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Abstract: Refractory high-entropy alloys (HEAs) have excellent mechanical properties, which could
make them the substitutes of some superalloys. However, the high melting point of refractory HEAs
leads to processing problems when using traditional processing techniques. In this study, a single
BCC solid solution of NbMoTaW alloy was formed by selective laser melting (SLM) with a linear
energy density of up to 2.83 J/mm. The composition distribution was analyzed, and the element with
a lower melting point and lower density showed a negative deviation (no more than 5%) of the molar
ratio in the formed alloy. The HEA shows an excellent microstructure, microhardness, and corrosion
resistance performance compared with traditional superalloys, making it a new substitute metal with
great application prospects in aerospace and energy fields.

Keywords: additive manufacturing; high-entropy alloy (HEA); selective laser melting (SLM);
microstructure; superalloys

1. Introduction

“Superalloy” is the general name given to iron-based, nickel-based, and cobalt-based alloys,
given their high endurance, creep, and fatigue strength at high temperature. They are widely used in
aviation, aerospace, and automotive and chemical industries, serving in high-temperature (≤ 1100 ◦C)
environments. However, for super high temperature conditions of up to 1500 ◦C and 3000 ◦C,
traditional surperalloys are powerless. Instead, a new type of refractory high-entropy alloys (HEAs)
have shown their advantages. High-entropy alloys or multi-element alloys are loosely defined as
solid-solution alloys that contain more than five principal elements in equal or near equal atomic
percent (at%) [1–3]. HEAs usually have unexpected properties, such as high strength, high hardness,
excellent softening resistance, and wear and corrosion resistance [4–9]. According to the cocktail
effects of HEAs, the alloy properties can be adjusted by composition changes and via alloying [4,5,10].
Combined with high-heat-resistant elements, HEAs will have excellent properties such as a high
melting point, which meets the requirements of high-temperature load-bearing structures and thermal
protection systems for aerospace applications. Therefore, HEAs can be seen as potential substitutes of
surperalloys. Accordingly, Senkov and others [11,12] prepared a body-centered cubic (BCC) structure
refractory HEA with near-equiatomic concentrations, using NbMoTaW, which was produced by
vacuum arc-melting. The yield strength for this refractory HEA was 1058 MPa at room temperature,
and 405 MPa at 1600 ◦C, which is higher than the melting point of most existing nickel-based
superalloys. This refractory HEA may have promising applications in many fields, such as aerospace,
oceaneering, and energy fields.
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However, the ductility of the NbMoTaW HEA at room temperature is low. Furthermore, the full
mixing of elements in the refractory HEAs is still a challenge. To achieve a homogeneous distribution
of elements in the alloy, the buttons are usually re-melted four times and flipped for each melt by
vacuum arc melting [11,12]. The low ductility at room temperature and high strength of refractory
HEAs render them very difficult to process [13]. Meanwhile, the melting point is also too high to be
manufactured by traditional thermal forming, such as investment casting. For the casting process,
the highest melting temperature is only 1800 ◦C, which is far from enough for the NbMoTaW alloy in
this study. Besides, although the arc melting can go up to the melting point, this method cannot form
an arbitrary shape.

Selective laser melting (SLM) is a powder-bed-based layer manufacturing technique, which can
directly fabricate metal parts according to three-dimensional (3D) computer-aided design (CAD)
data by selectively melting successive layers of metal powders [9,13]. SLM is a complicated process,
in which a high density of energy inputs at each laser pulse cycle and heat constantly dissipates
in different ways. The heat transfer does not only occur between solid, liquid, and gas but also
includes interactions between plasma, electrons, and photons. Figure 1 shows a simple summary
of thermal behaviors during an SLM scanning process. In fact, there are several heat dissipation
methods, including heat being removed by plasma emission, reflected light, radiation, phase transition,
thermal convection, and conduction. Occasionally, the particle spatter also removes heat directly from
the system.
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ductility of the alloy. Kunce and others [16,17] synthesized two HEAs, ZrTiVCrFeNi and 
TiZrNbMoV, from a blend of elemental powders near the equimolar ratio using laser engineered net 
shaping (LENS), and the two alloys both exhibited a two-phase structure as well as hydrogen storage 
capacity. 

