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The hybrid brain computer interface (BCI) based onmotor imagery (MI) and P300 has been a preferred strategy aiming to improve
the detection performance through combining the features of each. However, current methods used for combining these two
modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to
optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a
dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can
be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300
are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an
evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.

1. Introduction

Hybrid brain computer interfaces (BCIs) based on electroen-
cephalogram (EEG) have attracted a great deal of attention
because they can provide higher discriminant performance
and more control commands compared to single model BCI
[1–4]. In general, many research efforts have been focused
on experiment paradigm design based on different BCI
modalities to improve the discriminant performance [3–6].
However, in machine learning terms the methodology to
analyze different patterns of BCI modalities is also important
for discriminant performance improvement.

Signal analysis in BCI aims to predict the brain state
of a user out of prescribed options [7, 8]. Many studies
have focused on how to improve detection performance
under the single modal BCI with different approaches. These
approaches for data analysis have been applied in different

steps such as feature extraction and selection (e.g., com-
mon spatial patter [9, 10]; independent component analysis
coupled with heuristic frequency band selection [9]; band
weighting [11, 12]) and classification (e.g., linear classifier
[13–15], nonlinear classifier [14, 16, 17], and semisupervised
learning [18, 19]). Furthermore, some efforts also try to
develop a discriminant approach with a unified criterion for
classifier coefficient (e.g., spatial filter and temporal filter)
optimization from the training data [20–22].

Unlike the single modal BCI, there exist two or more
brain patterns in the hybrid BCI (e.g., MI and P300). In
machine learning terms, the challenge is that these patterns
contain different order information in the signal [3]. For
MI based BCI, the second-order information is used, while
the first-order information is used for P300-based BCI. This
leads to difficulty in the application of conventional statistical
analysis to combine and learn brain patterns together. Many
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attempts to analyze the signal under the hybrid BCI are
carried out though extracting the features from different
modalities separately and then concatenating them to feed
into some relative simple classifiers [2, 3]. However, these
methods combine and learn the features indirectly which
would lead to a nonoptimized resolution.

In this paper, we focus on the hybrid BCI paradigm based
on our previous work, which includes MI tasks and P300
tasks. This indicates that the brain signal includes first-order
and second-order information. To overcome the challenges
described above, we propose using a discriminant approach
that tries to combine and learn the hybrid features directly.
The discriminant approach applied here has been proposed
for single modality BCI by Tomioka and Müller [22]. The
first-order information of the signal for P300 tasks and the
second-order information of the signal for MI tasks are
combined in a block diagonal form.These combined features
can be selected and learned systematically with a linear
classifier under dual spectral regulation. Our experimental
results and data analysis demonstrate the efficiency of this
discriminant approach.

2. Materials and Methods

2.1. Experiment and EEG Data Collection. ANuAmps device
(Neuroscan) is used to measure scalp EEG signals for data
acquisition. Each user wears an EEG cap (LT 37) that
measures the signals from the electrodes. The EEG signals
are referenced to the right ear. Two channels, “HEOG” and
“VEOG,” representing eye movements are excluded (not
shown here). The EEG used for processing is recorded from
Ag-AgCl electrodes that are placed at the sites in the frontal,
central, parietal, and occipital regions.The following 15 chan-
nels are included: “FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,”
“CP3,” “CPz,” “CP4,” “P3,” “Pz,” “P4,” “O1,” “Oz,” and “O2.”
All impedances are kept below 5 kΩ. The EEG signals are
amplified, sampled at 250Hz, and bandpass filtered between
0.5 and 100Hz.

In this experiment, the data was collected from twelve
volunteers (10 males, 2 females) with ages in the range of 22–
35 years. The graphic user interface used to combine P300
and MI is the same as described in our previous paper [2]
and as shown in Figure 1.There are 8 flashing buttons around
the screen. The trial design for data acquisition is shown in
Figure 2. In the initial state (0–2.25 s) of each trial, the screen
remains blank before a cross appears on the screen from 2.25
to 4 s to attract the subject’s visual fixation. From 4 s to 8 s an
up or right arrow cue is shown, and the subject is instructed
to perform the P300 task or MI task (Table 1). The next trial
begins after an interval of 4 s. During this interval the subjects
were asked to relax. When the cue (i.e., up/right) appears the
8 buttons begin to alternately flash in a random order. Each
button is intensified for 100ms with a time interval of 120ms
between two consecutive button flashes. Thus, one round of
button flashes occurs during a period of 960ms, and each
round is repeated 4 times in each trial. During the P300 task,
subjects were instructed to focus on the up center button
without any movement imagination, while during MI task,
subjects were asked to perform right-hand imagery without

blank Fixation 
cross

cue

1 2 3 4 5 6 7 80
(s)

