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Abstract

Purpose: The statistical screening of pharmacovigilance databases containing spontaneously

reported adverse drug reactions (ADRs) is mainly based on disproportionality analysis. The aim

of this study was to improve the efficiency of full database screening using a prediction model‐

based approach.

Methods: A logistic regression‐based prediction model containing 5 candidate predictors was

developed and internally validated using the Summary of Product Characteristics as the gold stan-

dard for the outcome. All drug‐ADR associations, with the exception of those related to vaccines,

with a minimum of 3 reports formed the training data for the model. Performance was based on

the area under the receiver operating characteristic curve (AUC). Results were compared with the

current method of database screening based on the number of previously analyzed associations.

Results: A total of 25 026 unique drug‐ADR associations formed the training data for the

model. The final model contained all 5 candidate predictors (number of reports, disproportionality,

reports from healthcare professionals, reports from marketing authorization holders, Naranjo

score). The AUC for the full model was 0.740 (95% CI; 0.734–0.747). The internal validity was

good based on the calibration curve and bootstrapping analysis (AUC after bootstrapping = 0.739).

Compared with the old method, the AUC increased from 0.649 to 0.740, and the proportion of

potential signals increased by approximately 50% (from 12.3% to 19.4%).

Conclusions: A prediction model‐based approach can be a useful tool to create priority‐based

listings for signal detection in databases consisting of spontaneous ADRs.
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1 | INTRODUCTION

Spontaneous reporting systems have been the cornerstone of

pharmacovigilance since their introduction in the 1960s. The main

aim of spontaneous reporting is the early detection of previously
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unrecognized adverse drug reactions (ADRs). In addition, spontaneous

reporting can also be useful for obtaining information on new aspects

of known associations between drugs and ADRs.1 Although spontane-

ous reporting has its methodological shortcomings from an epidemio-

logical perspective, it is a valuable method for the early detection of

ADRs.2,3 An effective signal detection process is a key element of a

spontaneous reporting system in pharmacovigilance. For the detection

of signals, the Netherlands Pharmacovigilance Centre Lareb has
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KEY POINTS

• Current methods for full database screening of ADRs are

mainly based on disproportionality, which has its limits

due to its sensitivity for several types of selection bias.

• We developed a prediction model‐based approach to

generate a priority list of drug‐ADR associations to be

analyzed.

• The performance of the model and the comparison with

the current method showed that the prediction model‐

based approach is to be preferred over the current

method.
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historically relied on a case‐by‐case clinical review of incoming reports,

directly submitted by health care professionals (HCP) and consumers.

This review is performed by trained pharmacovigilance assessors, the

majority of them being medical doctors and pharmacists. Reports that

may represent a potential signal in the view of the assessor are

discussed in a weekly scientific meeting. Potential signals undergo a

more detailed analysis.4

Lareb has criteria in place for assessors to determine which reports

should be discussed at the weekly scientific meeting. However,

because multiple assessors are involved in this process and the selec-

tion of reports for the weekly scientific is prone to some level of sub-

jectivity, a computer‐assisted database screening tool is in place as an

additional approach to reduce the risk for missing potential signals.5

The screening tool is even more important for ADRs reported by mar-

keting authorization holders (MAHs) that may be indicative of poten-

tial signals, as these are not assessed on a case‐by‐case basis at Lareb.

