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A B S T R A C T

For the development of new treatment strategies against cancer, understanding signaling

networks and their changes upon drug response is a promising approach to identify new

drug targets and biomarker profiles. Pre-requisites are tumor models with multiple read-

out options that accurately reflect the clinical situation. Tissue engineering technologies

offer the integration of components of the tumor microenvironment which are known to

impair drug response of cancer cells. We established three-dimensional (3D) lung carci-

noma models on a decellularized tissue matrix, providing a complex microenvironment

for cell growth. For model generation, we used two cell lines with (HCC827) or without

(A549) an activating mutation of the epidermal growth factor receptor (EGFR), exhibiting

different sensitivities to the EGFR inhibitor gefitinib. EGFR activation in HCC827 was in-

hibited by gefitinib, resulting in a significant reduction of proliferation (Ki-67 proliferation

index) and in the induction of apoptosis (TUNEL staining, M30-ELISA). No significant effect

was observed in conventional cell culture. Results from the 3D model correlated with the

results of an in silico model that integrates the EGFR signaling network according to clinical

data. The application of TGFb1 induced tumor cell invasion, accompanied by epithe-

lialemesenchymal transition (EMT) both in vitro and in silico. This was confirmed in the

3D model by acquisition of mesenchymal cell morphology and modified expression of

fibronectin, E-cadherin, b-catenin and mucin-1. Quantitative read-outs for proliferation,

apoptosis and invasion were established in the complex 3D tumor model. The combined

in vitro and in silico model represents a powerful tool for systems analysis.
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1. Introduction
 biology, several methods and approaches have evolved to
Lung cancer is the leading cause of cancer-related deaths

world-wide (Ferlay et al., 2010). One of themost recent clinical

successes in treating lung cancer is the application of tyrosine

kinase inhibitors (TKI) targeting the epidermal growth factor

receptor (EGFR) such as gefitinib (Iressa; AstraZeneca) and

erlotinib (OSI-774; Tarceva) in patients with tumors harboring

EGFR-activating mutations (Pao and Chmielecki, 2010). Never-

theless, the survival rate of metastatic disease remains low

due to the development of drug resistances (Tsvetkova and

Goss, 2012). With respect to personalized medicine, there is

an urgent need to establish innovative tumor models which

show a satisfactory correlation to clinical performance and

represent molecular entities (Tursz et al., 2011). These models

should integrate available data from the patient and the latest

research, especially regarding signaling information (Ventura

et al., 2009).

Tissue engineering offers new options for optimized in vitro

models including growth conditions that resemble the in vivo

situation of tumor cells (Hutmacher et al., 2009). However,

identifying the proper conditions for such in vitro models re-

mains a challenge. Tumors comprise cells within a highly

structured and defined organization. Juxtaposition of the cells,

the exposition to gradients of soluble factors, specific extracel-

lular matrix components, and tissue-specific physical forces

are important aspects that are likely to be required to recapit-

ulate the signals that drive tumor cells to proliferate, migrate

or undergo apoptosis. For preclinical prediction of drug-

response, these characteristics should be mirrored in 3D tu-

mormodels (Lutolf and Hubbell, 2005). Furthermore, a specific

characteristic of invasive carcinomas is the penetration of the

basal membrane. This initiates the malignant invasive phase

of cancerous disease and thus should be included in in vitro

models that tend to predict drug response in advanced dis-

ease. Promising scaffolds that consider these aspects e at

least to a certain degree e are biological decellularized tissue

matrices, especially because several components, structures

and properties of the original tissue are retained such as com-

ponents of the ECM, parts of the basement membrane and ri-

gidity of the scaffold. Our decellularized SISmuc (Small

Intestinal Submucosa with preserved mucosa) derives from

amore complex structure called the BioVaSc� (Biological Vas-

cularized Scaffold). This porcine jejunumderived scaffold was

established several years ago along with special decellulariza-

tion protocols. These were optimized for a complete tissue

decellularization accompanied by optimal preservation of

the ECM and the tissue architecture. Scaffold proteins such

as different collagens and elastin were retained after the

decellularization process (Linke et al., 2007; Schanz et al.,

2010; Schultheiss et al., 2005).

Cancer is a heterogeneous disease, but several common

hallmarks can be defined that rely on multiple cell functions

(Hanahan andWeinberg, 2011). For the identification of prom-

ising drug targets, a systems perspective that considers these

functions is critical. Therefore, we made combined efforts

with an optimized 3D in vitro model and an in silico model

which can identify dependencies in signaling networks that

underlie drug responses. In the field of cancer systems
investigate and analyze cancer mechanisms and signaling.

In this study, we applied a network- and logic-based

approach, which is highly suitable to capture and model the

interplay of cellular signaling events (Morris et al., 2010). The

chosen Boolean in silico model focuses on the same level of

intracellular resolution of signaling pathways and tumor cell

drug responses as are accessible by the in vitro experiments.

We introduce for the first time a combined in vitro and in silico

lung tumor model that bases on a biological tissue scaffold

and on the simulation of corresponding signaling networks

involved in proliferation, apoptosis and invasion/EMT. This

model was tested, refined and established according to clin-

ical data and literature. Results will be presented as follows:

(i) generation of a human 3D lung tumor model with the

lung carcinoma cell lines HCC827 (activating EGFR mutation)

and A549 (EGFRwild-type) cultured on a SISmuc, (ii) investiga-

tion of differentiation/tumor status by morphology and

mucin-1 (MUC1) as a tumormarker, (iii) predictions of drug re-

sponses to gefitinib depending on different clinically relevant

genetic backgrounds by the in silicomodel centered around the

EGFR signaling network, (iv) reproduction of these results in

the in vitro 3D model, but not in the conventional (2D) cell cul-

ture as shown by the quantification of proliferation and

apoptosis, (v) TGFb1-induction and quantification of invasion

accompanied by EMT.

