusion matrix of Ruifrok dataset.
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Results of Macenko normalization. For the Macenko normalization, the performance metrics of our 
proposed system are provided in Table 8. During the cross-validation, we observed the uppermost accuracy of 
97.11% in fold 4 as well as the lowermost accuracy of 96.00% in fold 3, resulting in a mean accuracy of 96.10% 
(±0.88) . The finalized model got an accuracy of 97.78%, as given in Table 8. In particular, the sensitivity values 
for in situ and invasive carcinomas, in this case, are 96% and 99%, which are equal to that of the original dataset. 
These optimal results for all four classes are illustrated in Fig. 13. Besides, the ROC and PR curves for each class 
of Macenko normalization with their corresponding AUC scores are shown in Fig. 14. Here, AUC-ROC scores 
vary between 0.995 and 0.999 whereas AUC-PR values range from 0.981 to 0.998, as indicated in Fig. 14. The 
relationship between accuracy curves is shown on the left portion of Fig. 15, whereas their relative loss curves 
are depicted on the right portion of Fig. 15. Interestingly, the validation loss improved as compared to the origi-
nal dataset; however, no considerable changes occurred in validation accuracy. These statistics pointed out that 
the Macenko-based normalization has slightly outperformed the Reinhard and Ruifrok approaches in terms 
of accuracy. Also, it offered the same potential as the original dataset in terms of sensitivity for the in situ and 
invasive carcinomas.

Results of Vahadane normalization. Lastly, the performance metrics of our suggested model for Vaha-
dane normalization are given in Table 9. During the cross-validation, we found a maximum accuracy of 97.77% 
during fold 4 and a minimum accuracy of 95.77% during fold 3, with a mean accuracy of 96.57% (±0.75) . The 
accuracy of the finalized model is noted as 97.33%, as indicated in Table 9. Specifically, the sensitivity for in situ 
carcinoma is 94% which is 2.00% lower than the original dataset. Likewise, the sensitivity for invasive carcinoma 
is 98% which is 1.00% percent lower than the original dataset. These concluded results of all the four classes are 
illustrated in Fig. 16. Also, the ROC curves and PR curves for every class of Vahadane normalization along with 
their AUC values are shown in Fig. 17. In this scenario, the AUC-ROC values vary 0.997 and 0.999 whereas the 
AUC-PR scores range from 0.986 to 0.996, as mentioned in Fig. 17. The correlation between accuracy curves 

Figure 11.  For Ruifrok normalization, the left side represents ROC curves for an individual class with an 
average AUC-ROC of 0.998. Whereas the right side depicts its PR curves for every class with a mean AUC-PR of 
0.990.

Figure 12.  The left side demonstrates a comparison of training and validation accuracy curves of the original 
dataset and Ruifrok normalization. Whereas the right side illustrates a comparison of training and validation 
loss curves of the original dataset and Ruifrok normalization.
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is shown on the left side of Fig. 18, whereas their corresponding loss curves are displayed on the right side of 
Fig. 18. Similar to the Macenko normalization, a slight improvement in validation loss can be seen; however, no 
such improvement occurred in validation accuracy. These statistical analysis show that Vahadane normalization 
has the same performance as Reinhard and Ruifrok normalization, but is slightly lower than the original and 
Macenko normalization in terms of accuracy.

Finally, the sensitivity values of normal tissue, benign lesion, in situ carcinomas, and invasive carcinomas 
are collectively illustrated in Fig. 19. Specifically, for in situ carcinomas, the sensitivity of original dataset is 
equivalent to  Reinhard32,  Ruifrok33, and  Macenko34; however, it is 2% higher than the  Vahadane35 dataset and 
this small difference is equivalent to one sample in case of in situ carcinoma. Moreover, for invasive carcinoma, 

