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Abstract

Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many

other regions, coral reefs surrounding the island confront large-scale disturbances and human-

induced local stressors. Conservation actions have been implemented with encouraging

results for fisheries, though their benefit on coral assemblages has never been rigorously

addressed. In this context, we analyzed the multiscale spatial variation of the composition,

generic richness, abundance, life history strategies, and cover of coral assemblages among

18 stations placed at three regions around the island. The potential influences of marine pro-

tected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geo-

graphic location were also analyzed. Our results highlight the marked spatial variability, with

variation at either or both regional and local scales for all coral descriptors. The northeast

coastal region of Masoala was characterized by the high abundance of coral colonies, most

notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several

stations. The southwest station of Salary Nord was distinguished by lower abundances, with

depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was character-

ized by higher diversity and abundance as well as by high coral cover (~42–70%) recorded at

unfished stations. Results clearly underline the positive effects of MPAs on all but one of the

coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unf-

ished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover,

and substrate rugosity were also positively related to several coral descriptors. The occurrence

of reefs with high diversity, abundance, and cover of corals, including the competitive Acro-

pora, is a major finding of this study. Our results strongly support the implementation of locally

managed marine areas with strong involvement by primary users, particularly to assist in man-

agement in countries with reduced logistic and human resources such as Madagascar.
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Introduction

More than 850 million people from over 100 countries rely on the exceptional biodiversity of

coral reefs, providing crucial economic, cultural, social, and aesthetic goods and services [1, 2].

These reefs are mostly supported by small colonial, calcifying organisms, the hermatypic scler-

actinian corals, which create complex three-dimensional habitats offering a variety of shelter

and food for thousands of organisms [3, 4]. Coral assemblages often exhibit a marked spatial

heterogeneity from local to geographic scales (i.e., from within and among reef habitats to

among regions and ocean basins), reflecting the contrasting life history strategies and func-

tional traits of coral species as well as the biological and physical processes that influence their

biology and vary in frequency, intensity, and spatial scale [5–9]. Since corals are particularly

sensitive to changes in environmental conditions, reef ecosystems are highly vulnerable to

both chronic and acute stressors and may change rapidly in their structure and functioning

[10–13].

There is concern that the frequency and severity of large-scale disturbances, such as coral

bleaching events associated to thermal stress, cyclones, or outbreaks of the coral predator

Acanthaster spp. in the Indo-Pacific, have increased over the last four decades [4, 14, 15].

Humans have further contributed to this declining trend by contributing multiple, direct

anthropogenic disturbances that kill reef organisms, such as overharvesting of reef organisms,

destructive fishing methods, uncontrolled tourism and recreational impacts, and increased

sedimentation and pollution associated with dredging, coastal development, deforestation,

and intensive agriculture [4, 16, 17]. In response to these threats, coral reefs have been severely

impacted by widespread mortalities of foundation species and degraded habitat [18–20], in a

number of cases undergoing a striking phase shift involving the replacement of corals by

macroalgae or other non-reef-building benthic organisms, an undesirable state providing

fewer goods and services to human populations [21].

In the context of this “coral reef crisis”, evaluating the vulnerability, adaptability, and resil-

ience of reef communities and their dependent human societies is urgently needed [4, 22, 23].

Encouragingly, management and conservation actions have already been taken to preserve the

diversity, structure, and functions of coral reefs and to maintain the goods and services they

provide to humans [24–26]. The Marine Protected Area (MPA) has been one of the most com-

mon tools to support the health of coral reefs and to enhance their resistance and resilience to

disturbances [27–31]. Although the capacity of MPAs to maintain fisheries productivity and

sustainable livelihoods has been demonstrated in many cases [32–36] conflicting results and

uncertainties regarding their effectiveness in protecting the transformed reefs that are expected

in future decades have also been highlighted [6, 26, 32, 37–40]. For corals, management of fish-

ing activities within MPAs is intended to maintain a sufficient herbivory rate to remove algae

that are competitive with corals, in turn enhancing coral recruitment [31, 41–43]. However,

this mechanism is not always observed, and a lack of positive effects of MPAs on coral replen-

ishment capacities has been recorded [44, 45]. Among the major drivers of MPA effectiveness

are the duration of protection, size, and connectivity, together with the type and compliance of

regulation measures [29, 32, 46–49].

Madagascar is one of the largest islands in the world, with a coastline extending over ~14˚

of latitude (11˚ 47’ to 25˚ 35’ S) and, with ~2400 km2 of coral reefs, is a major biodiversity hot-

spot in the Western Indian Ocean [50–52]. The high diversity of reef organisms, including

~380 scleractinian coral species, is partly linked to the size, morphological diversity, and con-

trasting environmental conditions of these reefs [6, 53–57]. Studies on the diversity and struc-

ture of coral assemblages have taken place since the 1960s with the establishment of the

marine research center at Toliara on the southwest coast [58]. However, most of these studies
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have been restricted to either local [59–65] or regional [38, 55] scales, or have focused on docu-

menting the general health status of these reefs [53, 55, 66–68]. In contrast, no multiscale anal-

ysis of spatial patterns in coral assemblages has been conducted, and the drivers of such

variability remain poorly understood.