The computer‐assisted database screening tool used in the Neth-

erlands relies on the number of reports of drug‐ADR associations and

disproportionality based on the reporting odds ratio (ROR). With the

disproportionality analyses, the observed rate of a drug and ADR

together is compared with an expected value based on their relative

frequencies reported individually in the spontaneous reporting data-

base.5,6 In the approach applied at our centre, the lower limit of the

2‐sided 95% confidence interval (CI) is used combined with a number

of at least 3 reports per association. Associations can be automatically

selected by the screening tool based on 1 or more of the following pre‐

defined criteria; Anatomical Therapeutic Chemical code (allowing the

assessor to screen more efficiently), ADR being unlabeled in the

Summary of Product Characteristics (SPC), number of reports (≥3),

threshold of the lower limit of the 2‐sided 95% CI of the ROR

(ROR025) (>1), pre‐specified calendar date, set during previous analy-

sis. Associations highlighted by the screening tool undergo a short

analysis by trained pharmacovigilance assessors. Based on the decision

of the assessor, subsequent new thresholds can be specified (ADR,

unlabeled, number of reports or lower limit 95% CI, new date) or the

association can undergo further detailed analyses. The association will

be highlighted again as soon as one of the aforementioned criteria is

met.7 Although the current approach facilitates the selection of

potential signals, the downside of this approach is that it yields a high

number of associations that need an initial, short analysis, which is a

time‐consuming process. With the current methods, associations can

be ranked on the basis of number of reports or the level of

disproportionality. However, it is not possible to prioritize based on

other, possibly relevant features of the reported association. Prioritiza-

tion based on associations that would theoretically yield the number of

highest potential signals is seen by Lareb as a way to improve timelines

of the signal detection process.

The Uppsala Monitoring Centre, WHO Collaborating Centre for

International Drug Monitoring, has developed a data‐driven screening

algorithm for emerging drug safety signals that accounts for report

quality and content, called vigiRank.8 VigiRank is a model which uses

several predictive values as determined in the WHO Global ICSR data-

base; VigiBase®. Some of the predictors that were found for this

model are not applicable for a national database, such as geographical

spread. The Lareb database contains a high number of reports with
free text and have a relatively high documentation grade, as repre-

sented by the vigiGrade® completeness score of the Lareb reports in

VigiBase®.9 Because Lareb does a case‐by‐case analyses of all reports,

except those received through the MAH, it is known for each associa-

tion whether the ADR is labeled in the Dutch SPC. Also, for each

report (except those received through the MAH), a causality score

(Naranjo) is calculated.10 Based on this, and other, additional informa-

tion that is available for ICSRs, a more elaborate set of predictors

would probably be suited for a screening tool on the Dutch national

spontaneous database.

The primary aim of this study was to develop a new prediction

model‐based screening tool in order to improve statistical signal

detection. Secondary aim was to compare this new model to the

old screening tool, which is based on the number of reports and the

ROR025.
2 | METHODS

2.1 | Setting

In this study, we developed a logistic regression‐based prediction

model for drug‐ADR associations present in the Lareb spontaneous

reporting database. Using the linear predictor of this model, a priori-

tized list of associations not present in the SPC was made for com-

parison with the current method. The data for this study were

derived from the database of the Netherlands Pharmacovigilance

Centre Lareb. This database consists of spontaneous reports of

suspected ADRs reported to Lareb directly by both HCP and con-

sumers. Additionally, reports from MAHs regarding events that

occurred in The Netherlands are imported into our database from

the European Medicines Agency database Eudravigilance. Each report

contains 1 or more drug‐ADR associations. For the development of

the prediction model, all drug‐ADR associations were extracted from

each report. ADRs were coded using the preferred terms from the

Medical Dictionary for Regulatory Activities.11 Drugs were classified

according to the WHO Anatomical Therapeutic Chemical classifica-

tion system.12
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2.2 | Outcome

The outcome of the model was defined as the presence in the SPC of

each unique drug‐ADR association at the time of the analysis.

Although the use of the SPC to determine if an association is actually

an ADR (implying causality) has its limitations, it has been used in sev-

eral studies aimed at statistical signal detection.13,14 At Lareb, for each

association present in an ICSR received directly from a HCP or con-

sumer, a causality assessment using the Naranjo score is performed.10

For Naranjo question 1: “Are there previous conclusive reports on this

reaction?”, 3 options are available at our centre: 1) “Yes, listed in SPC”,

2) “Yes, described in other literature”, 3) “No/unknown”. In order to be

in line with the original Naranjo scale, a score of +1 is assigned if option

1) or 2) is chosen and a score of 0 if option 3) is chosen in routine prac-

tice at Lareb. For the purpose of this study, associations with the out-

come were defined as option 1), and associations without the outcome

as option 2) or 3). Associations consisting of MAH reports only were

manually assessed for the presence in the SPC.
2.3 | Inclusion / exclusion criteria

All reports received until 12‐May‐2016 were considered eligible for

inclusion with the exception of reports related to vaccines. For these

reports, a method other than Naranjo is used to determine causality.