Figure 1: Paradigm for acquisition of data in a trial. At the beginning
of the trial (0–2.25 s), the screen is blank. From 2.25 to 4 s a cross
is shown onscreen to capture subject’s visual attention. From 4 to
8 s, an arrow cue is provided. The subject is instructed to perform
a mental task according to the following: right arrows cue right-
handmotor imagery and up arrow cues attention to a specific button
(center up button in this experiment).

Table 1: Experimental tasks.

Arrow cue Task

Up P300 task: focus on the up center button
without any MI task

Right MI task: right-hand imagery without any
button attention

any button attention.There are two sessions with each session
comprised of 100 total trials (50 trials for each task). The
first session is used to generate training data, and test data
is derived from the second session.

2.2. Data Preprocessing and Pattern Extraction. This dataset
involved two types of task: one related to P300 and the other
corresponded toMI (Table 1). In the P300 task, the categories
classified were the up center button attention or not (up or
right arrow), while, in the MI task, the categories were the
right-handmotor imagery and nomotor imagery (up or right
arrow). First, we introduce the data preprocessing procedure
for these tasks separately below.

For the P300 task, the EEG signal is first bandpass filtered
within the range of 0.1–20Hz and then downsampled to
60Hz. Next, the signal from a channel is segmented into
epochs, each of which is from 0 to 600ms after a flash of the
button, specifically the up center button in this experiment.
For each flash of a specific button in the 𝑖th trial, an epoch
vector can be obtained by concatenating the data vectors
derived from the 15 channels and denoted as 𝑋(𝑖,𝑙)P300 ∈ 𝑅𝑇×𝐶,
where 𝑇 = 37 and 𝐶 = 15 (𝑙 = 1, . . . , 4). The feature vector
in the 𝑖th trial 𝑋(𝑖)P300 ∈ 𝑅37 × 15 is obtained by averaging
four epoch vectors corresponding to four repeats of specific
button flashes and is assigned to a target 𝑦 ∈ {+1, −1}.
If the trial during training corresponds to attention to the
specific button without motor imagery, then the label is set
to +1. Otherwise, the label is −1. Then, we apply the spatial
and temporal preprocessing matrices 𝑃𝑠 and 𝑃𝑡 to normalize
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Figure 2: The individual accuracy across time.
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each channel and time-point in 𝑋(𝑖)P300 to unit variance as
𝑋(𝑖)P300 = 𝑃𝑡𝑋(𝑖)P300𝑃𝑠. The 𝑃𝑠 and 𝑃𝑡 are defined as proposed
in [22]. We also choose 𝑃𝑠 = ∑𝑠−1/4 and 𝑃𝑡 = ∑𝑡−1/4, where
∑𝑠 = (1/𝑛)∑𝑛𝑖=1 cov(𝑋(𝑖)P300) and ∑𝑡 = (1/𝑛)∑𝑛𝑖=1 cov(𝑋(𝑖)𝑇P300)
are covariance matrices in the spatial and temporal domain.

For the motor imagery task, EEG data were bandpass
filtered within the range of 8–30Hz and downsampled to
100Hz. The bandpass filtered signal data 𝑋(𝑖)MI ∈ 𝑅𝐶×𝑇 for
the 𝑖th trial was started during cue presentation and ended
when the cue disappeared, where 𝐶 = 15 and 𝑇 = 400. The
target of the 𝑖th trial is the same as the P300 task. Here, we
used the pattern of the second-order covariance term for the
motor imagery task. Similar with the normalization in the
P300 task, this pattern is also normalized by applying a spatial
whitening matrix ∑𝑠−1/2 (i.e., Γ(𝑖)MI = ∑𝑠−1/2 cov(𝑋(𝑖)MI) ∑𝑠−1/2),
where ∑𝑠 = (1/𝑛)∑𝑛𝑖=1 cov(𝑋(𝑖)MI) is the covariance matrix in
the spatial domain [22].