As most of the world’s coral reefs, those of Madagascar have confronted large-scale distur-

bances and human-induced local stressors, most notably bleaching events, sedimentation, and

overfishing [56, 67, 69–71]. Consequently, coral assemblages have declined since the 1980s at

several reefs around the island, as documented along the Great Reef of Toliara [61–63], though

a return to a healthier coral community has recently been documented for this reef [65]. In

response to the overall degradation of coral reefs, the Malagasy authorities have implemented

mitigation actions, resolutely investing in the establishment of MPAs since 1989, with the crea-

tion of the first one, the Mananara Nord Biosphere Reserve on the east coast. Twenty-two

MPAs currently cover an area of 14,451 km2, representing 1.26% of the Exclusive Economic

Zone [72, 73]. Involvement of primary users, most notably fishermen and sea farmers, have

been encouraged through the implantation of Locally Managed Marine Areas (LMMA) that

have shown some success in effectively managing fisheries [35, 74, 75]. However, the effects of

these MPAs on coral assemblages have not been rigorously examined, leaving the benefit and

effects of such a management tool on the overall reef biodiversity, functions, and services diffi-

cult to assess in Madagascar [35, 75].

In this context, the aim of this study was to analyze the spatial variation of coral assemblages

at multiple scales around Madagascar. Composition, generic richness, abundance, life history

strategies, and cover of coral assemblages were compared among 18 stations located at three

regions around the island. We analyzed the potential influence of several environmental fac-

tors, including algal cover, substrate rugosity, herbivorous fish biomass, and geographic loca-

tion on the spatial patterns of coral variables. By comparing stations in unfished areas (MPAs)

and stations where fishing is allowed, we also investigated the effect of fishing protection level

on coral community structure. Although this study is a snapshot in a highly dynamic system,

the data set and questions addressed in this study provide a valuable contemporary baseline to

understand the drivers of coral community structure and to monitor future changes of these

reefs, and may also help identify effective conservation and management actions.

Materials and methods

Study area and sampling strategy

Fieldwork was conducted from March to October 2020 at three regions around Madagascar

(Fig 1). Masoala, on the northeast coast (15˚59’08” S, 50˚09’27” E), is composed of fringing

reefs of 0.5 to 3 km wide with several passes to the open ocean. This region includes the

Masoala Marine Park, created in March 1997 (S1 Table). Nosy-Be, in the northwest (13˚24’21”

S, 48˚16’31” E), is composed by several small islands with narrow (< 1 km) fringing reefs. This

region comprises the Lokobe Marine Park and the Nosy Tanihely Marine Park, both created

in September 2011. Salary Nord, along the southwest coast (22˚33’17” S, 43˚17’10” E), is a

region with fringing reefs of 1.7 to 4.9 km wide, with a channel (~5 m depth) that allows the

circulation of boats. These reefs are integrated within the Soariaka MPA, created in April 2015.

In recent decades, these reefs have been impacted by the bleaching event of 1998 [70, 76], and

2016 [77] (S1 Table). The major cyclones that had a potential impact on coral assemblages are

Haruna at Salary Nord in 2013, Enawo 2017 at Masoala and Nosy-Be in 2017, and Belan at

Nosy-Be in 2019 [78]. However, the impact of these disturbances on coral assemblages in our

three regions has not been quantified. At each region, six sampling stations were surveyed,

including three stations in unfished areas and three stations in areas where fishing is allowed
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(Fig 1 and S1 Table). The location of our stations took into account logistical considerations

(accessibility of sites), meteorological constraints during sampling, and the directives of local

authorities (Madagascar National Park, Wildlife Conservation Society, and local managers).

All 18 stations were located on the outer reef slope at ~10 m depth, where direct anthropogenic

disturbances are lower, and where diversity and abundance of coral assemblages is generally

higher compared to other reef habitats [65]. Stations codes are abbreviated as follow: the first

two letters indicate the region (NE for Masoala in the northeast, NW for Nosy-Be in the north-

west, and SW for Salary Nord in the southwest), the number (1 to 6) differentiates the six sta-

tions from each region, and NTZ (“No Take Zone”) is for stations in unfished areas. Field

work was carried out with a research permit granted by the Malagasy Ministry of Environment

and Sustainable Development (75/20/MEDD/SG/DGEF/DGNRE).

At each station, generic richness (GR) and abundance of coral assemblages (scleractinian

corals and the calcareous hydrocoralMillepora) were estimated using three randomly repli-

cated belt-transects of 10 m2 (10 × 1 m), laid parallel to depth contours and separated by ~2 m

[79]. To complement the characterization of the diversity of coral assemblage composition, the

Fig 1. Location of the 18 sampling stations in the three regions around Madagascar. Masoala (A) is located in the northeast coast, Nosy-Be (B) in the northwest, and

Salary Nord (C) in the southwest. See Materials and Methods section for station codes.

https://doi.org/10.1371/journal.pone.0275017.g001
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Shannon diversity index (H’) was calculated at each station using log2 and colony abundance

data for each coral genus. In order to estimate the functional trait diversity of coral assem-

blages, we assigned one of the four life history strategies, as defined by Darling et al. [80], to

each coral colony encountered in the belt-transects: competitive, generalist, stress-tolerant,

and weedy. For those coral genera that encompass species spanning several of these life history

strategies, we have assigned proportional values based on life history strategy of the species

typically found in the region ([81]; for example, Pocillopora was estimated to include 75% gen-

eralist and 25% weedy species). The percent cover of corals, macroalgae, turf algae, and crus-

tose coralline algae (CCA) was estimated at each station using three line intercept transects

(LIT) of 10 m, placed in the middle of the belt-transects. Biomass of herbivorous fishes was

estimated at each station using underwater visual censuses on three randomly replicated belt-

transects of 250 m2 (50 × 5 m) laid parallel to depth contours and separated by ~2 m. All her-

bivorous fishes were identified at the species level, counted, and measured according to their

total length. Abundance values were converted to kilograms of biomass per unit area of reef

(kg.ha-1) using species-specific length-weight equations: W = a�Lb, whereW is the weight (in

g), L is the total length (in cm), and parameters a and b are species-specific constants that have

been extracted from FishBase [82]. At each station, we estimated the substrate rugosity with a

visual assessment of reef topography, graded from 0 to 5 (0 = no vertical relief; 1 = low and

sparse relief; 2 = low but widespread relief; 3 = moderately complex; 4 = very complex with

numerous fissures and caves; 5 = exceptionally complex with numerous caves and overhangs),

following Polunin & Roberts [83].