Because that particular method lacks information about the presence

in the SPC, reports related to vaccines were excluded. For statistical

considerations, only associations with a minimum of 3 reports were

selected, because this was deemed to be the minimum number of

reports needed for a reliable ROR estimation.

2.4 | Selection of candidate predictors

For each association, the following variables were selected as candi-

date predictors in the model:

1. The number of ICSRs.

2. The lower limit of the 2‐sided 95%CI of the ROR (ROR025).

3. The percentage of ICSRs derived from health care professionals

(HCP). This variable was selected because HCP reports differ from

consumer reports.15

4. The percentage of ICSRs derived from MAHs. This variable was

selected because it is our experience that MAH reports differ

from reports received directly from HPCs / consumers, most likely

due to regulatory obligations for MAHs. This is confirmed by the

fact that only 0.2% of the reports from MAHs are included in

signals published by Lareb (for HCPs and consumers this is 3.9%

and 2.0%, respectively16).

5. The mean Naranjo score across all reports containing the associa-

tion. The answer to question 1 was excluded in the calculation of

the Naranjo score because this question is the basis for the

outcome variable of the prediction model. Additionally, because

no Naranjo scores are present for MAH reports, scores for those

reports were set at +2 because we considered it valid to assume

that the ADR occurred after the suspect drug was given (Naranjo

question 2).
2.5 | Development of the model

A multivariable logistic regression model was developed using back-

ward step‐wise selection. The training data consisted of all drug‐ADR

associations with a minimum of 3 reports. The candidate predictors

with P < 0.05 (Wald test) were fitted into the model. Due to non‐line-

arity of the predictors, they were converted to categorical variables

with equally sized categories. For all candidate predictors, the general-

ized variance inflation factor, a measure of variance for categorical

variables, was calculated to investigate collinearity, using 4 as a conser-

vative cut‐off value.17,18
2.6 | Evaluation of the model

Internal validation of the model was performed by means of a calibra-

tion curve of the observed versus predicted probabilities, Hosmer‐

Lemeshow goodness of fit testing, and bootstrap resampling. For the

latter, the validate function from the R package “rms” was used

(number of bootstrap samples = 1000, no backward step‐down

variable deletion). The performance of the model was based on the

area under the receiver operating characteristic curve (AUC).

Because our prediction model was developed to be used

specifically for the Lareb database, external validation was not consid-

ered to be relevant. Additionally, previous signal detection research

showed that there are substantial differences among different

pharmacovigilance databases,19 making validation using an external

data source (eg, a database from another country) of limited value.
2.7 | Comparison with current method of signal
detection

Although the current method of screening at Lareb is not based on a

prediction model, we considered it of interest to compare the current

model with a model containing only the number of reports and the

ROR025, which are the basis for the current screening method. The

comparison consisted of 2 elements: First, the performance in terms

of the AUC was compared between both methods. Second, we con-

structed priority lists of associations not present in the SPC, containing

the first 10% and 20% of the associations, respectively. The priority list

was based on the value of the linear predictor from the old and new

model, respectively. With the list, we determined the (relative) number

of associations that had been previously analyzed in depth (mainly trig-

gered by case‐by‐case assessment), as a proxy for a possible signal, for

both methods. This second method was performed to investigate

whether a theoretical difference in performance, based on the AUC,

also resulted in a different amount of potentially interesting signals in

practice.
3 | RESULTS

3.1 | Descriptive statistics and model development

A total of 151 033 ICSRs, containing 120 171 unique drug‐ADR

associations were extracted from the database. After the selection of

associations with a minimum of 3 ICSRs, 25 026 associations remained



TABLE 1 Descriptive statistics of the ICSRs used for analysis

Number (n)