However, the manufacturing of NbMoTaW HEA is still a serious problem for traditional hot 
working. There have been notably few studies regarding the preparation of refractory HEA by SLM. 
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Compared with conventional manufacturing, SLM has the capability of producing 3D parts
of complex shapes without tools and molds. Thus, SLM has many advantages, particularly in the
processing of refractory metal materials. During the process, only a very small volume of material is
heated by laser during a short interaction time; therefore, the molten pool can reach several thousand
degrees instantaneously and the SLM process has very high cooling rates, which benefits the formation
of solid solutions in HEAs and still forms grains in the final stage. In fact, some studies [14–19] have
been conducted to prepare HEA directly by laser. Zhang et al. [14] synthesized a refractory HEA
coating with composition close to TiZrNbWMo on C45 steel by laser cladding. The Al0.3CoCrFeNi
HEA was fabricated with direct laser fabrication by Joseph et al. [15], who showed that the materials
exhibited significant tension/compression asymmetry in work hardening rate and ductility of the
alloy. Kunce and others [16,17] synthesized two HEAs, ZrTiVCrFeNi and TiZrNbMoV, from a blend of
elemental powders near the equimolar ratio using laser engineered net shaping (LENS), and the two
alloys both exhibited a two-phase structure as well as hydrogen storage capacity.

However, the manufacturing of NbMoTaW HEA is still a serious problem for traditional hot
working. There have been notably few studies regarding the preparation of refractory HEA by SLM.
Therefore, in this work, we examined the miscibility and solidification of NbMoTaW refractory HEA
synthesized via SLM and conducted elemental, microhardness, and corrosion resistance analysis of
the samples.
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2. Material and Methods

The NbMoTaW HEA was fabricated with mixed multi-element powders. The powders of
Nb (99.9%), Mo (99.9%), Ta (99.9%), and W (99.9%) were weighed with nominal composition in
equal atomic percent, respectively. The shapes of powder grains were spherical or near-spherical.
The particles were mixed with a mass ratio mw:mTa:mMo:mNb of 184:181:96:93, and the powders were
then mechanically milled in a KQM-X/B planetary ball mill for 2 h and dried at 45 ◦C for 8 h.

In the experiment, the SLM process was conducted using FORWEDO LM120 equipment with a PL

(Maximum power of laser) of 500 W fiber laser in a protective atmosphere of argon with an amount
of oxygen under 20 ppm. The substrate was C45 steel plate with a size of 50 mm× 50 mm × 20 mm.
The fabricated sample model was a cuboid with a size around 10 mm × 10 mm × 0.5 mm.

The main parameters of the SLM process are laser scanning velocity (v), hatch distance (ds),
layer thickness (dz), laser power factor (f p), and laser spot diameter (dL). The melting point of
NbMoTaW is higher than that of most common metal alloys. Therefore, a proper higher energy input
with a combination of laser power and scanning velocity is important for melting the mixed powder
completely and shaping the HEA sufficiently. The original parameters were chosen as follows: ds was
0.1 mm, dz 0.1 mm, f p 0.8, and v 250 mm/s, with S-cross scanning in x and y directions. Higher energy
density is needed for fabricating NbMoTaW HEA parts, so there was an additional remelting process,
which had the same parameters as the original process but underwent remelting twice for each layer,
which means that there was 3 times the laser energy input. Therefore, the original process with a linear
energy density of 0.943 J/mm, according to Equation (1), and the scanning strategy is illustrated in
Figure 1.

ρQ= (n + 1)PL fP Amix/v (1)

where, ρQ is the linear energy density, n is the number of remelting times, and Amix is the laser
absorption rate of the mixed powder.

The samples for composition testing, named S1, S2, and S3, were fabricated by remelting processes.
Subsequently, the samples were cut and their surfaces were analyzed further. The morphology of the
microstructures on the specimen surfaces was observed in a HITACHI SU-8010 (Hitachi, Japan, Tokyo)
scanning electron microscope (SEM), and the elemental analysis experiments were carried out by
Energy Dispersive Spectrometer (EDS). The crystal structure was identified by an X-ray diffractometer
D8 (XRD,) advanced with a Cu target (λ = 1.54 Å). The particle size was analyzed with the laser
diffraction particle size analyzer Mastersizer 2000 (Malvern, UK), and the average particle sizes
were investigated.