The established in vitro and in silico tumor model combine

to generate predictions and to allow subsequent testing of

substances to break resistance and to identify biomarker pro-

files for targeted therapies in patients with different driver

mutations.
2. Materials and methods

2.1. Cell culture

Both cell lines were purchased from DSMZ. A549 cells were

cultured in RPMI þ 10% FCS, HCC827 cells in RPMI þ 20%

FCS. Cultures were monitored for pathogen infections at reg-

ular intervals. For 3D culture, cells were seeded on the SISmuc

(See porcine material), which was fixed between two metal

rings. Both 2D and 3D cultures were performed under stan-

dard conditions (37 �C, 5% CO2). Stimulationwith gefitinib (Ire-

ssa; AstraZeneca, Germany, 1 mM) was done in 2D for 72 h and

in 3D for the last 72 h of 14d culture with amedium change af-

ter the first 48 h of stimulation. TGFb1-stimulation was done

using 5 ng/ml human TGFb1 (Cell Signaling, USA, #8915)

solved in the cell culture medium.

2.2. Porcine material

Our SISmuc consists of porcine small intestine submucosa

(SIS) andmucosa (muc). Animals were sacrificed at the Center

for Experimental Molecular Medicine (ZEMM, W€urzburg) and

the BioVaSc� was prepared as previously described (Linke

et al., 2007; Schanz et al., 2010). SISmuc was generated by

removing the mesentery with the vascular tree from the Bio-

VaSc�. All animals received proper attention and human

http://dx.doi.org/10.1016/j.molonc.2013.11.009
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care in compliance with the Guide for Care and Use of Labora-

tory Animals published by the National Institute of Health

(NIH publication no. 85e23, revised 1996) and as approved of

by the institutional animal protection board.
2.3. Human material

Human lung and lung tumor tissue was provided by the

Department of Thoracic Surgery of the University Hospital of

Wuerzburg (local ethics committee approval: 182/10, April

4th 2011) and was used for histological and immunohisto-

chemical staining.
2.4. MTT-assay

Cells were seeded in a 96 well plate (at least in quintuplet

for each condition) and cultured for 3 days. MTT (3 mg/

ml) reagent (SERVA, Germany) was mixed 1:10 with cell spe-

cific medium. Cells were incubated in this solution for 4 h

before removal of the reagent and addition of 200 mL

DMSO and 25 mL glycine buffer per well. The plate was

measured in a Microplate Reader (Tecan Sunrise, Tecan,

Germany) at 570 nm. The MTT-assay was independently

repeated 4 times to get 4 mean values from the repetitions

of each condition.
2.5. Immunohistochemistry

Chamber slides were fixated in 4% PFA for 10 min, SISmuc

samples for 4 h. After fixation, chamber slides were either

directly stained or stored in PBS- buffer at 4 �C for up to 1

week prior to staining. SISmuc samples were stained as par-

affinized sections (3 or 5 mm) and primary antibodies were

incubated for 60 min at room temperature (RT). Samples

were stained using DCS Super Vision 2 Kit (DAKO, Germany).

For fluorescent staining, primary antibodies were diluted

1:100 and incubated overnight at 4 �C, secondary antibodies

were diluted 1:400 and incubated for 60 min at RT. Double

staining was performed by using primary antibodies of two

different species. The isotype of each respective primary

antibody was used as a negative control. Nuclei were coun-

terstained by DAPI solved inMowiol embedding solution. Pic-

tures were taken by using an Axiovert 200M microscope

(ZEISS, Germany).
2.6. Western blot

Cells were lysed in lysis buffer (20 mM TriseHCl pH 8.0,

137mMNaCl, 2mMEDTA, 50mMNaF, 1mMNaVO3, 10%Glyc-

erol, 1% NP-40, 0.5% DCA, 0.1% SDS, 1� Proteinase Inhibitor

Cocktail (SigmaeAldrich, Germany). Protein samples (20 mg/

lane) were separated electrophoretically in a 10% SDS gel

and blotted on a 0.2 mm nitrocellulose membrane (Whatman).

Primary antibodies were incubated in 10% milk for 2 h at RT

(PCK) or overnight at 4 �C (EGFR, pEGFR). Secondary antibodies

were incubated for 1 h at RT. Blots were developed using the

Pierce ECL Western Blotting kit (Thermo Fisher Scientific

Inc., USA) and visualized using the Imaging Station Fluo-

rChem Q (Biozym Scientific, Germany).
2.7. Antibodies

The antibodies used for immunohistochemical staining or

western blotting are b-catenin (E247, AbCam, GB, ab32572),

E-cadherin (24E10, Cell Signaling Technology, USA, 3199),

EGFR (D38B1, Cell Signaling, 4267, IHC 1:50, WB 1:1000), fibro-

nectin (IST-9, 1:200, AbCam, ab23750), Ki67 (SP6, 1:100,

AbCam, ab16667), MUC1 (GP1.4, 1:1000, Imgenex, USA, IMG-

80045), PCK (C-11 þ PCK-26 þ CY-90 þ KS-1A3 þ M20 þ A53-

B/A2, 1:10,000, SigmaeAldrich, Germany, C 2562), pEGFR

(D7A5, Cell Signaling, USA, 3777, IHC 1:400, WB 1:1000). Used

isotypes are mouse IgG1 (X0931, DAKO, Germany), rabbit IgG

monoclonal (Novus Biologicals, USA, NB810-56910), rabbit

IgG polyclonal (AbCam, GB, ab27472). Secondary antibodies

used for IF were donkey-anti-mouse, Alexa555 conjugated

(Invitrogen, USA, A-31570), donkey-anti-rabbit, Alexa488 con-

jugated (Invitrogen, USA, A-21206), and for WB HRP-

conjugated goat-anti-rabbit (AbCam, GB, ab6721) and goat-

anti-mouse (AbCam, GB, ab47827).