Cover of algae (macroalgae, turf, and CCA), rugosity, herbivorous fish biomass, fishing pro-

tection level (fished vs. unfished areas; i.e., we did not measure fishing pressure at each station),

and geographic location (belonging to one of the three regions) have been recorded to estimate

their potential influence on the spatial variation of coral assemblages, and will be referred to as

“explanatory variables” hereafter.

Data analysis

The spatial variation in the composition of coral assemblages was analyzed using nonmetric

multidimensional scaling (nMDS), based on the Bray-Curtis dissimilarity index of the

abundance of coral genera recorded at each station. The nMDS was performed using the

“metaMDS” function in the “vegan” R package [84]. The potential influence of explanatory

variables was analyzed with PERMANOVA on distance matrices using the “Adonis” func-

tion in the “vegan” R package [85]. Additionally, pairwise post-hoc multilevel comparisons

were conducted to test for significant differences in the composition of coral assemblages

between the three regions, using the “pairwise.Adonis2” function in the “pairwiseAdonis” R

package [86].

We used linear mixed effect models to determine which explanatory variables were influ-

encing the spatial variation of the coral assemblage descriptors (GR, H’, total abundance, abun-

dance of the four life history strategies, and overall coral cover). Prior to analysis, Spearman

rank correlations were calculated between all pairs of explanatory variables (cover of macroal-

gae, turf algae, CCA, herbivorous fish biomass, and rugosity) to identify potential collinearity

between these variables. As no strong correlations (-0.7< overall ρ< 0.7) were recorded, all

our explanatory variables were considered as independent and included in the models (S1

Fig). All explanatory variables were centered to a mean of zero and scaled to a standard devia-

tion of 1 in order to allow for direct comparisons of their effects. Linear mixed effect models

were selected as they take into account the hierarchical structure of the data set: here, the non-

independence of data points (transects) belonging to particular stations, in turn belonging to
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the same region [87]. We used a multi-model information-theoretic approach to compare the

explanatory variable contributions and their most important interactions in describing the

variation in coral descriptors. To ensure that all model assumptions were met and to take into

account overdispersion, we modeled GR, H’, abundance and cover data using a Gaussian dis-

tribution, while abundance of the four life history strategies were modeled using a Poisson dis-

tribution. Models were fitted by maximum likelihood estimation using the “lmer” and “glmer”

functions in the “lme4” R package [88]. We estimated how much of the variation in coral

descriptors was explained by the variables included in the models using the marginal R2 (“r.

squaredGLMM” function in the “MuMIn” R package; [89]). For each coral variable, we

selected the most parsimonious combinations of fixed effects by comparing models with all

possible combinations of the predictor variables using the corrected Akaike’s information cri-

terion (AICc; [90]). The subset of best models was selected as the ones with ΔAICc value < 2

(the difference between each model’s AICc and the lowest AICc) using the “dredge” function

in the “MuMIn” R package. All models with a ΔAICc < 2 were considered as having similar

levels of support from the data, thus belonging to the group of best models (i.e., equally parsi-

monious; [90]). We used Akaike weights (wAICc), derived from the AICc, to evaluate the rela-

tive likelihood of each model given the data set and the set of models considered as well as to

estimate the relative importance of each explanatory variable by summing these wAICc across

the models in which they were included. Akaike weights were directly interpreted as each

model’s probability of being the best at explaining the data [90]. Subsequently, the effect sizes

(lm coefficients) of the predictions of the individual models selected at the previous step were

averaged using the Akaike weights as weighting coefficients. Finally, we investigated the differ-

ences among factor modalities in the mixed models using Tukey post-hoc tests (“emmeans”

function in the “emmeans” R package; [91]). All statistical analyses were performed using R

4.1.0 [92].

Results

Composition of coral assemblages

A total of 7,638 coral colonies, representing 16 families and 40 genera (30 at Masoala, 38 at

Nosy-Be, and 29 at Salary Nord), were recorded at the 18 stations. The nMDS ordination

showed a substantial geographical clustering in the composition of coral assemblages (Fig 2).

Among the seven potential explanatory variables examined (Fig 3), geographic location

(belonging to one of the three regions) was the strongest contributor to the overall dissimilarity

in the composition of coral assemblages, explaining ~27% of the variance (PERMANOVA,

F = 3.825, p = 0.001; R2 = 0.27) and followed by rugosity, though to a lesser degree (PERMA-

NOVA, F = 2.444, p = 0.021; R2 = 0.08; Table 1). In fact, the differences in the composition of

coral assemblages between regions were all significant (pairwise post-hoc tests,

Masoala × Nosy-Be, F = 2.384, p = 0.013; Masoala × Salary Nord, F = 2.817, p = 0.029; Nosy-

Be × Salary Nord, F = 3.380, p = 0.006). The first two axes of the nMDS differentiated the sta-

tions of Masoala, characterized by higher abundances of Acropora, Pavona,Hydnophora, and

Leptastrea, from the stations of the two other regions. An exception is station NE2-NTZ,

where lower abundance of Acropora was recorded and which was more similar to Salary Nord

stations (S2 Table). Most Nosy-Be stations were located in the upper part of the nMDS plot,

and were characterized by the presence of Diploastrea, Euphyllia, Isopora, and Tubastrea that

were recorded only in this region (S2 Table). Station NW4 at Nosy-Be was however more simi-

lar in its composition to several Masoala and Salary Nord stations. Stations from Salary Nord,

in the right portion of the nMDS plot, were characterized by higher abundance of Leptoseris,
Pachyseris, and Stylophora at several stations (S2 Table).
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Generic richness