The absorption rate (A) of the powder was indirectly measured. Subsequently, A of the powder
to the fiber laser was investigated by testing the reflectance (R) of the elements. It can be assumed
that transmission of the laser does not occur in metal powders, and the relationship between the
absorption and the reflectance of metal is A = 1−R [20]. The reflectance of the powder was measured in
a system by Avantes Co., The Netherlands. The grain and dendrite sizes were counted by the standard
reference [21].

Besides, this material is expected to be mainly used in the field of marine engineering; thus,
it needs to resist seawater corrosion, which was tested in this study. Therefore, for obtaining the
potentiodynamic polarization curves to study the corrosion resistance ability of NbMoTaW HEA,
three-electrode electrochemical corrosion tests were carried out for the HEA and 316 L stainless steel
in the mass fraction of 3.5%wt NaCl solution. The patterns of HEA and 316 L steel, as the working
electrode, were cut into a square of 6 mm × 6 mm. Then the surfaces of the patterns were encapsulated
with non-conductive resin and only one surface was left. In addition, a calomel electrode was used as
the reference electrode, and a platinum plate as the auxiliary electrode. The scanning voltage range
was set from −0.2 V to +0.2 V.



Materials 2019, 12, 720 4 of 11

3. Results and Discussion

3.1. Experimental Powders

The basic physical properties of the powders, such as shape and absorption of laser, are shown
in Figure 2. The W, Ta, and Nb powders showed granular shapes, while the Mo powder showed
a spherical shape. The order of the absorption rate of laser in the elements powder to the laser is AMo >
AW > ANb > ATa, as shown in Figure 2, and the higher the absorption, the more energy the powder will
receive at the same time. Thus, the average size of the powder is designed in the same corresponding
order, DMo (94.9 um) > DW (45.0 um) > DNb (21.5 um) > DTa (13.7 um). It is notable that the absorption
of the mixed powder is higher than that of most powders except for Mo powder, suggesting that the
mixing process helps to improve the absorption. The absorption of the Mo powder is higher than that
of the mixed powder, since the Mo powder can trap the laser radiation easily in the hollow structure
with gaps.
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3.2. Phase and Composition

The X-ray powder diffraction (XRD) patterns of NbMoTaW HEA parts fabricated by SLM are
exhibited in Figure 3a. The surface of the sample is smooth and has a distinctive metallic luster,
which suggests relatively high density. The XRD results shown in Figure 3b, compared with Figure 3c,
illustrate there is only one BCC structure solid solution without another metal phase in the alloy.
Meanwhile, the experimental lattice parameter is 3.2034 Å, compared with the ‘theoretical’ crystal
lattice parameter, amix = 3.2230 Å [12], which can be calculated with the following equation,

amix = ∑ci ai (2)

where ci and ai are the atomic fraction and lattice parameter of element i, respectively. Besides,
the diffraction peaks of (100), (200) and (211) are relatively concentrated, which means that the
composition is uniform. The experimental results are in good agreement with those of the as-cast
NbMoTaW HEA in References [11,12]. Therefore, it is obvious that the SLM process is an effective
method to form NbMoTaW HEA.
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After the phase confirmation of the parts, the element composition was examined, as shown in
Figure 4a. The macroscopic composition is relatively uniform. The EDS analysis of the quinternary
alloy shows that the four elements are uniformly distributed in macro scale as seen in Figure 3b.
Besides, the composition distribution among micro grains is measured in Figure 4c. The amplitudes of
composition fluctuations for Nb and Mo in micro scale are larger than those of Ta and W. It is obvious
that the melting points of Nb and Mo are lower than those of Ta and W. During the cooling process,
Ta and W first precipitate and distribute evenly in the base part, and Nb and Mo show segregation
between inner grains and boundaries.

It can be seen that the elements in the samples are evenly distributed on the whole, but there
is still segregation of components. Thus, three groups of sintering repeatability experiments were
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performed to verify the composition deviation of the samples. The composition distribution results
and variance of NbMoTaW are showed in Table 1. From the table, although W and Mo approached the
theoretical at% (atomic percent ) of 25% in all three samples, Ta had the largest average molar ratio
(at%) with 28.21%, Nb had the lowest average ratio (21.50%), and their experimental fluctuations (0.99
and 0.16, respectively) in the three experiments are small. Thus, it is obvious that there is a certain
degree of composition deviation in the patterns. 6 of 10 
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Table 1. Compositions of samples.