Number of ICSRs 151 033

Number of associations 341 478

Number of unique associations (total) 120 171

Number of unique associations (n ≥ 3) 25 026

Present in SPC 17 071 (68.2%)

Number of unique drugsa 1745

Number of unique suspected ADRsb 5726

aClassified according to the Anatomical Therapeutic Chemical (ATC)
classification system.
bCoded as Medical Dictionary for Regulatory Activities preferred terms.
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as the training data for fitting of the model. Of these, 17 071 associa-

tions (68.2%) were present in the SPC. Additional information is
TABLE 2 Descriptive statistics of the candidate predictors used in the ana

Candidate Predictor Associations Listed

Number of ICSRs per association (median / IQR) 5 (7)

ROR025 per association (median / IQR) 1.3 (3.1)

Naranjo score per association (median / IQR) 1.8 (0.7)

Associations from MAH reports (%) 57.4

Associations from HCP reports (%) 86.8

Abbreviations: IQR, interquartile range; ROR025, lower limit of the 2‐sided 95%

TABLE 3 Full multivariable model with model parameters and measure fo

Predictor Number of Observations R

Intercept −

Number of ICSRs per association (n)

3 7859 R

4–5 7008 0

6–8 4197 0

>8 5962 1

ROR025 per association

≤0.54 6365 R

0.55–1.29 6181 0

1.30–4.18 6224 0

>4.18 6256 0

Naranjo score per association

0–1.33 6709 R

1.34–1.94 5805 0

1.95–2.00 6784 −

>2.00 5728 −

Percentage of MAH reports

0% 10 071 R

0.1–20.0% 2711 0

20.1–75.0% 6323 0

>75.0% 5921 −

Percentage of HCP reports

0–12.5% 6305 R

12.6–50.0% 7130 0

50.1–75.0% 5654 0

>75.0% 5937 0

Abbreviations: ROR025, lower limit of the 2‐sided 95%CI of the ROR; VIF, vari
presented in Table 1. Median values with interquartile ranges (IQR)

and proportions of the candidate predictors are shown in Table 2.

Prior to the regression analysis, all candidate predictors were

divided into 4 categories of equal sizes due to non‐linearity. After

the backward step‐wise selection procedure, all candidate predictors

were included into the final model. VIF values for the assessment of

multicollinearity were below the pre‐defined threshold (4) for all

predictors in the model. The proportion of associations present in the

SPC increased with increasing numbers of reports and an increasing

proportion of HCP reports. For ROR025, Naranjo score and proportion

of MAH reports the direction of the effect was less consistent. For

ROR025, an increase in category was associated with increasing

coefficients except for the highest category. For both Naranjo and

MAH reports, the lower categories were associated with a higher

coefficient (see also Table 3).
lysis

in SPC (n = 17 071) Associations not Listed in SPC (n = 7955)

4 (3)

1.3 (5.3)

2.0 (0.4)

42.6

13.2

CI of the ROR.

r multicollinearity (VIF)

egression Coefficient Standard Error P‐value VIF

0.09 0.07 0.23

1.50

eference category

.34 0.04 <0.0001

.72 0.05 <0.0001

.22 0.05 <0.0001

1.63

eference category

.33 0.04 <0.0001

.52 0.04 <0.0001

.39 0.04 <0.0001

2.12

eference category

.07 0.05 0.16

0.39 0.05 <0.0001

0.11 0.04 0.01

2.36

eference category

.64 0.07 <0.0001

.07 0.04 0.14

0.79 0.07 <0.0001

2.47

eference category

.41 0.06 <0.0001

.48 0.06 <0.0001

.70 0.07 <0.0001

ance inflation factor.



