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Abstract

Panax notoginseng, a traditional Chinese medicinal plant, has been cultivated and domesti-

cated for approximately 400 years, mainly in Yunnan and Guangxi, two provinces in south-

west China. This species was named according to cultivated rather than wild individuals,

and no wild populations had been found until now. The genetic resources available on farms

are important for both breeding practices and resource conservation. In the present study,

the recently developed technology RADseq, which is based on next-generation sequencing,

was used to analyze the genetic variation and differentiation of P. notoginseng. The nucleo-

tide diversity and heterozygosity results indicated that P. notoginseng had low genetic diver-

sity at both the species and population levels. Almost no genetic differentiation has been

detected, and all populations were genetically similar due to strong gene flow and insuffi-

cient splitting time. Although the genetic diversity of P. notoginseng was low at both species

and population levels, several traditional plantations had relatively high genetic diversity, as

revealed by the He and π values and by the private allele numbers. These valuable genetic

resources should be protected as soon as possible to facilitate future breeding projects. The

possible geographical origin of Sanqi domestication was discussed based on the results of

the genetic diversity analysis.

Introduction

Crop species were first domesticated from their wild relatives approximately 10000 years ago

[1]. Cornille et al[2] defined domesticated species as those segments of evolutionary lineages

that diverge from their wild progenitors in response to artificial selection pressure and human

control over reproduction. Crop domestication can lead to dramatic changes in agronomic

traits. At the same time, the genetic bottleneck that occurs during this process can reduce the

genetic diversity in cultivated plants and lead to a loss of genetic variation relative to the spe-

cies’ wild ancestors [1,3]. Understanding the makeup and distribution of this genetic diversity

has been our priority as we consider the process of crop genetic resources conservation and

improvement. The assessment of the level and patterns of crop genetic diversity will also be

PLOS ONE | DOI:10.1371/journal.pone.0166419 November 15, 2016 1 / 17

a11111

OPENACCESS

Citation: Pan Y, Wang X, Sun G, Li F, Gong X

(2016) Application of RAD Sequencing for

Evaluating the Genetic Diversity of Domesticated

Panax notoginseng (Araliaceae). PLoS ONE 11(11):

e0166419. doi:10.1371/journal.pone.0166419

Editor: Tzen-Yuh Chiang, National Cheng Kung

University, TAIWAN

Received: April 5, 2016

Accepted: October 29, 2016

Published: November 15, 2016

Copyright: © 2016 Pan et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All the data files are

available from the National Center for

Biotechnology Information (NCBI) Sequence-Read

Archive (SRA) database with the accession

numbers SRR3123274, SRR3123435 -

SRR3123442, SRR3123444, SRR3123447 and

SRR3123450.

Funding: This project was supported by grant

31570339 from the National Natural Science

Foundation of China and grant 2011FZ207 from

Natural Science Foundation of Yunnna province,

China (YP). The funders had no role in study

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0166419&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


helpful for estimating any possible loss of genetic diversity during conservation programs.

Moreover, this assessment will be helpful for evaluating the effects of evolutionary forces

(mutation, natural selection, gene flow and genetic drift) on population properties, such as

effective population size, breeding systems, population structure, and dispersal mechanisms

[4–6].

Panax notoginseng(Burkill) F. H. Chen ex C. Y. Wu et K M. Feng, commonly known as

“Sanqi” in China, is a diploid (2n = 2x = 24) species[7]that belongs to the family Araliaceae

and has a genome of approximately 2400 Mb in size [8]. It is a traditional Chinese medicinal

plant that is widely used for cardiovascular diseases and has been domesticated and cultivated

for approximately 400 years [9]. However, the serious root rot disease caused by pathogens

limits the production of this herb [10]. Phylogenetic analysis confirmed its taxonomic position

in the genus Panax [11,12]; however, this taxon was initially named according to cultivated

rather than wild individuals, and no wild populations had ever been found until now [13].The

genetic resources available in the farms are of the utmost importance for both breeding prac-

tices and resource conservation. A sustainable Sanqi-growing industry will rely on the access

to and use of Sanqi’s genetic diversity to develop improved disease-resistant cultivars through

marker-assisted breeding, genome-wide association studies (GWAS) and genomic selection

(GS) [14,15]. Well-powered GWAS and GS require a genome-wide assessment of genetic

diversity and population structure [14]. In addition, genetic management for the remnant

Sanqi resources requires an assessment of the genetic diversity pattern.