Table 8.  Evaluation metrics of our proposed model using Macenko normalization

Folds

Confusion matrices Performance evaluation

Predict → Actual ↓ Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa

Fold 1

Benign 42 3 2 3 0.98 0.84 0.90 50

96.88 0.951
In situ 0 49 1 0 0.91 0.98 0.94 50

Invasive 1 1 227 1 0.98 0.99 0.98 230

Normal 0 1 1 118 0.97 0.98 0.98 120

Fold 2

Benign 46 2 1 1 0.96 0.92 0.94 50

96.44 0.945
In situ 1 48 0 1 0.91 0.96 0.93 50

Invasive 0 2 223 5 0.99 0.97 0.98 230

Normal 1 1 1 117 0.94 0.97 0.96 120

Fold 3

Benign 48 0 0 2 0.96 0.96 0.96 50

96.00 0.937
In situ 1 48 1 0 0.98 0.96 0.97 50

Invasive 0 0 227 3 0.96 0.99 0.97 230

Normal 1 1 9 109 0.96 0.91 0.93 120

Fold 4

Benign 47 1 0 2 0.96 0.94 0.95 50

97.11 0.955
In situ 1 48 1 0 0.96 0.96 0.96 50

Invasive 0 0 227 3 0.98 0.99 0.98 230

Normal 1 1 3 115 0.96 0.96 0.96 120

Fold 5

Benign 48 1 1 0 0.84 0.96 0.90 50

96.22 0.941
In situ 3 46 1 0 0.96 0.92 0.94 50

Invasive 1 0 226 3 0.99 0.98 0.98 230

Normal 5 1 1 113 0.97 0.94 0.96 120

Final

Benign 48 0 1 1 0.94 0.96 0.95 50

97.78 0.965
In situ 1 48 1 0 0.99 0.96 0.97 50

Invasive 1 0 227 2 0.99 0.99 0.99 230

Normal 1 1 1 117 0.97 0.97 0.97 120

Figure 13.  The final normalized confusion matrix of Macenko dataset.
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the proposed model offered a higher sensitivity of 99% for original dataset, which is equivalent to  Ruifrok33 and 
 Macenko34 but 1% lower than  Reinhard32 and  Vahadane35. In summary, our proposed model achieved general-
ized performance for the original as well as normalized datasets.

Discussion

The effectiveness of our proposed approach based on multilevel features can be compared with the baseline model 
 (AlexNet17) and state-of-the-art deep learning architectures including  VGG1618,  VGG1918, Inception-v342, and 
 Xception25 networks as feature extractors with their default settings. To that end, we leveraged the same optimal 
hyperparameters that we selected in our optimized framework, as discussed in the “Hyperparameter optimiza-
tion” section. Furthermore, we used the same input image size as our proposed model to effectively compare 
the results, unlike Hao et al.47, where the authors selected input image dimensions based on an individual pre-
trained CNN model. We trained all of the aforementioned models on 80% of the images, whereas the remaining 
20% of the images were used for the test purpose, as explained in the “Training procedure” section. Of note, we 
chose  AlexNet17 as a baseline model because it was the first deep CNN model to achieve promising accuracy 
on the ILSVRC in 2012. Similarly, we considered  VGG1618 and  VGG1918 because our recently published  study8 
employed these models to perform binary classification on a dataset that was generated from the same WSI 
images as used in the current study, as explained in “Colsanitas dataset” section. Furthermore, the reason for 
selecting the Inception-v342 lies in the simplicity and robustness of its architecture, as discussed in the “In-place 
data augmentation” section. Finally, the motive behind choosing the plain  Xception25 is that it could be crucial 
to evaluate its classification performance along with its modified architecture. Overall, the evaluation metrics of 
all the models are summarized in Table 10. Further details of these results can be found in the Supplementary 
Information (SI) file. The detailed comparison of our proposed architecture with each of the aforementioned 
models is as follows:

Figure 14.  For Macenko normalization, the left block illustrates ROC curves for each class with an average 
AUC-ROC of 0.997. Whereas the right block depicts its PR curves for the individual class with a mean AUC-PR 
of 0.991.