Generic richness was highly variable among stations within the regions, but the range of varia-

tion was similar among the three regions, with values from 10.00 ± 1.00 genera.10 m-2

(mean ± se) to 21.66 ± 0.33 at Masoala, from 10.66 ± 1.20 to 19.00 ± 2.08 at Nosy-Be, and from

11.66 ± 1.76 to 20.66 ± 0.66 at Salary Nord (Fig 4 and S3 Table). The selection procedure iden-

tified four models to explain the variation in GR (ΔAIC < 2; Tables 2 and S4 and S5 and S2

and S6 Figs), with fishing protection level and herbivorous fish biomass having the strongest

contribution. The biomass of herbivorous fish was included in all four models and had the

maximum value of relative importance (1.000). Models indicated that the number of coral gen-

era per 10 m2 increases by 1.33-fold with an increase of 1 kg.ha-1 in herbivorous fish biomass.

Fishing protection level also had a strong influence on the variation of GR (relative impor-

tance: 0.736), with 2.55 times more coral genera per 10 m2 in unfished stations compared to

fished ones. Cover of CCA and turf algae weakly predicted the variation in GR (relative impor-

tance: 0.191 and 0.154, respectively), with a positive coefficient for CCA (0.39) and a negative

one for turf algae (-0.28). All other explanatory variables were not selected by the models to

account for the variation in GR (Table 2).

Fig 2. Non-metric multidimensional scaling (nMDS) showing the spatial variation in the composition and abundance of coral assemblages. Analyses are based on

the Bray-Curtis dissimilarity index among the 18 stations located in the three regions. Position of stations and coral genera is given along the first two axes.

https://doi.org/10.1371/journal.pone.0275017.g002
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Shannon diversity index

The Shannon diversity index was also variable among stations within regions, particularly at

Masoala, with H’ values from 1.54 ± 0.03 (mean ± se) to 2.85 ± 0.00, compared to Nosy-Be

(1.89 ± 0.06 to 2.49 ± 0.06) and Salary Nord (1.98 ± 0.08 to 2.76 ± 0.02; Fig 4 and S6 Table).

Fig 3. Spatial variation of explanatory variables that may influence the spatial variation of coral assemblages. Data are given for the 18 sampling stations located at

the three regions. Errors bars represent standard error.

https://doi.org/10.1371/journal.pone.0275017.g003

Table 1. Summary of the PERMANOVA to examine the influence of explanatory variables in the variation of

composition of coral assemblages. Analyses are based on the Bray-Curtis dissimilarity index of the abundance of

coral genera recorded at the 18 stations of the three regions. Significant P-values (<0.05) are highlighted in bold.

Source of variation F P-value R2

Region 3.825 0.001 0.276

Fishing protection level 1.498 0.176 0.054

Macroalgal cover 1.156 0.336 0.041

Turf cover 1.410 0.214 0.050

CCA cover 1.700 0.097 0.061

Herbivorous fish biomass 1.820 0.085 0.065

Rugosity 2.444 0.023 0.088

Region × Fishing protection level 1.493 0.131 0.107

https://doi.org/10.1371/journal.pone.0275017.t001
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Five models were selected as the most parsimonious to explain variation of H’ (Tables 2 and S7

and S8 and S3 and S7 Figs). CCA cover was the most important predictor (relative importance:

1.000), followed by herbivorous fish biomass (0.581) and fishing protection level (0.424), with

all three variables having a positive contribution (coefficient of 0.08, 0.07, and 0.15, respec-

tively). Rugosity was also selected in some models, but its contribution to the spatial variation

in H’ was lower (relative importance: 0.118; coefficient: 0.03).

Coral abundance

Abundance of coral colonies was highly variable among stations within region, notably for

Masoala, with 81.70 ± 8.09 to 345.66 ± 25.01 colonies.10 m-2 (mean ± se), compared to Nosy-

Be (96.70 ± 2.03 to 205.33 ± 31.40 colonies.10 m-2) and Salary Nord (75.00 ± 7.77 to

144.33 ± 7.26 colonies.10 m-2; Fig 4 and S9 Table). Three models were selected to explain the

variation in coral abundance (Tables 2 and S10 and S11 and S4 and S8 Figs). Herbivorous fish

biomass had the highest relative importance (1.000), followed to a lesser degree by fishing pro-

tection level (0.250) and CCA cover (0.205). The effect of herbivorous fish biomass on coral

abundance was strong and positive, with a coral abundance increase by 26.81-fold with an

increase of 1 kg.ha-1 in herbivorous fish biomass. The models also suggested that 30.68 times

Fig 4. Spatial variation in generic richness, Shannon diversity index, abundance, and percent cover of coral assemblages. Data are given for the 18 sampling stations

located at the three regions. Errors bars represent standard error.

https://doi.org/10.1371/journal.pone.0275017.g004
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more coral colonies were recorded in unfished stations, whereas the effect of CCA cover on

variation in coral abundance was negative (coefficient: -3.35).