Panax notoginsengis cultivated in some plantations of the Wenshan Autonomous Prefec-

ture of Yunnan province and the Jingxi County of the Guangxi Zhuang Autonomous Region

of China. Cultivated P. notoginseng displays a wide range of morphological diversity, such as

white-yellow or dark red tuberous roots, green, dark red or mixed color stems, red or yellow

fruits [16]. However, it exhibits low genetic diversity at the species level compared to a wild rel-

ative, P. stipuleanatus, as evidenced by ITS sequencing and AFLP polymorphism analysis [17].

No sequence variation in the ITS segment was detected among 24 individuals of P. notoginseng
from three populations, and nine sites (1.30%) were variable in 51 accessions sampled from

eight populations of P. stipuleanatus. The percentage of AFLP polymorphic sites was 76.9% in

P. notoginseng and 96.5% in P. stipuleanatus [17]. P. notoginseng also harbored less DNA varia-

tion than did its two cultivated tetraploid relatives, P. ginseng and P. quinquefolius, as revealed

by the screening of 36 single copy nuclear loci [18].This type of comparison of closely related

species can potentially reveal the processes by which genetic diversity has recently or histori-

cally been altered. However, there is no guarantee that the mutation rate of a locus in one spe-

cies will match that of another, which makes interspecific comparisons very challenging [19].

In addition, the data used in the P. notoginseng studies mentioned above were not sufficient

for fully assessing the genetic structure and diversity, especially at the population level.

Next-generation sequencing (NGS) technology provides the opportunity to generate large-

scale molecular marker data to study genetic diversity at a much higher resolution. Restric-

tion-site associated DNA (RAD) sequencing is a method based on NGS technology that can

create a reduced representation of the genome and identify thousands of genetic markers that

are randomly distributed across the target genome. It promises to generate high-resolution

population genomic data for model and non-model organisms [20]. For RAD sequencing,

genomic DNA is digested by using a restriction enzyme such as EcoRI or SbfI, or a combina-

tion of two enzymes, and is then sequenced from the restriction sites to yield a vast number of

short reads [20–23]. RAD sequencing has been successfully applied to generate genome-wide

SNP data to address questions in population genomics, phylogenetics and speciation studies

[21,24–29]. Bioinformatic tools such as Stacks [30,31] and pyRAD can greatly [32] facilitate

the analysis of the RAD short reads.
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Sanqi currently faces severe pathogen pressures, and long-term sustainability projects and

associated medical industries will rely on the exploitation of the existing natural genetic diver-

sity. The specific objectives of the present study were to determine the genetic diversity, popu-

lation divergence and structure at both the species and population levels by using RAD

sequencing technology. The generated knowledge would be beneficial to breeding and germ-

plasm conservation efforts of this medicinal crop.

Materials and Methods

Plant materials

The materials included 36 samples from 12 plantations. Twenty-seven accessions were

obtained from nine populations that were distributed in five Yunnan counties, and nine acces-

sions were obtained from three populations distributed in the Jingxi county of Guangxi (Fig 1

and S1 Table). Three samples were randomly collected from each plantation. No specific per-

missions were required during the sample collection.

Creation and sequencing of the RAD libraries and sequence analysis

Total genomic DNA was extracted from silica gel-dried leaf material using a modified CTAB

procedure [33]. The genomic DNA samples were digested with EcoRI, and 36 RAD sequencing

libraries were prepared according to the methods described previously [21,34]. In brief, the

libraries were prepared following DNA digestion using the EcoRI enzyme, P1 adapter/barcode

ligation and DNA purification, size selection, P2 adapter ligation and RAD tag amplification.

Single-end sequencing was aimed to produce approximately 1,000 Mb raw data for each

library using Illumina HiSeq2000. The steps mentioned above were carried out by Majorbio

Fig 1. Sample locations of Panax notoginseng.

doi:10.1371/journal.pone.0166419.g001
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Pharm Technology Co., Ltd., Shanghai. The raw sequence data have been deposited in the

National Center for Biotechnology Information (NCBI) Sequence-Read Archive (SRA) data-

base with the accession numbers SRR3123274, SRR3123435—SRR3123442, SRR3123444,

SRR3123447 and SRR3123450.

The raw data were analyzed de novo using the Stacks1.0 pipeline [31,35]to reconstruct loci.