2.8. M30-ELISA

The ELISA-assay was performed according to the protocol of

the M30 CytoDeath ELISA Kit (Peviva, Sweden). All samples

were analyzed in duplicates. The M30-ELISA was indepen-

dently repeated 4 times to get 4 mean values from the dupli-

cates of each condition.

2.9. TUNEL-assay

The TUNEL-assay was performed according to the protocol of

the In Situ Cell Death Detection Kit, POD (Roche) on paraffin

sections (5 mm). Nuclei were counterstained by DAPI solved

in the Mowiol embedding solution. Pictures were taken using

an Axiovert 200M microscope (ZEISS, Germany).

2.10. Quantification/statistics

Ki67-staining and invasion were quantified by counting cells

(using ImageJ) for 4 independent experiments on 10 images

per experiment by the same experimenter blind to condition.

Arithmetic means of the single experiments were then used

for statistical evaluation.

Invasionwas evaluatedwith DAPI stained slides. The num-

ber of non-invaded cells was ascertained by counting the cells

on top of the matrix. The value for invaded cells resulted from

single cells and groups of up to three cells but not from larger

groups inside the matrix.

For Ki67 staining, DAPI invasion measurements, M30-

ELISA andMTT-assay,Wilcoxon rank sum test was performed

with the arithmetic means of duplicates/triplicates of single

experiments. For p < 0.05, differences were defined as being

significant. All statistical analysis was done with the open-

source program R (The Comprehensive R Archive Network,

http://cran.r-project.org/).

2.11. In silico modeling

For an integrative, systemic approach we chose a Boolean

model as this is able to predict signaling effects in tumor cells

http://cran.r-project.org/
http://dx.doi.org/10.1016/j.molonc.2013.11.009
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upon treatment as a basis for optimized new targeted thera-

pies, exploiting the experimental in vitro data. After establishing

the network topology, the switching behavior of the different

signaling components was analyzed according to their logical

connectivity in a Boolean model (nodes and interactions

explained and referenced in Supplementary material Table S1

and S2, respectively). We subsequently transferred the Boolean

model into a semi-quantitative model (Mischnik et al., 2013;

Naseem et al., 2012; Philippi et al., 2010) to understand the suc-

cession of events and to identify master nodes and therapeutic

targets. This allows assessing output parameters compara-

tively for different treatment regimes, cell types or growth con-

ditions. Interpolation applied exponential-functions between

full on and off node states as introduced by Di Cara et al. (Di

Cara et al., 2007). Model topology was setup using CellDesigner

(Version 3.5.1). The resulting xml-filewas imported into SQUAD

for further semi-quantitative simulation experiments (simula-

tion details in Supplementary material Figure S1, Figure S2).

The modeling method used is compared in detail to other ap-

proaches in Schlatter et al. (2012). The required software for

setup and dynamic calculations are all publicly available. The

unique feature of our model is the integration and adaptation

of an optimized 3D cell culture tumor model coupled with a

matching in silico model of the involved signaling. The

machine-readable XML model file capturing the cancer model

developed here is available as Supplementary material.
3. Results

3.1. SISmuc as scaffold for tumor cell growth reflecting
the in vivo situation

In order to establish a tumormodel, different parts of the intes-

tinal decellularized scaffold were tested for cell seeding. In

contrast to SIS (small intestinal submucosa) alone or with

serosa, SIS with preserved mucosa (SISmuc) showed best

growth conditions for carcinoma cell lines with the formation

of complex epithelial structures growing at least in part as a

monolayer. SISmuc includes the histological part of the intesti-

nal epithelium. The histology of the generated 3D cultures was

investigatedwithseedingdensities from50,000to1millioncells

andoptimalgrowthof thecellson thematrixwas reachedat105

cells per sample even though higher cell numbers showed

similar results. With 105 cells, different culture periods from 7

to 28 days were compared by histological and immunohisto-

chemical E-cadherin staining (data not shown, for 14 days

period see Figure 6). A stable histological differentiation was

reached after 14 days of culture which continued up to the

longest tested period of 28 days. For test system efficacy, the

shortest possible time-frame of 14 days was chosen.

To demonstrate that the SISmuc is a suitable 3D scaffold for

our tumormodel, we characterized histology of the cells on the

scaffold by HE-staining (data not shown). The investigated cell

lines formed a mostly homogenous monolayer on top of the

matrix and grew into former crypt structures (Figure 1C, F).

Furthermore, toanalyze the tumor status in this 3Denviron-

ment,westained forMUC1,an importantproteinof themucous

layerof the lung,which isusedasa tumormarkerdependenton
its localization. Whereas MUC1 is localized apically in cells of

healthy lung tissue (Figure 1A), it is up-regulated in lung carci-

nomas and changes to a basolateral/cytoplasmic position in

these tumor cells (Figure 1D). In contrast to 2D culture, most

of the cells in our 3D model expressed MUC1 and an apical as

well as a basolateral/cytoplasmic localization could be deter-

mined. In HCC827, a predominantly apical and in A549 a pre-

dominantly basolateral/cytoplasmic localization of MUC1 was

observed (Figure 1C, F). In conventional 2D culture, MUC1

expression was restricted to a few cells and its localization

could not be distinguished (Figure 1B, E).