Figure 15.  The left graph represents a comparison of training and validation accuracy curves of the original 
dataset and Macenko normalization. Whereas the right graph portrays a comparison of training and validation 
loss curves of the original dataset and Macenko normalization.
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The performance metrics of the default  AlexNet17 model (baseline) as a feature extractor are given in Table 10 
(further details can be found in Supplementary Table S1). For the original dataset, it offered an accuracy of 
82.44%, F1-score of 77.25%, and Cohen’s kappa score of 0.720. Among the four normalized datasets, it yielded 
the highest accuracy of 81.55%, F1-measure of 75.75%, and Cohen’s kappa of 0.708 for Ruifrok normalization. 
However, the baseline model shows overfitting as portrayed in the loss curves of Supplementary Figure S1. 
Furthermore, it is a computationally expensive model with 40.7 million of training parameters, as mentioned 
in Table 10. In contrast, our proposed approach leveraged 20.01 million fewer parameters and achieved 15.56 
percentage points higher accuracy along with a 24.9 percentage points gain in Cohen’s kappa value for the 
original dataset.

Table 9.  Evaluation metrics of our proposed model using Vahadane normalization

Folds

Confusion matrices Performance evaluation

Predict → Actual ↓ Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa

Fold 1

Benign 42 4 2 2 1.00 0.84 0.91 50

96.66 0.948
In situ 0 49 1 0 0.91 0.98 0.94 50

Invasive 0 0 226 4 0.98 0.98 0.98 230

Normal 0 1 1 118 0.95 0.98 0.97 120

Fold 2

Benign 45 2 0 3 0.98 0.90 0.94 50

96.44 0.945
In situ 1 48 0 1 0.91 0.96 0.93 50

Invasive 0 2 222 6 1.00 0.97 0.98 230

Normal 0 1 0 119 0.92 0.99 0.96 120

Fold 3

Benign 46 1 1 2 0.98 0.92 0.95 50

95.77 0.934
In situ 1 48 1 0 0.96 0.96 0.96 50

Invasive 0 0 227 3 0.95 0.99 0.97 230

Normal 0 1 9 110 0.96 0.92 0.94 120

Fold 4

Benign 47 1 0 2 0.98 0.94 0.96 50

97.77 0.965
In situ 1 48 1 0 0.96 0.96 0.96 50

Invasive 0 0 227 3 0.99 0.99 0.99 230

Normal 0 1 1 118 0.96 0.98 0.97 120

Fold 5

Benign 48 1 1 0 0.89 0.96 0.92 50

96.22 0.942
In situ 2 48 0 0 0.94 0.96 0.95 50

Invasive 0 1 223 6 0.99 0.97 0.98 230

Normal 4 1 1 114 0.95 0.95 0.95 120

Final

Benign 46 1 1 2 0.98 0.92 0.95 50

97.33 0.958
In situ 1 47 2 0 0.96 0.94 0.95 50

Invasive 0 0 226 4 0.99 0.98 0.98 230

Normal 0 1 0 119 0.95 0.99 0.97 120

Figure 16.  The final normalized confusion matrix of Vahadane dataset.
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Figure 17.  For Vahadane normalization, the left side shows ROC curves for each class with an average AUC-
ROC of 0.998. Whereas the right side portrays its PR curves for the individual class with a mean AUC-PR of 
0.993.

Figure 18.  The left side shows a comparison of training and validation accuracy curves of the original dataset 
and Vahadane normalization. Whereas the right side depicts a comparison of training and validation loss curves 
of the original dataset and Vahadane normalization.

Figure 19.  The sensitivity (recall) values of normal, benign, in situ carcinoma, and invasive carcinoma for the 
original,  Reinhard32,  Ruifrok33,  Macenko34, and  Vahadane35 datasets.
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Similarly, the performance measurements of the default  VGG1618 model as a feature extractor are also com-
piled in Table 10 (more details are available in Supplementary Table S2). For the original dataset, it gained an 
accuracy of 90.44%, F1-score of 86.50%, and Cohen’s kappa statistic of 0.852. It acquired the highest accuracy 
of 89.55%, F1-measure of 86.25%, and Cohen’s kappa of 0.838 for Vahadane normalization among the four 
normalized datasets. It can be noticed that  VGG1618 outperformed the baseline model. Nevertheless, it shows 
overfitting as illustrated in the loss curves of Supplementary Figure S2. Moreover, like the baseline  AlexNet17, 
it is a computationally expensive model with a total number of 35.95 million training parameters, as stated in 
Table 10. Conversely, our proposed model utilized 15.24 million lower parameters and achieved 7.56 percentage 
points higher accuracy along with 11.7 percentage points increase in Cohen’s kappa score for the original dataset.