FIGURE 1 Receiver operating characteristics (ROC) curves for the
various models. AUC, area under the curve; NUMBER, number of
reports; ROR025, lower limit of the 2‐sided 95% CI of the ROR; MAH,
percentage of marketing authorization holder reports; HCP,
percentage of reports by health care professionals; Naranjo, Naranjo
score; FULL, full model [Colour figure can be viewed at
wileyonlinelibrary.com]
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3.2 | Performance and validation

The performance of the model was satisfactory, based on the area

under the receiver operating characteristic curve (AUC = 0.740;

95%CI 0.734–0.747; see Figure 1). The 3 strongest predictors in the

model were more than 8 reports per association, followed by a per-

centage of HCP reports of 75% or higher, and a percentage of MAH

reports between 0% and 20% (see Table 3).
FIGURE 2 Calibration curve of the final model. The dotted line
represents a perfect calibration
The calibration curve of the model shows good calibration based

on the observed versus predicted probabilities (see Figure 2). Addition-

ally, bootstrap resampling showed only a marginal difference in the

AUC of the model (AUC after bootstrapping = 0.739), indicating no

overfitting of the model.

3.3 | Comparison with current method

A comparison of the new model with the current method based on a

model with only the number of reports and ROR025 as predictors

showed an increased performance (AUCnew = 0.740; AUCold = 0.649;

see Figure 3).

As mentioned previously, this is a theoretical comparison, because

the current method used at Lareb is not based on a prediction model.

Therefore, the models were not compared in terms of their AUCs,

but priority lists of associations were made for both models, and these

were compared in terms of possible signals. The results of these anal-

yses show that the proportion of possible signals increased by 58.2%

(from 12.3% to 19.4%) and 44.2% (from 9.6% to 13.9%) depending

on the number of associations used (800 vs 1600, respectively). Addi-

tional information is present in Table 4.
4 | DISCUSSION

In this study, we developed a prediction model‐based screening tool

aimed at improving statistical signal detection of our spontaneous

ADR reports. Five relevant characteristics (number of reports,

disproportionality, Naranjo score, proportion MAH reports, proportion

HCP reports) were chosen as potential predictors in the model. For

Naranjo, we considered to use the scoring (doubtful, possible,
FIGURE 3 Receiver operating characteristics (ROC) curves for the
new model (FULL) and the old model (NUMBER+ ROR025). AUC,
area under the curve; NUMBER, number of reports; ROR025, lower
limit of the 2‐sided 95% CI of the ROR [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 4 Performance of the new prediction model in terms of pos-
sible signals

Number of Possible Signals (n/%)
Relative Increase (%)

Old Model New Model

Top‐800a 98 (12.3) 155 (19.4) 58.2

Top‐1600a 154 (9.6) 222 (13.9) 44.2

aRefers to the first 800 (10%) and 1600 (20%) associations not listed in the
SPC of the linear predictor‐based priority lists for each model, respectively.
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probable, definite) for categorization. However, this would result in a

skewed distribution of observations due to the (very) low numbers of

associations with outcome “definite”. Our choice to set the Naranjo

score for all MAH reports to +2 was based on the assumption that

the ADR occurred after the suspect drug was given, which gives a

score of +2. Because no case‐by‐case assessment is performed for

MAH reports at our centre, other items from the Naranjo algorithm

could not be answered. This approach could lead to less diversity in

the Naranjo scores, and as a result impact the performance of the

model. However, a recent pilot study performed at our centre investi-

gating case‐by‐case analysis of MAH reports showed that the docu-

mentation level of the reports was often poor.20 Therefore,

availability of information on additional Naranjo items would most

likely be limited. Although important in statistical signal detection,13,21

the time to onset was not included as a predictor in our model. In a pre-

vious study, we investigated the values of the time to onset in statistical

signal detection and found that it was of limited value in the investi-

gated setting.22 Overall, the model performed well (AUC = 0.740) and

showed good calibration. The highly significant result of the Hosmer‐

Lemeshow test (P < 0.001), indicating a poor goodness of fit, is most

likely explained by the large sample size and should be interpreted with

caution.23 Based on the calibration curve and the bootstrap resampling,

the internal validation was considered satisfactory. The latter showed a

negligible difference in AUC (0.740 versus 0.739).