3.2. HCC827 and A549 cell lines as representatives of
lung carcinoma subgroups

Two lung carcinoma cell lines representing different patient

subgroups concerning gefitinib treatment were chosen for all

experiments (Bronte et al., 2010). HCC827 cells are reportedly

hypersensitive to gefitinib due to their activating mutation in

the EGFR gene (Engelman et al., 2007; Mukohara et al., 2005),

while A549 cells are known to be intermediate sensitive due to

theirwild-type EGFR gene (Kokubo et al., 2005; Noro et al., 2006).

The described drug-sensitivities were reproduced in con-

ventional 2D cell culture by MTT-assay with clinically applied

concentrations of around 1 mM. No significant effect on A549

cells was observed, while a tenth of that concentration caused

HCC827 cells to show significantly ( p ¼ 0.029) reduced vitality

(Figure 2I). Proliferation was quantified by the counting of

Ki67-positive cells in immunohistochemical staining

(Figure 2AeD), and its percentage was depicted as prolifera-

tion index (PI) (Figure 2J). In HCC827 cells, proliferation

decreased by about 20% upon gefitinib treatment (Figure 2J),

while A549 cells remained unchanged. TUNEL-assay showed

an increase of positive cells upon treatment in HCC827 cells

only (Figure 2EeH). Since TUNEL assay is not specific to

apoptotic cells, anM30-ELISAwas introducedwhichmeasures

caspase-cleaved cytokeratin 18 (CK18) in supernatants that

were collected at different time points during treatment. After

48 h, only HCC827 showed a 2e3 fold increase of apoptosis

(Figure 2K), which turned out to be non-significant ( p¼ 0.063).

As gefitinib targets the EGFR, these results werematched to

both cell lines’ overall EGFR expression aswell as to their EGFR

activation as measured by phosphorylation. While both cell

lines express EGFR to a high extent, only HCC827 cells showed

a high activation of EGFR that was decreased upon gefitinib

treatment as shown by immunohistochemical stainings and

confirmed by western blot analysis (Figure 3).

Since we were interested in understanding drug actions

and their impact on our read-out parameters, we generated

an in silico model parallel to the in vitro model that integrates

the EGFR pathway and other relevant pathways of cancer

progression such as the TGFb pathway.

3.3. In silico modeling of EGFR inhibition: gefitinib
action results in a decrease in proliferation and an increase
in apoptosis

The EGFR pathway is embedded in a complex network so that

the prediction of therapy effects is very challenging. Further-

more, effects of genetic background variance can only be

http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009


Figure 1 e SISmuc as scaffold for tumor cell growth reflecting the in vivo situation. Immunohistochemical stainings ofMUC1 revealed similarities of

lung tissue and lung tumors only in the 3Dmodel but not in the 2Dmodel. WhileMUC1 is expressed only on the apical side of most cells in healthy

lung tissue (A), MUC1 is localized basolateral/cytoplasmic in lung tumors (D). Under 2D cell culture conditions, MUC1 expression is restricted to a

few cells inHCC827 (B) orA549 (E), inwhich an apical or basolateral/cytoplasmic position cannot be distinguished. In the 3Denvironment,MUC1 is

expressed in most cells and can be predominantly observed apically in HCC827 (C) or basolaterally/cytoplasmatically in A549 cells (F).
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considered if the respective proteins are included in the

model. We therefore applied a systems biological approach

taking into consideration the counter regulation and cross-

talk of different pathways. After establishing the network to-

pology, the switching behavior of the different signaling com-

ponents was analyzed according to their logical network

connections in Boolean models. We subsequently transferred

these into semi-quantitative models. Such models monitor

system changes between fully-on- and fully-off-state of

signaling molecules, applying interpolation functions. Semi-

quantitative models give only comparative information such

as different activation degrees, but they already work in the

absence of detailed information on kinetic parameters (Di

Cara et al., 2007; Naseem et al., 2012; Schlatter et al., 2012).

They allow rapid comparison of different cell types and ge-

netic backgrounds and enable the understanding of the suc-

cession of events to identify master nodes as promising

therapeutic targets.

To create the backbone of the main components of the

EGFR signaling network, we integrated relevant data from a

meta-analysis that reviewed over 140 studies on EGFR

signaling (Oda et al., 2005). We included further pathways to

connect this network to relevant read-out parameters, such

as proliferation and apoptosis. Supplementary material gives

a detailed list of the nodes included (Table S1) and how their

connectivity was modeled (Table S2). Quantitative read-out

parameters and systemic responses are established according

to current literature and available clinical data (Lara-Guerra

et al., 2012; Philippi et al., 2009). System states and network

responses including different cellular read-outs (signaling
pathways mediating proliferation, apoptosis) are given in the

supplementary material Figure S1 and S2, respectively. The

in silico models of the two different tumor subgroups, with

activating EGFR mutation (model A) or with Kras mutation

(model B), resulted in two different gefitinib responses. Model

A showed a decrease in proliferation and an induction of

apoptosis upon gefitinib treatment (i.e. reduction of EGFR acti-

vation) (Figure 4), whereas the model B (EGFR wild-type; Kras

mutation) did not show any response (Supplementary

material, Figure S1).

Furthermore, we induced an additional read-out parameter

for drug testing in different tumor states: Lung cancer is often

diagnosed in a late phase of tumor progression in which inva-

sion has already started. TGFb1 is secreted by the tumor stroma.

This is known to induce EMT, which is an important mecha-

nism to enable tumor cell invasion (Tian and Schiemann,

2009). Hence, we integrated the TGFb1 pathway and EMT re-

sponses in our in silico model to monitor model predictions

about EMT upon TGFb1-stimulation (Supplementary Material,

Figure S2). Next, the established model was extensively

compared with the results of in vitro experiments (e.g. changes

of the read-out parameters proliferation and apoptosis upon

TKI-treatment and changes in EMT upon TGFb1-stimulation).