Element S1 (at%) S2 (at%) S3 (at%) Avg. (at%) Variance

W 27.26 24.76 24.35 25.46 1.65

Ta 28.09 29.49 27.06 28.21 0.99

Nb 21.61 20.97 21.93 21.50 0.16

Mo 23.05 24.79 26.67 24.84 2.19

There are several factors leading to the composition deviation, such as melting point, liquid
density, powder sides, and energy absorption of powders. According to Figure 5a–c, because the
powder melting points, liquid densities, and at% have the same distribution trends, Mo and Nb,
with lower melting points and densities, showed negative deviations of −0.16 at% and −3.5 at%,
respectively, compared with the nominal composition of 25%. Therefore, in general, when mixed
powder is heated up instantly by the laser, the powders with lower melting point are fused first and the
liquid spreads on a larger surface area and absorbs more energy than the solid powders. Meanwhile,
as the high-density energy continuously inputs, powders with high melting points are also fused,
and there is a mixing process between different metal liquids. The liquid with lower density tends to
float to the surface and the high-density liquid tends to drop, meaning that the lower-density liquid on
the surface is exposed to the laser and receives more energy. In the end, these elements with lower
melting points arrive at the boiling point earlier and evaporate more during the SLM process, leading
to the negative composition deviation.

However, the final deviation results are actually combined with the factors of melting point,
particle size, laser absorption, etc. Figure 5d shows the average particle size of four powders (black)
and laser absorptivity (blue). It is obvious that the average particle size and laser absorptivity both have
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a similar variation trend and a certain degree of causal relationship. Meanwhile, combined Figure 5a,b,
it is worth noting that although Mo and Nb have very similar melting points, the composition deviation
between them is relatively huge, which is caused by particle size and laser absorption. Specifically,
for Mo powder, although it has a higher laser absorption rate, the bigger powder size slows down the
rate of melting, which causes lower mass loss and deviation compared with Nb.
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In summary, it can be seen that the NbMoTaW HEA generated with the SLM process shows
an approximate equimolar ratio distribution. Although there is a maximal 3.5% composition deviation,
as a HEA, the constituent range from 5–35% is acceptable and the composition deviation does not
influence the phase and microstructure. Actually, the NbMoTaW HEA formed by SLM can demonstrate
three performance advantages.

3.3. Microstructure

Based on the SEM observation, on the XY plane, the grain boundaries of NbMoTaW HEA formed
by SLM are clear in Figure 6a. The average grain size is 13.4 µm, which is much smaller compared with
the 200 µm of as-cast NbMoTaW HEA grain size [12], as shown in Figure 6b. Besides, with a further
amplification, in Figure 6c, many lamellar martensite structure dendrites appear on the top of the
molten pools. The preferential orientations of the grains are in all directions and the second branches
are interlaced with each other. The primary and secondary dendrite arm spacings are 6.59 µm and
1.68 µm on average, respectively, compared with the as-cast dendrite arm spacing of approximately 20
to 30 µm in Figure 6d [12].

Actually, under the rapid solidification condition of the laser processing, the grains and dendrites
as a sub-structure grew and developed with an extremely high temperature gradient and cooling rate.
The grains were extremely fine and the primary dendrite arm spacing was approximately half the size
of a grain. This means that when the grain nuclei formed, their growth-driving force was large but the
growth-time was limited. Thus, the dendritic branches were slender in shape, and the dendrite arm
spacing was far less than that in other solidification processes such as casting.
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The fine structure is thought to improve the mechanical properties of the final part. It has been
reported that the as-cast NbMoTaW HEA is brittle with plastic strain εp = 0.2% [11], which seriously
limits its potential applications. The well-known Hall–Petch (HP) law [22,23] illustrates the dependence
of the grain size with the macroscopic plastic and the relationship between the brittle fracture stresses
and polycrystal structure. Therefore, the plasticity, fatigue strength, and creep rate of the polycrystal
BCC metal are improved when the grain size decreases [24]. Therefore, NbMoTaW alloy fabricated by
SLM is a promising method for producing refractory HEA parts, although further study of mechanical
properties is still necessary.

3.4. Microhardness

In this study, the microhardness (Hv) of fabricated samples was measured on the XY plane,
compared with the microhardness data of pure Nb, Mo, Ta, W, and four kinds of surperalloys [25,26].
The results are shown in Figure 7 and there are two points worth noting in the figure.