The process_radtags program was used to demultiplex and sort the raw data according to the

barcodes used in each sample. During this process, the adapter contamination was filtered out,

and the raw reads with low average quality score bases (phred score� 10) were discarded. The

clean data for each sample were grouped into loci using ustackswith a stack depth parameter

(-m) of 5, a mismatch parameter (-M) of 2, and maximum stacks allowed per locus (—max_lo-

cus_stacks) of 3. The loci data of all of the samples were merged into a catalog using cstacks,
and then the loci of each sample were matched against the catalog so as to determine the allele

status in each sample using sstacks. To evaluate the genetic diversity of P. notoginseng at the

species level using populations, we treated all 36 samples as a whole population. To include a

locus in this analysis, we required it to be present in at least 67% of the samples. When we eval-

uated the genetic diversity at the population level, we treated each plantation as a population

and required a locus to be present in all individuals (r = 1) in at least six populations (p = 6).

Population genetic statistics, including the private allele number, heterozygosity (H), nucle-

otide diversity (π) and Wright’s F statistics FIS and FST, were calculated for every SNP using

the populations program in Stacks. For bi-allelic SNP markers, π is a useful overall measure of

genetic diversity in a population, and the F statistic measures the distribution of genetic varia-

tion within and among populations [30,36]. To test whether there is a hidden population struc-

ture within each population, we examined the inbreeding coefficient FIS, which measures the

reduction in heterozygosity due to inbreeding [37,38]. To assess the genetic relatedness of the

populations, we calculated the average FST for pairwise comparisons of all sampled populations

in the present study. We then used these average pairwise FST values to cluster populations by

a neighbor-joining method implemented in theMega6.0 program [39].

To analyze the organization of the populations using multilocus genotypic information, the

populations program in Stackswas used to output SNP data across all RAD sites into Struc-
ture-format files [40–42]to analyze the genetic structure at the population level and into Gene-
pop-format files to estimate the gene flow among populations using the Genepop4.0 software

(http://genepop.curtin.edu.au/). During this data outputting process, only the first SNP per

locus was written in both the Genepop-format and Structure-format outputs to avoid tight link-

age SNPs [35]with the output parameters r = 1 and p = 6.

The distribution of genetic variation was analyzed by AMOVA analysis using the Arle-
quin3.5 software [43] after converting the Genepop-format files into an Arlequin-compatible

format.

Sample assignment analysis was performed using the software Structure2.3 [40] on the

complete data produced by the populations program. For this analysis, 10000 burn-in steps

and 100000 iterations were used, with 10 replicates for each value of K, where K is the number

of genotypic groups, which ranged from 1 to 12. Output data were processed in StructureHar-
vester v0.693 [44] (http://taylor0.biology.ucla.edu/structureHarvester/). The optimal K for

each analysis was chosen using the delta K method of Evanno et al. [45], as implemented in

StructureHarvester. Genetic relationships among the studied individuals were also assessed

by principal coordinates analysis (PCoA) in R software package adegenet (http://adegenet.r-

forge.r-project.org/files/montpellier/practical-MVAintro.1.0.pdf). based on the Euclidian dis-

tances between individual genotypes.

Gene flow (Nm) at the species level was estimated using the software Genepop4.0 (http://

genepop.curtin.edu.au/), and the pairwise Nm values at the population level were measured
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using the formula Nm = (1—FST) / 4 FST[46,47] and based on the FST values derived from the

populations program.

To estimate the migration rates and effective population size for Guangxi and Yunnan

groups as well as ancestral group, IM model was performed using IMa [48]. The Phylip–format

SNP data was output by populationswith the parameters p = 1 and r = 24, in which one locus

was present in at least 24 individuals was used as the input file after manually editing. Demo-

graphic parameters including effective population sizes (θ1, θ2, and θA) and migration rates

(m1 and m2) were estimated by 20000000 steps following 200000 burn-in periods. To verify

convergence upon the same values, the analysis was repeated three times using the same priors

but different seeds in each one of the runs.

Results

Sequence data quality and processing

The raw sequence data of most samples were around or greater than 1000Mb, whereas three

samples had less than 700 Mb of raw data. After filtering by process_radtags, the clean data

derived from each sample ranged from 595Mb to 1880Mb, and most of them were approxi-

mately 1000Mb (S1 Table). All of the clean data were of high quality, as assessed by FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The loci of each sample were

produced after clean data processing analysis done using the ustacks-cstacks-sstacksprogram

(S1 Table).