3.4. Analysis of drug responses in the 3D tumor model
yields significant results

In our 3D tumor model with the activated EGFR (HCC827), we

observed a significant decrease ( p ¼ 0.008) in proliferation

upon gefitinib treatment as determined by the PI (Figure 5C,

http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009


Figure 2 e HCC827 and A549 cell lines as representatives of lung carcinoma subgroups. EGFR wild-type A549 cells showed no significant

response to the TK-inhibitor gefitinib regarding vitality, proliferation or apoptosis as shown by MTT-Assay (I), by Ki67-stainings (A, B, J) and by

TUNEL-assay/M30-ELISA (E, F, K), respectively. In contrast, HCC827 cells harbor an EGFR mutation which leads to a constitutively activated

EGFR. The MTT-assay showed a significant decrease of vitality in HCC827 cells upon 3 days of gefitinib treatment already at a concentration of

0.1 mM (I, *: p < 0.05, n [ 4). Upon gefitinib treatment in 2D culture proliferation was not significantly changed as measured by Ki67-stainings

(C, D, J (n [ 4)), and also the induction of apoptosis after 2 as well as 3 days of treatment as measured by TUNEL-assay and M30-ELISA did not

reach significance (G, H, K, # [ 0.1 > p > 0.05, n [ 4). Bars: arithmetic means. Error bars: standard deviation.
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D and G), as well as an increase in TUNEL positive cells

(Figure 5E, F). To quantify apoptosis induced by gefitinib,

each sample of supernatants was normalized to the base-

line level of M30 and then the influence of gefitinib was tested.

In HCC827 cells, 1 mM gefitinib caused a significant induction

of apoptosis at all three measured time points. Remarkably,

the induction was already observed after 24 h (Figure 5H). In

the 3D tumor model with A549 cells (EGFR wild-type), we did

not observe any response regarding proliferation and

apoptosis upon gefitinib treatment (Figure 5A, B, H).

Test systems that are based on biological scaffolds

commonly suffer from high variation and have to be
standardized carefully. For this reason, variation coefficients

were calculated from three independent untreated trials in

fivefold replicates to estimate reliability of the results from

our 3D tumor model. The variation coefficients were always

under 50% in each independent trial. The lowest observed

values in our systemwere around 10%. This allows in our sys-

tem 95% confidence detection limits for two fold changes

(worst case) and 20% changes (optimal conditions),

respectively.

It is known that there could be changes in signaling in 3D

models (Smalley et al., 2006) compared to 2D culture condi-

tions due to the more complex interaction of the cells with

http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009
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Figure 3 e Gefitinib treatment decreases EGFR activation in HCC827 cells. Under 2D cell culture conditions, both cell lines strongly expressed

EGFR - with and without treatment e as shown by immunohistochemical staining (AeD). While the phosphorylation status of the EGFR was

not influenced by gefitinib in the A549 cells (E, F), the treatment resulted in a distinct decrease of EGFR phosphorylation in HCC827 cells

(G, H). These results could be confirmed by western blot analysis (I, J).
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each other and their environment. Immunohistochemical

staining and western blot analysis confirmed that the inacti-

vation of the EGFR upon gefitinib treatment is maintained in

the HCC827 3D tumor model (Supplementary Material,

Figure S3).

3.5. Induction of EMT and invasion by TGFb1-
stimulation

EMT is an important event in tumor cell invasion, which is

currently not included in most tumor models. For the induc-

tion of EMT, we added TGFb1 to culturemedia of both HCC827

and A549 3D samples over the entire culture period. After 14

days of culture, we investigated the cell morphology and

several molecular markers that are involved in the EMT

process. Even though the effects of TGFb1 are similar in

both cell lines, the results from HCC827 cells were more

prominent and are shown in Figure 6. The tumor cells flat-

tened and elongated to a mesenchymal phenotype and the

organized epithelial monolayer structures were disinte-

grated upon TGFb1-stimulation. These morphological

changes were accompanied by the loss of the epithelial

markers E-cadherin (Figure 6C, G), MUC1 (Figure 6K, L) and
associated b-catenin (Figure 6B, F). Moreover, an induction

of the mesenchymal marker fibronectin was observed

(Figure 6I, J), indicating the successful induction of EMT

within the 3D model. Furthermore, invasion of single cells

into deeper areas of the scaffold could be induced

(Figure 7). Quantification could be achieved by determining

the percentage of cells on top of the matrix and of dispersed

cells within the matrix in stimulated compared to unstimu-

lated samples (Figure 7C). Scanning electron microscopy

(SEM) and transmission electron microscopy (TEM) analysis

of our tissue matrix prior to seeding with cells suggest the

presence of preserved structures of the basal membrane af-

ter the decellularization process (Figure 7DeF).
4. Discussion

4.1. General implications of the results

In the present study, we were able to establish human 3D lung

tumor models which show i) specific characteristics of com-

plex tumor tissues as shown by the distinct localization and

up-regulation of the tumor marker MUC1 (Figure 1), ii) a lower

http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009


Figure 4 e In silico modeling of EGFR inhibition: gefitinib action results in a decrease of proliferation and an increase of apoptosis. (A) Network

topology comprising the EGFR cascade (yellow), the TGFR cascade (blue), Kras (orange), effects of gefitinib (pink), and the read-out parameters:

proliferation (green), apoptosis (red), and EMT (gray). Cell signaling in tumors with activating EGFRmutations is simulated without (B) and with

gefitinib treatment (C). (B) EGFR gets completely activated (initial value EGF: 1.0), which results in predominating proliferative effects (green

curve) and diminishing apoptotic effects (red curve) over time. (C) The simulation of the EGFR inhibition (initial value EGF: 0.8) by gefitinib