With the above extracted patterns of P300 𝑋(𝑖)P300 and
motor imagery Γ(𝑖)MI for the 𝑖th trial, we can set 𝑋(𝑖)P300,MI as a
block diagonal concatenation of both as shown below:

𝑋(𝑖)P300,MI = [[[
[

1
𝜉1𝑋
(𝑖)

P300

1
𝜉2 Γ
(𝑖)
MI

]]]
]

, (1)

where 𝜉1 and 𝜉2 are the normalization factors used to
standardize each feature to unit variance and defined as the
square root of the total variance of each block element [23].

2.3. Linear Classification. The classifier used here is the linear
function as shown below:

𝑓𝜃 (𝑋(𝑖)P300,MI) = ⟨𝑊,𝑋(𝑖)P300,MI⟩ + 𝑏, (2)

where 𝜃 fl (𝑊, 𝑏),𝑊 is a matrix of some appropriate size, and
𝑏 is a bias term. ⟨𝑊,𝑋(𝑖)P300,MI⟩ = ∑𝑗,𝑘𝑊(𝑗, 𝑘)𝑋(𝑖)P300,MI(𝑗, 𝑘)
is the inner product between two matrices 𝑋(𝑖)P300,MI and 𝑊
(𝑊(𝑗, 𝑘) denotes the (𝑗, 𝑘) element of a matrix 𝑊). Denote
𝑊 = ∑𝐽𝑗=1 𝑏𝑗𝑤𝑗𝑤𝑇𝑗 , where 𝑤𝑗 is the spatial filter and only the
first several spatial filters are enough for good classification
performance like a CSP based approach.

Before testing, parameters 𝜃 of the above linear classifier
by training are obtained. With the training patterns 𝑋(𝑖)P300,MI
and their corresponding true targets 𝑦𝑖 (𝑖 = 1, . . . , 𝑁), the
parameters can learn by solving the following constrained
minimization problem with the dual spectral (DS) norm
regularizer [22, 24, 25]:

min
𝜃∈Θ

1
𝑁
𝑁∑
𝑖=1

log (1 + 𝑒−𝑦𝑖𝑓𝜃(𝑋(𝑖)P300,MI))

subject to ‖𝑊‖∗ fl
𝑟∑
𝑗

𝛿𝑗 (𝑊) ≤ 𝐶,
(3)

where 𝛿𝑗(𝑊) is the 𝑗th singular value of the weight matrix𝑊 and 𝑟 is the rank of 𝑊. 𝐶 is the hyperparameter that

controls the complexity of the model and is selected by cross-
validation with the training data set. For each subject, the 𝐶
value was searched from 0.1 to 10 with a step of 0.2 andwas set
to the number with the best average performance after cross-
validation.

Therefore, with the training parameters, we can predict
the target of the pattern 𝑋(𝑡)P300,MI from the test data set as
shown below:

𝑦𝑡 = {
{{
+1 if 𝑓𝜃 (𝑋(𝑡)P300,MI) ≥ 0,
−1 if 𝑖𝑓𝜃 (𝑋(𝑡)P300,MI) < 0. (4)

As described above, we can see that the linear classifier
can select and learn the features systematically under dual
spectral regulation, in which the features are in a block
diagonal form by combing the first-order information of the
signal for P300 tasks and the second-order information of
the signal for MI tasks. This framework can provide a way
to optimize the features of MI and P300 together directly.

2.4. Validation Analysis. For comparison, we also performed
the data analysis with the most used methods in BCI
community. For the data analysis of MI task, we applied
the common spatial patters (CSP) as the MI features and
linear discriminant analysis (LDA) as the classifier (CSP-MI).
While for the data analysis of P300 task, stepwise LDA was
used as the classifier (SL-P300). To further prove the effect
of our used method, we performed the classification using
the PROB method [26], which we have presented previously
[2, 3]. This method is used to combine the features of MI
and P300 modalities. Specifically, two linear discriminant
analysis (LDA) classifiers are trained using the MI feature
vectors obtained by the CSP method and the P300 feature
vectors with labels, respectively. Two scores for each trial’s
MI feature vector and P300 feature vector pair are computed
using corresponding classifiers. If the average score is larger
than 0, then the label is 1. Otherwise, the label is −1.
3. Results

Before performing the test, the regularization constant 𝐶 by
10-fold cross-validation for each subject with the best per-
formance was chosen as shown in Table 2. The classification
performance obtained by the method proposed above using
the chosen regularization constant is shown inTable 2with an
average accuracy of 92.8% (DS-hybrid). We also performed
the classification with the MI and P300 separately as shown
in Table 2. Their average individual classification accuracies
are 79.6% (DS-MI) and 81.4% (DS-P300). The paired 𝑡-test
showed that combining the MI and P300 resulted in better
accuracy than that obtained by only MI (𝑝 < 0.001) or P300
(𝑝 < 0.001).