To evaluate the genetic diversity of P. notoginseng at the species level using populations, all

36 samples were treated as a whole population. After requiring loci to be present in at least

67% of samples, 25543 RAD loci were retained. Each plantation was treated as a population

when evaluating genetic diversity at the population level. After requiring loci to be present in

all individuals of at least six populations, 13216 loci were retained.

Genetic diversity at the species and population (plantation) levels

For all loci that were polymorphic in the entire data set at the species level, the observed het-

erozygosity (Ho) was 0.1523, the expected heterozygosity (He) was 0.1554, the nucleotide diver-

sity (π) was 0.159, and the inbreeding coefficient (FIS) was 0.0591. When considering all

nucleotide positions, including the non-polymorphic ones, the observed heterozygosity

decreased to 0.0016, the expected heterozygosity to 0.0016, the nucleotide diversity to 0.0017,

and the inbreeding coefficient to 0.0006.

The statistics for each population were shown in Table 1 and Figs 2 and 3. For all loci that

were polymorphic in at least one population in the entire data set, the average observed hetero-

zygosity ranged from 0.1489 to 0.1997, the expected heterozygosity ranged from 0.1197 to

0.1650, the nucleotide diversity ranged from 0.1473 to 0.2020, and the inbreeding coefficient

ranged from -0.0114 to 0.0282. When considering all nucleotide positions, including the non-

polymorphic ones anywhere in the dataset, the observed heterozygosity decreased to 0.0011 to

0.0017, the expected heterozygosity decreased to 0.0009 to 0.0014, the nucleotide diversity ran-

ged from 0.0011 to 0.0017, and the inbreeding coefficient ranged from -0.0001 to 0.0002. The

private allele number of each population ranged from 182 to 824. As indicated in Table 1and

Figs 2 and 3, the NP population showed the highest genetic diversity, as revealed by the

observed heterozygosity (Ho), the expected heterozygosity (He), the nucleotide diversity (π)

and the private allele numbers. The MT and PL populations had relatively higher genetic

diversity than did the other populations. In contrast, the CF population showed the lowest het-

erozygosity and nucleotide diversity values, and the DH population had the fewest private

alleles.
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Genetic distances within and among populations

When considering all polymorphic loci, the average FIS values were very close to zero (ranging

from -0.0114 to 0.0282 as shown in Table 1), thus indicating a lack of genetic structure or

assortative mating within populations [30].

The FST values shown in Table 2 were very close to zero and therefore may not be biologi-

cally significant, indicating that there was nearly no differentiation among populations of P.

notoginseng. The neighbor-joining tree based on the FST values revealed that three populations

(NP, RL and CF) from the Guangxi province grouped into a branch (Fig 4).

Population structure and gene flow

We used an AMOVA approach to more precisely partition the genetic variation across popula-

tions with 6418 SNPs that were produced by Stacks (see description in methods). Most

Table 1. The statistical values of genetic diversity within populations from variant and all positions data with p = 6/r = 1.

Pop Private Ho He π FIS

code variant positions all positions variant positions all positions variant positions all positions variant positions all positions

NP 824 0.1997 0.0017 0.1650 0.0014 0.2020 0.0017 0.0045 0.0000

DH 182 0.1489 0.0013 0.1267 0.0011 0.1571 0.0013 0.0156 0.0001

MT 581 0.1691 0.0013 0.1436 0.0011 0.1750 0.0014 0.0116 0.0001

DP 259 0.1625 0.0013 0.1244 0.0010 0.1531 0.0012 -0.0114 -0.0001

YL 432 0.1628 0.0013 0.1434 0.0012 0.1755 0.0014 0.0256 0.0002

DL 268 0.1492 0.0012 0.1261 0.0010 0.1557 0.0012 0.0140 0.0001

BZ 252 0.1586 0.0012 0.1266 0.0010 0.1560 0.0012 -0.0039 0.0000

RL 286 0.1504 0.0011 0.1361 0.0010 0.1660 0.0013 0.0282 0.0002

PL 517 0.1796 0.0015 0.1444 0.0012 0.1767 0.0015 -0.0038 -0.0000

CF 199 0.1508 0.0011 0.1197 0.0009 0.1473 0.0011 -0.0050 -0.0000

ZL 472 0.1560 0.0012 0.1267 0.0010 0.1550 0.0012 -0.0007 -0.0000

GH 444 0.1681 0.0013 0.1393 0.0011 0.1693 0.0014 0.0045 0.0000

Note: private, private allele number; Ho, observed heterozygosity; He, expected heterozygosity; π, nucleotide diversity; FIS, inbreeding coefficient of an

individual relative to the subpopulation.

doi:10.1371/journal.pone.0166419.t001

Fig 2. The distribution of private allele numbers among populations with p = 6/r = 1.

doi:10.1371/journal.pone.0166419.g002
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(~96.5%) of the genetic variation occurred within populations, whereas only approximately

3.5% of the variation occurred among populations(Table 3). These results confirmed the con-

clusions deduced from the FST analysis.