(value: 1.0) shows a reduction in proliferation compared to untreated conditions and an induction of apoptosis over time.
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proliferation rate compared to 2D cell culture (Figure 2, 5), iii)

clear responses upon drug treatment (i.e. significant differ-

ences that could not be seen in 2D culture), iv) induction of in-

vasion upon TGFb1-stimulation accompanied by EMT

(Figure 6, 7), and v) the preservation of basement membrane

structures in the 3D model (Figure 7). For all read-out param-

eters, i.e. proliferation, apoptosis and invasion, quantitative

analysis methods were established and mechanisms were

underpinned by the determination of the EGFR activation sta-

tus andmolecular markers of EMT (Figure 2, 3, 6, 7). An in silico

tumormodel integrates different stimuli and data of signaling

networks as well as clinical data and successfully predicts the

same read-out parameters upon treatment as used in the

in vitro tumor model. Depending on the genetic background

our in silico model predicted different drug effects according

to clinical data (Figure 4 and Figure S1).
4.2. In silico modeling of cell signaling in cancer

In the field of cancer systems biology, various methods and

approaches of different scales have been developed to study

cancer growthmechanisms and signaling.Mathematical in sil-

ico models range from stochastic to network- and logic-based

models (Cheng et al., 2012). In this regard, Monte Carlo simu-

lations are able to calculate drug responses of whole tumor

tissues (Wu et al., 2013). In contrast toMonte Carlo approaches

applied to model dose responses for a complete tumor, we

aimed at obtaining insights into the signaling within tumor

cells as a basis for optimized new targeted therapies. Logic-

based (Boolean) models allow a systems biological perspective

by analyzing the network dynamics that is determined by inter-

linked signaling events in tumor cells (Cheng et al., 2012). Inte-

grating the complex interplay of signaling pathways and their

http://dx.doi.org/10.1016/j.molonc.2013.11.009
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Figure 5 e Analysis of drug responses in the 3D tumor model yields significant results. Gefitinib treatment did not reduce the proliferation

measured by Ki67 immunohistochemical staining in A549 (A, B) but in HCC827 3D tumor models (C, D). Proliferation was quantified by

determining the proliferation index (percentage of Ki67 positive cells) and revealed a significant reduction in HCC827 but not in A549 cells by

gefitinib treatment (G, *: p < 0.05, n [ 5). Apoptosis was induced by gefitinib in HCC827 models as seen by TUNEL-assay (E, F), which was

quantified by M30-ELISA measurements from culture supernatants: In contrast to A549 cells, HCC827 cells showed significantly increased

apoptosis in response to gefitinib (H, *: p < 0.05, n [ 4) already after 24 h. Bars: arithmetic means. Error bars: standard deviation.
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interactionswitheachother (Morrisetal., 2010),Booleanmodels

capture the cell behavior upondifferent stimuli (Boyanovaet al.,

2012)andsetthebasis foraquantitativepharmacological-driven

dynamic analysis (Wangorsch et al., 2011). They have proven to

be predictive evenwhen hormones and other effectors do act in

a complex and counter-intuitive way on various cellular recep-

tors, as shown for the interaction of cytokines and pathogens

in plant defense (Naseem et al., 2012).

A number of Boolean models on cellular signaling are

already publicly available (Morris et al., 2010). Own previous

studies include models on liver cell signaling (Philippi et al.,

2009), on cytokine signaling in plantepathogen interactions

(Naseem et al., 2012) as well as on quorum sensing in bacteria

(Audretsch et al., 2013) and on platelet signaling (Mischnik

et al., 2013). Boolean models excel to analyze and model

cellular signaling within a tumor cell (Saez-Rodriguez et al.,

2011; Zhang et al., 2008). Their historic record in this respect

and a direct comparison of a number of semi-quantitative

modeling frameworks to dynamically interpolate between bi-

nary Boolean states are given in Schlatter et al. (2012). The

interpolation approach between Boolean states applied in

these semi-quantitative models enables them to be dynami-

cally predictive even if no detailed kinetic information on

the dynamic parameters is available. A key advantage of our
combined model system is that it can be adjusted to further

extracellular signals or hallmarks of cancer such as the influ-

ence of immune reactions by adding cells of the immune

system. Regarding cytokine effects on immunity, different

topologies and simulations are already available (Naseem

et al., 2012; Schlatter et al., 2012).

4.3. Mirroring tumor and tissue characteristics in a 3D
tumor model

Three dimensional culture conditions on biochemically

active matrices that release defined biologically active sub-

stances offer cells a more complex environment than con-

ventional 2D culture systems. This has an impact on

differentiation, drug response, signaling and the malignant

phenotype of tumor cells (Paszek et al., 2005; Walles et al.,

2007). The here applied SISmuc is a derivative of the Bio-

VaSc�, which is in turn a sophisticated matrix with a pre-

served structure of the vasculature. BioVaSc� is in use for

many other tissue engineering applications, such as the

generation of vascularized liver tissues in bioreactor set-

tings with the possibility of long-term culture of primary

cells (Schanz et al., 2010). SISmuc, a decellularized porcine

jejunal fragment, provides extracellular components and a

http://dx.doi.org/10.1016/j.molonc.2013.11.009
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Figure 6 e Induction of EMT in HCC827 cells by TGFb1-stimulation. Immunohistochemical fluorescence staining demonstrates the

down-regulation of b-catenin and E-cadherin upon stimulation with TGFb1 accompanied by the loss of epithelial monolayer integrity (nuclei

stained with DAPI) (AeH). Immunohistochemical staining shows that the mesenchymal marker fibronectin is up-regulated (I, J). The epithelial

marker MUC1 (K, L) is down-regulated by TGFb1-stimulation. Scale bar in L: 50 mm (AeL).
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complex tissue architecture with numerous cavities and