The classification performance with the standard algo-
rithm for the data analysis with MI and P300 paradigms was
79.3% (CSP-MI) and 82.8% (SL-P300) as shown in Table 2
separately. The paired 𝑡-test statistical analysis showed that
the classification accuracy obtained by DS-hybrid is better
than that obtained by both CSP-MI (𝑝 < 0.001) and SL-P300
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Table 2: Classification performance.

DS-hybrid
(%, 𝐶)

DS-MI
(%, 𝐶)

DS-P300
(%, 𝐶)

CSP-MI
(%)

SL-P300
(%)

PROB-hybrid
(%)

S1 98 (0.9) 82 (1.3) 87 (2.3) 78 88 91
S2 96 (1.5) 81 (3.3) 85 (1.5) 85 87 85
S3 89 (5.7) 79 (0.3) 82 (0.9) 75 79 85
S4 92 (0.5) 76 (0.7) 84 (0.7) 80 76 88
S5 86 (2.9) 73 (2.5) 76 (1.3) 72 78 80
S6 95 (6.3) 80 (4.3) 79 (5.75) 81 83 86
S7 88 (4.1) 68 (1.5) 80 (6.3) 68 78 82
S8 92 (1.1) 84 (2.1) 66 (3.7) 82 80 90
S9 94 (2.5) 85 (3.3) 83 (1.7) 86 85 91
S10 88 (1.9) 76 (4.1) 80 (4.3) 74 82 86
S11 96 (0.3) 88 (1.5) 85 (5.7) 86 90 92
S12 100 (1.7) 83 (2.7) 90 (3.1) 85 88 95
Mean ± SD 92.8 ± 4.4 79.6 ± 5.6 81.4 ± 6.2 79.3 ± 5.9 82.8 ± 4.7 87.6 ± 4.3

0

1

−1

DS-hybrid DS-MI DS-P300

Figure 3: Scalp maps of channel weights for subject 1. All these
mapping values are normalized separately to [−1 1].

(𝑝 < 0.001) methods. In addition, the average classification
accuracy is 87.6% (PROB-hybrid; Table 2). The paired 𝑡-
test showed that the classification accuracy obtained by this
method is also better than that obtained by the PROBmethod
(𝑝 < 0.001). This result provides evidence of the efficiency of
thismethod.We also performed 10-fold cross-validationwith
both sessions of data to replicate the results, providing further
evidence of this method’s efficiency. We also performed the
classification for each repetition in the test set. As shown in
Figure 2, classification accuracies after two repeats obtained
using our method through combing MI and P300 (DS-
hybrid) are more stable and better than that obtained with
other methods.This indicates that better performance can be
obtained with shorter time using our method.

Figure 3 shows the topographies of the channel weights
(i.e., the mean of the first 15 of the first spatial filter for𝑋(𝑖)P300
and the last 15 values of the first spatial filter for Γ(𝑖)MI in (1)
for DS-hybrid, the first row of CSP transformationmatrix for
MI paradigm and the classifier weights for P300 paradigm),
obtained using the training dataset of S1.We can see that both
the left motor cortex and occipital cortex contributed to the
discrimination forDS-hybrid, while only leftmotor cortex for
DS-MI and occipital cortex forDS-P300.This pattern of scalp
map is consistent in all the subjects.

4. Conclusion

In this study, we propose to use a linear classifier with a dual
spectral norm regularizer for multimodalities classification.
Relative to the PROB or other conventional methods, this
method can perform feature learning, feature selection,
and feature combining directly through regularization other
than indirect multistep. This method allows us to perform
the feature learning jointly with the training of classifier
in an optimization framework. Specially, this method can
concatenate the features of MI and P300 in a block diagonal
manner, allowing us to optimize them together through a
more efficient method.
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