Firstly, the average microhardness value of the NbMoTaW HEAs (sintering by SLM) sample is 826 Hv.
However, the highest microhardness of Nb, Mo, Ta, and W is 410Hv and the mirohardness of surperalloys
is only in the range of 310–437 Hv. Thus, it is obvious that the NbMoTaW HEA is much harder than
superalloys and the pure elements it contains. Besides, according to the research of Senkov et al. [11],
the NbMoTaW HEA does not produce abrupt hardness changes at high temperatures, which means that
NbMoTaW HEA also has better hardness properties at high temperatures than superalloys.

Second, compared with the HEAa (sintering by arc melting) sample (446 Hv) [12], the HEAs

sample also demonstrates a better hardness performance, which shows the advantage of grain
refinement due to rapid cooling in the SLM process. It can also be seen that grain refinement can
significantly improve the hardness of high-entropy alloys. Therefore, SLM can be an effective means to
improve the hardness of high-entropy alloys.
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3.5. Corrosion Resistance

According to the electrochemical theory, there are two parameters to characterize corrosiveness,
self-corrosive potential (Ecorr) and self-corrosive current (Icorr), among which self-corrosive potential is
only a reference. The key parameter for judging the corrosiveness of metals is the free-corrosion current.
A lower density (Icorr) means a higher corrosion-resistant. In this study, the surface areas of two kinds
of patterns are the same, so the free-corrosion current density can be replaced by the free-corrosion
current. In Figure 8, the Icorr of NbMoTaW HEA and 316L steel can be obtained by linear fitting:
self-corrosion potential of HEA EcorrH = −91.57 mV, free-corrosion current I corrH = 8.716 × 10−11 A;
for 316 L steel, EcorrS = −242.45 mV, IcorrS = 8.815 × 10−9 A. As can be seen, the self-corrosion potential
of HEA is more negative than that of 316L steel, which means the HEA has a stronger corrosion
tendency. This is because the existence of a small amount of composition segregation in the alloy
as mentioned before, which is readily forming corrosion couples and makes the alloy more “active.”
However, the free-corrosion current of the HEA is reduced by two orders of magnitude compared with
that of the 316 L steel. Therefore, in general, the NbMoTaW high-entropy alloy has better corrosion
resistance. Actually, although a slight segregation of elements exists in the HEA, the elements Nb, Mo,
and Ta contained in the alloy are all the easy passivation metals, which contributes to the excellent
corrosion resistance in the 3.5 %wt NaCl solution.
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From Figure 9a, it is obviously that a strong corrosion happens in 316 L steel, with a corrosion
depth of even up to 1 mm. However, in Figure 9b, for the NbMoTaW alloy, due to the effect of corrosion,
only the crack of the sample has a certain extent of extension. At the same time, pitting corrosion also
occurs on the smooth surface of the pattern. Therefore, from the extent of lost weight, the NbMoTaW
HEA also shows stronger corrosion resistance than does 316 L steel.

4. Conclusions

In this paper, as a substitute material for superalloys, the NbMoTaW high-entropy superalloy
could be formed by SLM. Besides, because of the melting point, liquid density, particle size,
and energy absorption of powders, the element with the lowest melting point and density showed
a negative deviation (no more than 5%) of molar ratio in the fabricated alloy. Fortunately, as a HEA,
the constituent range of 5–35% is acceptable and the composition deviation does not influence the
phase and microstructure. Actually, the NbMoTaW HEA formed by SLM can demonstrate three
performance advantages.

The first is microstructure, as the microstructure analysis of the pattern revealed that the extremely
fine grains and dendrites produced in the HEA sample by SLM had sizes of 13.4 µm and 6.59 µm,
respectively, which are far smaller than those observed in as-cast samples. Second, the microhardness
of NbMoTaW HEAs can reach 826 Hv, which is much higher than the microhardness data of HEAa,
pure Nb, Mo, Ta, W, and four kinds of surperalloys. This is caused by the effect of the grain refinement
in the SLM process. Finally, regarding corrosion resistance, the free-corrosion current for NbMoTaW is
IcorrH = 8.716 × 10−11 A, and for 316 L steel, IcorrS = 8.815 × 10−9 A; the free-corrosion current of HEA is
reduced by two orders of magnitude compared with 316 L steel. Therefore, in general, the NbMoTaW
high-entropy alloy has better corrosion resistance.
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