physical properties of living tissues for optimized cell

growth in 3D culture (Gonzalez-Rodriguez et al., 2012). For

model establishment, we chose lung cancer cell lines

because these are approved in other studies to be relevant

representatives of their original tumors and provide means

of standardization to the system (Gazdar et al., 2010; Sos

et al., 2009). To analyze the suitability of our matrix for tu-

mor cell growth and its influence on the tumor status, we

used MUC1 as a marker that can distinguish between a

more differentiated and a tumorigenic state of the cells. In

normal healthy lung epithelial cells, MUC1 is localized at

the apical side of the cells (Ho et al., 1995). Due to the pro-

cess of dedifferentiation during tumorigenesis, MUC1

changes its localization from the apical to a cytoplasmic or

basolateral side of the cell. This is seen in many kinds of

cancer cells (Aubert et al., 2009; Lau et al., 2004; Lopez-

Ferrer et al., 2001). In general, MUC1 is assumed to be impor-

tant for oncogenic signaling as it is necessary for MAPK ac-

tivity (Cullen, 2007). Both investigated cell lines showed a

good adherence to our matrix with the establishment of a

monolayer on the surface and an ingrowth into the former
crypt structures. Culture of the cells on the matrix led to

an increase of MUC1 expression in both cell lines in compar-

ison to 2D culture conditions where its localization could

not be assessed. The localization of MUC1 was predomi-

nantly basolateral/cytoplasmic in A549, indicating a more

malignant tumor status of these cells and predominantly

apical in HCC827 indicating a less malignant tumor status.

4.4. Lower proliferation rates in 3D reflect tumor
conditions more accurately

Regarding drug testing, it is a well-known problem in

commonly used 2D culture tumor models that cells exhibit

a much higher proliferation rate than most of the tumors

in patients (Cree et al., 2010; Haga et al., 2003; Lara-

Guerra et al., 2012; Yamada and Cukierman, 2007). In our

3D tumor model, we attained much lower proliferation

rates than in 2D conditions (A549: 17% vs. 94%; HCC: 54%

vs. 84%). This should lead to more reliable predictions of

drug response, especially for cytostatic drugs or drugs

that interfere with signaling connected to proliferation

(Cree et al., 2010).

http://dx.doi.org/10.1016/j.molonc.2013.11.009
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Figure 7 e Quantification of single cell invasion into the matrix by TGFb1-stimulation. Fluorescence staining (DAPI) shows that cells formed a

monolayer on top of the matrix and that cells collectively grew into deeper layers along former crypt structures (A). After TGFb1-stimulation,

monolayer integrity was lost and single cells migrated from the top of the matrix into deeper layers (B). Quantification demonstrates significant

changes upon TGFb1-stimulation, i.e. a decrease of total cell number (black bars) and of cells on top of the matrix (gray bars), and an increase of

invaded single cells inside the matrix (white bars) (C; *: p < 0.05, n [ 4). Bars: Arithmetic means. Error bars: standard deviation. SEM analysis

shows crypts (c) and villi (v) of the decellularized small intestine (D). TEM analysis of ultra thin sections shows the basal lamina (arrows) as well as

collagen fibrils (*) of one villus after decellularization prior to seeding with cells (E, F).
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4.5. Establishment and quantification of read-out
parameters

In 2D culture, we could confirm a significant reduction

( p ¼ 0.029) of HCC827 vitality in MTT-assays upon gefitinib

treatment with concentrations as low as 0.1 mM. To analyze

our 3D models in more detail, we wanted to quantify prolifer-

ation and apoptosis which both have an effect on tumor

cell vitality. Proliferation was measured by changes of the
proliferation index (PI) as explained before, and apoptosis

was determined by i) TUNEL to estimate DNA damage and

its localization in the artificial tissue and quantified by ii)

M30-Apoptosense ELISA testing the cell supernatant. This

assay offers several advantages for the 3D system. Since the

M30 epitope (CK18) is only expressed in epithelial cells, M30

detection produces a specific read-out for carcinoma cells un-

dergoing apoptosis. This is attractive for future co-culture set-

tings in which other cell types from the tumor stroma are co-

http://dx.doi.org/10.1016/j.molonc.2013.11.009
http://dx.doi.org/10.1016/j.molonc.2013.11.009
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cultured with tumor cells. Apoptotic bodies in vitro are not

phagocytized by macrophages, but release their contents

into the culture media. Thus, CK18 can be detected non-

invasively in culture supernatants. This allows the assess-

ment of multiple time points of one culture period and this

also improves in silico kinetic modeling.

Interestingly, results from 2D testing with clinically rele-

vant concentrations of 1 mM gefitinib could not reach signifi-

cance either in HCC827 or in A549 regarding the change in

proliferation and apoptosis. However, a decrease of PI from

84% to 66% inHCC827 and a 2e3 fold induction of apoptosis af-

ter 48 h in M30-ELISA could be observed.

Iterative cycles of in silico model refinement were per-

formed, whereby results were compared and fine-tuned ac-

cording to literature and experimental data. The established

in silico model mirrored clinical data on TKIs successfully,

such as gefitinib treatment on different tumor background

mutations such as EGFR and Kras.

In contrast to the 2Dmodel, our 3D tumormodel generated

significant drug responses as observed in the clinic and as pre-

dicted by the in silico model. The reduction of proliferation

correlated to clinical data,which has been shown in retrospec-

tive studies (Lara-Guerra et al., 2012). Upon gefitinib treatment,

weobserveda reductionofproliferation ( p¼0.008) from58%to

20% (Figure 5 G) and an about 3-fold induction of apoptosis

( p ¼ 0.029) already after 24 h in the HCC827 model

(Figure 5H). These findings go in line with a down-regulation

of the EGFR activation upon gefitinib treatment as shown by

the decreased phosphorylation of the receptor in immunohis-

tochemistryandwesternblotanalysis in2Daswell asunder3D

conditions.Our results showthatdrug treatmentof cells grown

in 3D conditions on an extracellularmatrix scaffold had stron-

ger and faster effects than in 2D cultured cells, which supports

the notion that the 3D model is more appropriate for further

drug testing. It is known that 3D systems exhibit a higher

chemo-resistance, making them more attractive for drug

testing due to improved specificity (Cree et al., 2010).