The abundance of the 10 major coral genera at each region, as well as other, less represented

genera (“others”), was highly variable among stations and regions (Fig 5). Acropora was the

most abundant coral at eight of the 18 stations, with particularly high values at NE1-NTZ and

NE4 located at Masoala and, to a lesser degree, at the unfished stations of Nosy-Be

(NW1-NTZ, NW2-NTZ, NW3-NTZ). Several genera were frequently recorded at certain

regions while greatly less abundant in others. This is the case for Galaxea, which was abundant

at Masoala and Nosy-Be stations but less represented at Salary Nord, and Pocillopora, which

was abundant at Masoala and Salary Nord but not at Nosy-Be. Porites and Seriatopora were

recorded at almost all stations, being among the dominant corals at several stations (NW6 and

SW2-NTZ for Porites, NW5, SW1-NTZ, and SW5 for Seriatopora). Several genera were part of

Table 2. Summary of best linear mixed models using a Gaussian distribution to describe variation of generic richness, Shannon diversity index, coral abundance,

and coral cover. FP: fishing protection level, MA: macroalgae, CCA: crustose coralline algae, HFB: herbivorous fish biomass.

Variables Intercept Region FP Rugosity MA Turf CCA HFB Region × FP df Loglik AICc ΔAICc wAICc R2

marginal

Generic

richness

14.37 × 1.353 5 -125.2 261.7 0 0.391 0.256

15.64 1.404 4 -126.81 262.5 0.78 0.264 0.138

14.27 × 0.393 1.215 6 -124.63 263.1 1.43 0.191 0.244

14.4 × -0.286 1.316 6 -124.84 263.6 1.86 0.154 0.263

Relative
importance

0 0.736 0 0 0.154 0.191 1 0

Coefficient Unfished: 2.55 -0.28 0.39 1.33

Shannon

Index

2.273 0.075 0.079 5 1.249 8.8 0 0.313 0.104

2.271 0.091 4 -0.112 9.1 0.27 0.274 0.062

2.198 × 0.077 0.077 6 1.796 10.3 1.47 0.150 0.143

2.188 × 0.092 5 0.478 10.3 1.54 0.145 0.102

2.273 0.039 0.070 0.083 6 1.557 10.8 1.95 0.118 0.109

Relative
importance

0 0.424 0.118 0 0 1 0.581 0

Coefficient Unfished: 0.15 0.03 0.08 0.07

Coral

abundance

141.9 26.550 4 -267.501 543.9 0 0.545 0.119

126.5 × 26.102 5 -267.053 545.4 1.56 0.250 0.163

142.1 -3.356 28.360 5 -267.249 545.8 1.95 0.205 0.135

Relative
importance

0 0.250 0 0 0 0.205 1 0

Coefficient Unfished: 30.68 -3.35 26.81

Coral

cover

36.71 × × 6.419 1.233 8 -155.308 330.0 0 0.240 0.747

37.00 × × 6.856 7 -157.062 330.7 0.70 0.169 0.748

39.57 × 7.961 5 -159.756 330.8 0.85 0.157 0.648

39.35 × 7.551 1.031 6 -158.584 331.0 1.07 0.140 0.625

39.65 × 7.872 -0.805 6 -158.919 331.7 1.74 0.100 0.661

37.15 × × 6.754 -0.817 8 -156.182 331.7 1.75 0.100 0.759

39.61 × × 6.117 1.388 × 10 -153.232 331.8 1.87 0.094 0.789

Relative
importance

0.603 1 1 0 0.200 0.474 0 0.094

Coefficient Nosy-

Be: 6.89

Salary

N: -0.67

Unfished: 8.04 7.04 -0.81 1.20 Unfished × Nosy-

Be: 12.16

Unfished × Salary

N:6.48

https://doi.org/10.1371/journal.pone.0275017.t002
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the 10 dominant corals at only one of the three regions, as Favia at Masoala, Leptoria, Fungia
andMerulina at Nosy-Be, and Leptoseris and Stylophora at Salary Nord (Fig 5).

Coral assemblages were dominated by stress-tolerant taxa at 11 of the 18 stations,

whereas competitive taxa were the most represented life history strategy at NE1-NTZ and

NE4 in Masoala and, to a lesser degree, at NW1-NTZ in Nosy-Be (Fig 6 and S12 and S13

Tables). Generalist and weedy taxa were generally less abundant except at stations NE5 in

Masoala and SW1-NTZ and SW2-NTZ in Salary Nord. Five models were selected as the

most parsimonious to explain the variation in the abundance of the four life history strate-

gies (Tables 3 and S14 and S15 and S9 Fig). Region, fishing protection level, life history

strategies, herbivorous fish biomass, and the interactions of region × fishing protection

level, region × life history strategies, fishing protection level × life history strategies, and

region × fishing protection level × life history strategies had the maximum value of relative

importance (1.000). Rugosity (0.322), macroalgae cover (0.526), turf (0.169), and CCA

(0.169) were also selected by the models, but their relative importance was lower. The mod-

els underlined the higher abundance of competitive corals at some Masoala stations, the

higher abundance of competitive corals in unfished stations at Nosy-Be, and the higher

abundance of weedy corals in unfished stations at Salary Nord.

Fig 5. Spatial variation in the abundance of the 10 major coral genera and other less represented genera (“others”). Data are given for 18 sampling stations located at

the three regions. Errors bars represent standard error.

https://doi.org/10.1371/journal.pone.0275017.g005
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Coral cover

The overall coral cover was highly variable within and among regions. Higher cover values were

recorded at Nosy-Be (from 42.6% ± 2.9 to 69.8% ± 4.2, mean ± se), compared to Salary Nord

(from 25.8% ± 1.3 to 49.7% ± 3.0) and Masoala (from 26.5% ± 0.5 to 46.2% ± 5.6; Fig 4 and S16

Table). The spatial variation in coral cover was supported by seven models (Tables 2 and S17

and S18 and S5 and S10 Figs). Fishing protection level and rugosity had the maximum relative

importance (1.000), followed by region (0.603). CCA, turf, and the interaction region × fishing

protection level had a lower relative importance (0.474, 0.200 and 0.094, respectively). The mod-

els suggested that coral cover increases by 7.04% with an increase of rugosity by 1 unit, and by

8.04% in unfished areas compared to fished ones, this effect being more pronounced at Nosy-

Be (12.16% increase; Table 2).