Likewise, the performance metrics of the default  VGG1918 model as a feature extractor are provided in 
Table 10 (additional details are given in Supplementary Table S3). It attained an accuracy of 87.33%, F1-measure 
of 81.75%, and Cohen’s kappa value of 0.805 For the original dataset among the normalized datasets, it reached 
a maximum accuracy of 89.11%, F1-score of 84.25%, and Cohen’s kappa of 0.832 for Macenko normalization. It 
can be observed that  VGG1918 also outperformed the baseline model similar to the  VGG1618 model. Nonetheless, 
it exhibits overfitting as portrayed in the loss curves of Supplementary Figure S3. Furthermore, like the baseline 
 AlexNet17 and  VGG1618, it is a computationally expensive model with a total number of 41.26 million training 
parameters, as stated in Table 10. Contrary to  VGG1918, our proposed framework utilized 20.55 million fewer 
parameters and achieved 10.67 percentage points higher accuracy together with 16.4 percentage points increase 
in Cohen’s kappa score for the original dataset.

Moreover, the performance measurements of the default Inception-v342 model as a feature extractor are also 
outlined in Table 10 (further details are provided in Supplementary Table S4). For the original dataset, it attained 
an accuracy of 94.66%, F1-measure of 91.25%, and Cohen’s kappa score of 0.917. Among the normalized datasets, 
it gained a top accuracy of 94.44%, F1-score of 91.50%, and Cohen’s kappa of 0.914 for Ruifrok normalization. 
Interestingly, the default Inception-v342 using 23.03 million training parameters offered promising results com-
pared to the baseline  AlexNet17, and state-of-the-art  VGG1618 and  VGG1918 models. However, it shows overfitting 

Table 10.  Comparison of the proposed model based on multilevel features of Xception network with default 
versions of  AlexNet17 (baseline),  VGG1618,  VGG1918, Inception-v342, and  Xception25 models as feature 
extractors.

Model Dataset Accuracy (%) F1-score (%) Kappa Training parameters (million)

AlexNet17

Original 82.44 77.25 0.720

40.72

Reinhard 76.66 69.75 0.633

Ruifrok 81.55 75.75 0.708

Macenko 81.33 75.75 0.702

Vahadane 78.89 72.25 0.667

VGG1618

Original 90.44 86.50 0.852

35.95

Reinhard 88.00 82.50 0.814

Ruifrok 87.11 82.50 0.800

Macenko 89.55 86.00 0.839

Vahadane 89.55 86.25 0.838

VGG1918

Original 87.33 81.75 0.805

41.26

Reinhard 88.89 82.75 0.824

Ruifrok 88.00 81.75 0.814

Macenko 89.11 84.25 0.832

Vahadane 89.11 83.00 0.832

Inception-v342

Original 94.66 91.25 0.917

23.08

Reinhard 94.44 91.25 0.914

Ruifrok 94.44 91.50 0.914

Macenko 93.55 90.25 0.900

Vahadane 93.77 90.00 0.904

Xception25

Original 96.44 95.00 0.945

22.12

Reinhard 96.66 94.75 0.948

Ruifrok 96.66 94.75 0.948

Macenko 96.00 94.25 0.938

Vahadane 95.56 93.75 0.931

Proposed

Original 98.00 97.50 0.969

20.71

Reinhard 97.33 96.25 0.959

Ruifrok 97.33 96.25 0.958

Macenko 97.78 97.00 0.965

Vahadane 97.33 96.25 0.958
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as illustrated in the loss curves of Supplementary Figure S4. In contrast, our proposed strategy leveraged 2.37 
million lower training parameters and yielded 3.34 percentage points higher accuracy in conjunction with 5.5 
percentage points increase in Cohen’s kappa value for the original dataset.