4.6. Invasion and metastasis

We further aimed to expand our model by the induction of in-

vasion because most lung tumors are diagnosed in advanced

invasive states. The induction of invasion and EMT by TGFb

on synthetic matrices has been investigated previously by

others (Gill et al., 2012). We could confirm these findings on

our biological matrix with both cell lines by morphological

changes and modified expression of several molecular

markers. Additionally, our decellularized matrix shows pre-

served structures of the basal lamina in electron microscopy

analyses (Figure 7DeF). The penetration of the basal lamina

by cancer cells is one hallmark of tumors to reachmalignancy

and to become invasive. This observation suggests that our

model includes supplemental features of original tissues

that are important from the clinical perspective and are diffi-

cult to reach with synthetic matrices. The effects of TGFb on

the 3D tumor models were more prominent in HCC827 than

in A549 models. This goes in line with the observation that

A549 cells display a more malignant phenotype as seen by

the high basolateral/cytoplasmic localization of MUC1. It is

further supported by a low basal E-cadherin/b-catenin
expression without accumulation of these markers at the

cell junctions as also reported by others (data not shown,

(Singh et al., 2009)). Quantification of invasion was achieved

by establishing a counting algorithm that could distinguish

between cell ingrowth along former crypt structures and

invaded single cells. In silico, the effects of tumor promoting

signals such as TGFb1 were also included (Figure S2). This ren-

ders the model attractive for analysis of molecular mecha-

nisms and medical intervention during tumor progression.

So far, there are only few models which represent processes

regarding invasion (Hutmacher et al., 2009).

4.7. Individualized therapy and genetic variation

Our study aimed at the development of accurate and robust

read-out parameters in a 3D tumor model that correlates to

clinical data. Thus, our model has been validated according

to a well-established personalized therapy that is based on

EGFR as a molecular marker (Bronte et al., 2010). Treatment

with the TKI inhibitors gefitinib or erlotinib results in a pro-

longed progression free survival (PFS) in patients harboring

activating mutations of the EGFR in their tumors (Mok et al.,

2009; Paez et al., 2004). Therefore our model was designed

with two human cell lines representing two different sub-

groups of lung tumors either responsive or non-responsive

to gefitinib. As known from many cell culture studies,

HCC827 cells are hypersensitive to gefitinib and carry an acti-

vating EGFR gene mutation (Engelman et al., 2006) e like

approximately 13% of NSCLC patients (Sequist et al., 2011).

The other cell line, A549, carries the EGFR wild-type gene,

but harbors on the other hand a mutated Kras gene that is

known to be mutated in 24% of NSCLC (Sequist et al., 2011).

These A549 cells show an intermediate sensitivity to gefitinib

in 2D culture studies (da Cunha Santos et al., 2011; Pao and

Chmielecki, 2010). This most common Kras mutation in lung

cancer is under debate to be associated with resistance to

TKI (Pao et al., 2005; Riely et al., 2009).

Knowledge of tumors and their drug sensitivities depend-

ing on a patient’s genetic background has expanded

immensely, particularly by advanced technologies such as

next generation sequencing (Sos et al., 2009). Drug responses

do not mostly rely on a single specific target, but on multiple

effects of this drug on the signaling network (Lamb, 2007).

Therefore, the understanding of drug action mechanisms in

connected networks and not in single pathways is very impor-

tant for the development of rational treatment strategies and

better biomarker profiles. Computational modeling for predic-

tive simulations of individual patients is recognized to be an

important step towards personalized medicine (Tursz et al.,

2011). We focused on a systems biological approach which

also considers counter regulation and cross-talk of different

pathways.

The interpolation between Boolean states applied in these

semi-quantitative models allows dynamic, model-based pre-

dictions even if no detailed kinetic information on the dy-

namic parameters is available.

The specific point of our Booleanmodel is that we combine

a 3D cell culture tumor model in vitro with a matching in silico

model of the involved signaling. The model is certainly a

simplification and focuses only on key nodes, connections

http://dx.doi.org/10.1016/j.molonc.2013.11.009
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and central examples for geneticmodification. However, in sil-

ico pre-screening of drug effects can be easily achieved and

monitored, for instance the effects of a combination therapy

with gefitinib and gemcitabine (Nakajima et al., 2012).

A further advantage of our 3D tumor model is that immu-

nohistochemical staining can be carried out on paraffin slices

of the samples as it is done in the clinic. This enables a close

translation of marker-based analyses from the clinic into

our model and vice versa.
5. Conclusions and outlook

In our 3D tumor model, detailed quantitative read-outs were

established for proliferation, apoptosis and invasion going

along with EMT. In combination with the in silico model, this

3D model is a good basis for drug testing with emphasis on

the mechanistic understanding of multiple drug actions that

are often crucial for drug response. Our tumor model may

help to overcome drug resistance, to identify new therapy tar-

gets, and promising drug combinations as well as biomarker

profiles for individualized therapy.

As our system bases on the sophisticated BioVaSc�, which

is in use for transport studies and many other applications,

the tumor model can be translated into dynamic bioreactor

culture settings that enable i) vascularization of the tumor ii)

simulation of long-term treatment, and iii) further investiga-

tions regarding more complex models integrating different

cell types from the tumor stroma such as fibroblasts and im-

mune cells.
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