Discussion

In the context of increasing degradation of coral communities around the globe, as well as the

localized threats that Madagascar is facing, our results demonstrate the occurrence of reefs

with high diversity, abundance, and cover of corals, including the competitive Acropora,

which has decreased among other coral reefs. Our study also underlines a positive effect of

Fig 6. Spatial variation in the abundance of the four coral life history strategies. Data are given for the 18 sampling stations located at the three regions. Errors bars

represent standard error.

https://doi.org/10.1371/journal.pone.0275017.g006
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MPAs on most coral variables, but with varying intensity among regions. These outcomes sup-

port Madagascar as a biodiversity hotspot and offer a strong argument for the need to maintain

and strengthen conservation and management actions.

Spatial heterogeneity of coral assemblages

Our survey highlights the marked spatial variability of coral assemblages in Madagascar, with

variation at either or both regional and local scales for all coral descriptors. This multiscale spa-

tial heterogeneity is consistent with several previous studies on coral reefs worldwide, and thus

represents one of the major characteristics of this ecosystem [6, 9, 57, 93, 94]. As in previous

studies in the Western Indian Ocean [6, 38, 57], we found a marked regional-scale variation in

the composition of coral assemblages, whereas changes at the local scale (among stations

within regions) were less pronounced. Despite this regional dissimilarity in species composi-

tion, the local variation of generic richness showed a similar amplitude among regions, with

up to two-fold differences among the six stations at each region. This local heterogeneity in

generic richness was followed by a similar pattern for the Shannon diversity index, with a par-

ticularly high variability at Masoala. Our results also underline a marked heterogeneity at both

regional and local scales in the abundance and cover of coral assemblages, with variable contri-

bution of the four life history strategies.

Masoala was characterized by the high abundance of coral colonies (81–345 colonies.10

m-2), most notably of the competitive Acropora and Pocillopora as well as the stress-tolerant

taxa Porites and Galaxea at some stations. The highest abundance values ever recorded at

Masoala are greater than the one recorded during this study at Salary Nord, Nosy-Be, or at

Toliara on the southwest coast (150–220 colonies.10 m-2; [65]). The range of coral cover

(~26–46%) that we recorded at Masoala was higher than the one reported by previous stud-

ies in this region (~20–35% in 1998, [76]; ~13% in 2005, [68]). Our results support the out-

comes of McClanahan [59], who suggested that good ecological conditions of these reefs,

with a diverse and abundant coral assemblage and a high dominance of Acropora reported

in 1996, is probably related to the moderate human impacts in this region. Moreover, the

high hydrodynamic and water circulation in the northeast coast [95–98] likely facilitates the

larval dispersal of broadcast spawning corals such as Acropora and their subsequent

regional recruitment. However, this hypothesis should be investigated by a connectivity sur-

vey among reefs in this region, which is currently lacking. The good ecological state of the

reefs at Masoala seem nevertheless conditioned to the fact that sedimentation and nutrients

from rivers do not increase in the coming years [59, 99].

In contrast, Salary Nord was distinguished by lower abundances of coral assemblages, nota-

bly with a depauperate population of competitive taxa, mainly Acropora. In contrast to the two

other regions, a higher proportion of stress-tolerant taxa, such as massive Porites, and weedy

corals, such as Seriatopora and Stylophora, were recorded at most stations. The abundance of

these taxa, known to colonize and often dominate disturbed environments [5, 100], supports

the general consensus that coral reefs of the southwest coast of Madagascar are the most threat-

ened of the island [101]. This lower diversity and abundance of southwestern coral assemblages

has been attributed to high-resource extraction and sedimentation [38, 60]. However, the range

of coral cover that we recorded at Salary Nord in 2020 (~25–49%) was higher compared to

those found by Randriamanantsoa et al. [102] in 2008 (~21–24%). Thus, though comparisons

between studies with different sampling methodologies should be taken with caution, our

results suggest that Salary Nord reefs have not shown a clear declining trend in recent years.

Coral assemblages at Nosy-Be were characterized by a higher diversity (38 coral genera),

higher abundances of several taxa, including Diploastrea andMerulina, that were much less
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abundant or not even recorded at the other two regions, and also by the high coral cover

(~42–70%) recorded at unfished stations. These high coral cover values, among the highest

ever recorded at Madagascar [53, 65], are similar to what was found by Bigot et al. [103] in

1999 (~68% on the outer slope of Nosy Tanihely), but higher than those recorded by Webster

& McMahon [66] in the same year (~28–51%). Even if they are confronted by several threats,

coral reefs of Nosy-Be are generally considered to be healthier compared to most other reefs

around Madagascar, with a high capacity to recover from disturbances [6, 55, 69, 104, 105]. In

fact, Nosy-Be is located within the high diversity center in the Northern Mozambique Channel

[6, 38, 106, 107]. The high diversity and abundance of coral assemblages in this region is gener-

ally associated with the high connectivity among reefs generated by meso-scale eddies [108],

and to less frequent storms [6]. This region is therefore considered a priority area for conserva-

tion [6].

The present study has focused on the regional and local scales and has provided a valuable

contemporary baseline to determine temporal trajectories of coral assemblages, which is cru-

cial for implementing effective management and conservation actions. Given the size of Mada-

gascar and its diversity in environmental conditions, our survey should be reinforced with, for

example, the addition of other reef habitats such as shallow back reefs and mesophotic depths,

as well as other reefs around the island, notably those from less studied regions such as those

in the Kirindy-Mite and Barren Isles in the west, Ambodivahibe in the northeast, and Anosy

in the southeast.