Lastly, the performance metrics of the default  Xception25 model as a feature extractor are presented in 
Table 10 (more details can be found in Supplementary Table S5). For the original dataset, it obtained an accu-
racy of 96.44%, F1-measure of 95.00%, and Cohen’s kappa statistic of 0.945. Among the normalized datasets, it 
attained the highest accuracy of 96.66%, F1-score of 94.75%, and Cohen’s kappa of 0.948 for both the Reinhard 
and Ruifrok normalization. It employed 22.21 million of training parameters and outperformed the baseline 
 AlexNetNet17 and state-of-the-art  VGG1618,  VGG1918, and Inception-v342 models. These results demonstrate 
that the default Xception model as a feature extractor also offered promising results due to its robust perfor-
mance in classifying histopathology  images26. However, the default Xception model started overfitting which 
can be noticed in the loss curves of Supplementary Figure S5. This can be due to using merely one GAP layer in 
its default framework. In comparison, our proposed approach used 1.41 million fewer parameters and yielded 
1.56 percentage points high accuracy together with a 2.4 percentage points improvement in Cohen’s kappa score 
for the original dataset.

In summary, these results demonstrate that the baseline  AlexNet17, as well as the state-of-the-art  VGG1618 
and  VGG1918, are computationally expensive models. Furthermore, Inception-v342 and  Xception25 networks 
offered promising performance but suffered from the overfitting problem. In contrast, our proposed model based 
on multilevel features of the  Xception25 network outperformed all the default state-of-the-art frameworks with 
a fewer number of training parameters. Also, our proposed model offered resistance to overfitting due to the 
usage of multiple GAP  layers26. Thus, it can be concluded that when used as a feature extractor, it is better to first 
check the Xception model with its default setting and then use multiple GAP layers to decrease the overfitting 
 problem26. Overall, our proposed model using multilevel features from the intermediate layers of the  Xception25 
network outperformed the baseline as well as state-of-the-art models with their default settings in classifying the 
breast cancer histopathology images. Interestingly, it provided minimal variance among the results on original 
and normalized datasets, and thus acted as a generalized deep learning model.

Conclusion
The purpose of this paper is to leverage deep learning to classify the hematoxylin-eosin-stained breast cancer 
microscopy images of our collected dataset into normal tissue, benign lesion, in situ carcinoma, and invasive 
carcinoma. To achieve this, we utilized six intermediate layers of the pre-trained Xception model to extract 
salient features from input images. We first optimized the proposed architecture on the unnormalized dataset, 
and then evaluated its performance on normalized datasets resulting from Reinhard, Ruifrok, Macenko, and 
Vahadane stain normalization procedures. Overall, it is concluded that the proposed approach provides a gen-
eralized state-of-the-art classification performance towards the original and normalized datasets. Also, it can be 
deduced that even though the aforementioned stain normalization methods offered competitive results, they did 
not outperform the results of the original dataset. In the future, we recommend to use the stain normalization 
techniques based on generative adversarial networks. Similarly, we suggest exploiting other recently developed 
pre-trained models by adopting feature extraction and fine-tuning strategies. Furthermore, it would be inter-
esting take to exploit the potential of semi-supervised, unsupervised and self-supervised learning. Lastly, the 
concepts introduced in this study can be applied to histopathology image classification of different cancers, such 
as colorectal and lung cancers.

Data availability
The data that support the findings of this study are available from the MIFLUDAN project (Elkartek call) by the 
Basque Country, Spain, but restrictions apply to the availability of these data, which were used under license for 
the current study, and so are not publicly available. Data are however available from the corresponding author 
upon reasonable request and with permission of the MIFLUDAN project (Elkartek call) by the Basque Country, 
Spain.
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