We found little differences in AUC values among individual pre-

dictors, although disproportionality (ROR025) seems to have the low-

est predictive value. This may be explained by the fact that

disproportionality is sensitive to selective reporting and other types

of bias.24-26

Within subgroups of predictors, we found some noteworthy

results regarding the regression coefficients. The predictors “number

of reports” and “percentage of HCP reports” showed a consistent

increase in coefficients with increasing categories, which was as

expected. For ROR025 and Naranjo, we anticipated similar results,

which was not the case though (see Table 3). This may be explained

by the fact that the outcome used in our model (presence of the asso-

ciation in the SPC) does not by definition imply causality because true

ADRs are not necessarily present in this document, and on the other

hand, events that are not true ADRs may be present. Additionally,

the categories used for Naranjo in the model limit the conclusions that

can be drawn from the regression coefficients. For fitting of the model,

4 more or less equally sized categories were made due to non‐linearity

of the parameter. As a result, the first 3 categories range from 0 to 2,

and the fourth category contains all values above 2, whereas the actual

Naranjo score has a range from −4 till 13. For the percentage of MAH

reports, there seems to be an inverse relationship with presence in the
SPC. One striking difference between MAH reports and reports

received directly from HCPs or consumers that we found in our previ-

ously described pilot study20 was the presence of ADRs in MAH

reports that are not truly ADRs but, for example, outcomes (eg, death,

hospitalization, lack of efficacy) or events related to the indication of

the drug (eg, terminal state in cancer patients with metastases). The

fact that these types of events are not likely to be present in the

SPC and have a low percentage of reports directly reported to Lareb

may be an explanation for the inverse relationship.

Although one can debate the validity of the use of the SPC as the

gold standard for causality, we considered it to be the most compre-

hensive and up‐to‐date data source with information regarding ADRs

that is publicly available. A different approach could have been the

method used for vigiRank, where a set of historical safety signals was

used as a reference set of positive controls.8 However, the issue

regarding causality and presence in the SPC as mentioned earlier

remains, because they used the SPC to define the negative controls.

We considered it more appropriate to use the same gold standard for

both the positive and negative controls and therefore decided to use

the SPC for both. Additionally, the use of a reference set would most

likely result in a less heterogeneous set of ADRs because it would

probably not contain more common ADRs (eg, headache, dizziness,

nausea, etc.), although these types of ADRs are among the most fre-

quently present in spontaneous reports.

The linear predictor‐based priority lists comparing the old and new

model showed a substantial increase in potential signals among the

most highly ranked drug‐ADR combinations not present in the SPC.

In this context, the increase in potential signals should be seen in terms

or earlier detection due to prioritization and not in terms of signals that

would, or would not be picked up by either method.

Previous research suggests that results obtained from signal

detection algorithms depend on the database the algorithm is applied

to.8,19 The same will hold for our algorithm. For example, in the

Netherlands, we receive a substantial amount of ICSRs reported by

patients, but this is not necessarily the case in other countries. There-

fore, the use of the amount of HCP reports as a candidate predictor

may not be a logical choice for other databases. Consequently, the

development of such a model should be based on the reporting and

database characteristics of the country or region it is applied to.

Nevertheless, the method of generating a prediction model‐based

priority list of signals could be useful in other (spontaneous reporting)

databases.

One of the limitations of our study is the risk of bias due to

selective reporting. Because the database contains well‐established

associations, it is reasonable to assume that these associations are

reported more frequently than unknown associations, therewith

influencing the predictors in the model. In an alternative approach,

the values of the predictors immediately prior to the recognition of

the association could be used in the model. However, recovering

the date of recognition for several thousand associations may prove

to be infeasible.

In conclusion, this study shows that a prediction model‐based

screening tool can be used to generate priority‐based listings of

drug‐ADR associations for signal detection. Additionally, as seen in

other studies,8,27 the introduction of variables other than the number
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of reports and disproportionality can increase screening efficiency due

to priority‐based assessment of drug‐ADR associations.
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