Influence of management status and environmental conditions

Our results clearly underline the positive effects of fishing protection levels on most descrip-

tors of coral assemblages. Stations localized in unfished areas (MPAs) of the three regions

showed higher values of generic richness, Shannon diversity index, colony abundance, and

cover. The relative contribution of the four life history strategies was also influenced by fishing

protection level with, as an example, higher abundance of competitive coral taxa in unfished

areas. In fact, species composition was the only component of the coral assemblages that was

not related to fishing protection level and rather linked to geographic location. This “MPA

effect” was particularly evident at Nosy-Be, with the highest contrast between fished and unf-

ished stations being in terms of abundance and cover of coral colonies, with notably higher

abundance of encrusting and massive coral growth forms and reduced macroalgae cover at

unfished stations. Size, age, depth and connectivity are major factors in the effectiveness and

success of MPAs [31, 32, 36, 46–48]. Here, we suggest that the relatively small size [31, 42, 109]

and accessibility of the MPAs are key aspects of the MPA effect at Nosy-Be, facilitating man-

agement in terms of monitoring, control, and awareness-raising. Moreover, MPAs at Nosy-Be

are the oldest in this study, and this greater time of protection may also explain the highest

MPA effect recorded here, consistent with other coral reefs worldwide [46, 47]. Moreover,

with several small, scattered islands, and favorable current conditions, the connectivity in the

Nosy-Be region is likely a factor that contributes to this positive MPA effect on the higher

diversity and abundance of coral assemblages, as recently documented [36, 46, 48].

The biomass of herbivorous fishes was also linked to the spatial variation in generic rich-

ness, Shannon diversity index, life history strategies, and abundance of coral assemblages, with

higher values of these coral descriptors at stations with high biomass of herbivorous fishes.

Herbivory on coral reefs is considered a key function because it often mediates coral-algal

interactions in favor of reef-building corals [110, 111]. This expected negative correlation

between herbivorous fish biomass and cover of turf and macroalgae was recorded at Masoala

and Nosy-Be, but not at Salary Nord. This herbivorous-algal interaction probably explains the
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negative link that we also recorded between algal cover (turf and macroalgae) and the generic

richness, cover, and life history strategies of coral assemblages. These outcomes reinforce the

demonstrated mechanism of a high biomass of herbivorous taxa limiting the cover of algae, in

turn benefitting coral assemblages, as fleshy algae compete for space and use allelopathy to

reduce recruitment, growth, and survivorship of corals [30, 112–115]. This mechanism has

been effectively demonstrated in several MPAs [30, 31, 116–118] though could not be con-

firmed in others [75, 119, 120].

Crustose coralline algae (CCA) cover was positively related to spatial variation of the Shan-

non diversity index and, to a lesser degree, of generic richness and cover. These relationships

could be explained by the fact that some species of CCA induce the metamorphosis and settle-

ment of larvae of several coral species [121–123], and also tend to prevent the establishment

and growth of macroalgae by producing antifouling chemical signals [124]. The fact that CCA

is a composite metric with not all species inducing coral settlement likely explains the relatively

weak, although statistically significant, relationship that we found here, notably for generic

richness and cover [125, 126]. Furthermore, the negative link between CCA cover and abun-

dance of coral colonies that we recorded is difficult to interpret. Due to the correlative nature

of our analysis, this relationship does not necessarily imply a strong underlying ecological

mechanism. Biochemical and habitat-specific cues not considered in this study likely influence

the density of coral populations at local scales.

Substrate rugosity was strongly and positively linked with coral cover and composition as

well as, at a reduced level, the Shannon diversity index and the relative abundance of the four

life history strategies. High rugosity typically provides a larger surface available for sessile

organisms as along with more protection from environmental stressors and ecological niche

space for marine organisms [127–130]. For several reef invertebrates, including corals, high

substrate micro-topography promotes larval settlement and recruitment by reducing mortality

by predation up to a point where this factor represents a bottleneck in the replenishment of

local populations [122, 131]. Consequently, the reduction of substrate rugosity, notably after

storms, cyclones, or gleaning activities, is associated with reef degradation [132–134]. The out-

comes of our survey thus reinforce the positive link between rugosity and the diversity and

abundance of reef invertebrates and fishes previously recorded [132, 133, 135–137]. However,

because the substrate rugosity was visually assessed in the present study, it should be interest-

ing to examine the relationship between rugosity and the structure and dynamics of coral

assemblages with the recently developed underwater 3D photogrammetry approach, which

allows a much more precise measurement of the structural complexity of reef habitats [130,

138, 139].

Since the interactive effects of multiple biotic and abiotic drivers govern the structure and

dynamics of coral assemblages [5–9], it is evident that other environmental factors not selected

in the present study could also have a major influence on the spatial patterns revealed here.

Sedimentation, light penetration, nutrients dynamics, and temperature regime, all of which

have been identified as structuring factors for other coral reefs in the SWIO [57] and around

Madagascar [65, 67, 140], should be considered in a future survey.

Conclusions and perspectives

One of the major results of this study is the identification of reefs with high diversity, abun-

dance, and coverage of corals, including the competitive Acropora. These original outcomes

are particularly unexpected in the current context of increasing degradation of many coral

reefs around the world. However, these optimistic results should be tempered as our survey is

only a snapshot in a highly dynamic system and especially as large-scale disturbances, such as

PLOS ONE Effects of marine reserves on coral assemblages in Madagascar

PLOS ONE | https://doi.org/10.1371/journal.pone.0275017 October 20, 2022 16 / 28

https://doi.org/10.1371/journal.pone.0275017


thermally induced bleaching events and local stressors associated with human growth, are

expected to increase in the near future, with possible shifts in coral assemblage distribution,

diversity, and structure [141, 142]. Nevertheless, our survey represents a valuable contempo-

rary baseline to document changes of these reefs and may help to determine if they will provide

refuge from future environmental changes.

The positive effects of MPAs on coral assemblages have been clearly demonstrated here.

The outcomes of our study strongly support the implementation of MPAs where fishing

should be reduced or banned, notably for herbivorous fishes, for which we demonstrated a

positive role for the abundance and diversity of coral assemblages, in line with previous studies

[28, 30, 42, 143]. Conservation actions should also focus on reducing all fishing activities, such

as gleaning and using destructive gears, that strongly alter the reef habitat rugosity and struc-

tural complexity that is critical for the health of reef communities [132, 133, 138]. Alternative

sources of income, such sea cucumber and seaweed farming, that may reduce the negative

effects of overfishing on coral communities, should be also encouraged [140, 144]. The strong

spatial variability this study reveals on coral assemblages at the local scale suggests that MPAs

should integrate a sufficiently larger scale to capture such heterogeneity [38] but that, in con-

trast, small reserves are easier to manage in Madagascar given the reduced logistic and human

resources generally allotted to them. In fact, priority should be given to the implementation of

locally managed marine areas with strong primary user involvement, as has been successfully

done for fisheries in the Toliara region [35, 71, 74, 75] and elsewhere, such as in Fiji [42]. The

outcomes of our study also confirm the need to maintain and strengthen existing MPAs, as

older MPAs are known to be more effective in preventing coral decline [32]. This effort should

notably focus on the MPAs of Nosy-Be, as this high diversity area may act as a larval source for

other “sink” reefs and may favor their replenishment and resilience [48]. It is also timely to

establish long-term interannual monitoring of the reef communities, environmental condi-

tions, and threats at several reefs of various protection levels to precisely examine and improve

the effectiveness of coral reef conservation at Madagascar.
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Park, and the Wildlife Conservation Society Madagascar for their technical and logistical sup-

ports in the field. We would also thank the Malagasy Ministry of Environment and Sustainable

Development, and the local managers for providing us with the necessary authorizations for

PLOS ONE Effects of marine reserves on coral assemblages in Madagascar

PLOS ONE | https://doi.org/10.1371/journal.pone.0275017 October 20, 2022 20 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s032
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s033
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s034
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s035
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s036
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s037
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275017.s038
https://doi.org/10.1371/journal.pone.0275017


field work. We gratefully acknowledge critical comments made by Jane Ballard, and two anon-

ymous reviewers. This research is product of the JEAI ACOM and LMI Mikaroka.

Author Contributions

Conceptualization: Mahery Randrianarivo, Radonirina Lebely Botosoamananto, Lucie Penin,

Gildas Todinanahary, Mehdi Adjeroud.

Data curation: Mahery Randrianarivo, Johanès Tsilavonarivo, Andriamanjato Razakandrainy,

Jacques Philippe.

Formal analysis: Mahery Randrianarivo, François Guilhaumon.

Funding acquisition: Mehdi Adjeroud.

Investigation: Mahery Randrianarivo, Johanès Tsilavonarivo, Andriamanjato Razakandrainy,

Jacques Philippe.

Methodology: Mahery Randrianarivo, Mehdi Adjeroud.

Resources: Mehdi Adjeroud.

Supervision: Lucie Penin, Gildas Todinanahary, Mehdi Adjeroud.

Writing – original draft: Mahery Randrianarivo, Mehdi Adjeroud.

Writing – review & editing: François Guilhaumon, Johanès Tsilavonarivo, Andriamanjato

Razakandrainy, Jacques Philippe, Radonirina Lebely Botosoamananto, Lucie Penin, Gildas

Todinanahary.

References
1. Kittinger JN, Finkbeiner EM, Glazier EW, Crowder LB. Human dimensions of coral reef social-ecologi-

cal systems. Ecology and Society. 2012; 17. https://doi.org/10.5751/ES-05115-170417

2. Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA. Coral reef ecosystem services in

the Anthropocene. Functional Ecology. 2019; 33: 1023–1034. https://doi.org/10.1111/1365-2435.

13331

3. Bellwood DR, Hoey AS, Ackerman JL, Depczynski M. Coral bleaching, reef fish community phase

shifts and the resilience of coral reefs. Global Change Biology. 2006; 12: 1587–1594. https://doi.org/

10.1111/j.1365-2486.2006.01204.x

4. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, et al. Coral reefs in the

Anthropocene. Nature. 2017; 546: 82–90. https://doi.org/10.1038/nature22901 PMID: 28569801
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et al. Inventaire et étude de faisabilité de sites propices à l’algoculture, l’holothuriculture, la gestion de

l’exploitation de poulpes et de crabes dans la région Atsimo Andrefana. MHSA—PRU (Contrat n 166/

C/PIC2/2016) Report. Toliara, Madagascar; 2016.

PLOS ONE Effects of marine reserves on coral assemblages in Madagascar

PLOS ONE | https://doi.org/10.1371/journal.pone.0275017 October 20, 2022 28 / 28

https://doi.org/10.1002/ecs2.3934
https://doi.org/10.7717/peerj.6540
https://doi.org/10.3390/d14010039
https://doi.org/10.3389/fmars.2020.00317
https://doi.org/10.3389/fmars.2020.00317
https://doi.org/10.3389/fmars.2021.778121
https://doi.org/10.1038/s41893-021-00817-0
https://doi.org/10.1038/s41893-021-00817-0
https://doi.org/10.1038/nature06252
http://www.ncbi.nlm.nih.gov/pubmed/17972885
https://doi.org/10.1371/journal.pone.0275017