As a further test of potential population structure, we analyzed these 6418 SNPs using the

software Structure2.3 [40] with an “admixture model” and a “correlated alleles frequencies

model”. Because loci in tight linkage should be avoided in Structure analyses, only one SNP

was chosen from each RAD site, which means that these 6418 SNPs came from 6418 RAD

sites. By examining the change in LnP(D), and using the deltaK approach of Evanno [45], we

found that a model with K = 2 best fits the data (S1 and S2 Figs). However, an examination of

the posterior probabilities plot (Fig 5) did not show two distinct clusters; all samples were

genetically intermingled and had admixed ancestry. Principal coordinates analysis did not pro-

duce any distinct groupings either (Fig 6), which was consistent with the results of Structure

Fig 3. Distribution of genetic diversity indices, including observed heterozygosity (Ho), expected

heterozygosity (He) and nucleotide diversity (π) with p = 6/r = 1. (A)Genetic diversity indices were based

on variant position data, and on (B) all position data.

doi:10.1371/journal.pone.0166419.g003
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analysis. These results further supported the hypothesis that no genetic differentiation

occurred among Sanqi populations.

Genepop analyses revealed that the overall number of migrants (Nm) per generation was

1.4. The pairwise population Nm values calculated from Wright’s analysis indicated that the

level of gene flow between populations was substantially high, with the largest being 156.0

between the NP and DH populations and the smallest being 12.7 between the GH and DL

populations.

Table 2. Pairwise comparison of genetic distances (FST values) among P. notoginseng populations with p = 6/r = 1.

Pop code DH MT DP YL DL BZ RL PL CF ZL GH

NP 0.0016 0.0043 0.0080 0.0056 0.0041 0.0057 0.0023 0.0080 0.0020 0.0050 0.0128

DH 0.0063 0.0039 0.0074 0.0026 0.0058 0.0016 0.0063 0.0024 0.0053 0.0121

MT 0.0077 0.0115 0.0080 0.0059 0.0080 0.0051 0.0040 0.0016 0.0129

DP 0.0036 0.0056 0.0056 0.0025 0.0072 0.0077 0.0065 0.0175

YL 0.0060 0.0046 0.0022 0.0020 0.0032 0.0053 0.0114

DL 0.0059 0.0030 0.0033 0.0017 0.0034 0.0193

BZ 0.0047 0.0027 0.0023 0.0021 0.0047

RL 0.0072 0.0067 0.0025 0.0099

PL 0.0024 0.0048 0.0063

CF 0.0056 0.0075

ZL 0.0087

doi:10.1371/journal.pone.0166419.t002

Fig 4. A neighbor-joining (NJ) tree created using pairwise FST values as distance metrics with p = 6/

r = 1.

doi:10.1371/journal.pone.0166419.g004
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Demographic parameters estimated using the IM model

The demographic parameters of IMa analysis are shown in Table 4, and the marginal distribu-

tions of the probabilities of the parameters are shown in supporting file S3. The effective popu-

lation size of Guangxi group (θ1) was smaller than that of Yunnan group (θ2), and both were

much smaller than that of the ancestral population (θA). The migration rates between the

Guangxi and Yunnan groups (m1 and m2) were not significant.

Discussion

Low genetic diversity of P. notoginseng

Nucleotide diversity (π)is known as the average pairwise difference between two DNA

sequences, and it is a measure of expected heterozygosity for bi-allelic SNP markers [30,49].

Different DNA fragments in one species may not have the same π values due to variation in

evolutionary rates [50]. Shi et al.[18] selected 36 single-copy nuclear genes to infer the phyloge-

netic relationships of the Panax species and evaluate whether the same ortholog exhibits het-

erogeneous evolutionary rates in diploid and tetraploid species. The π values of P. notoginseng
ranged from zero to 0.0139, with anaverage value of 0.0045,whereas the tetraploid P. ginseng
and P. quinquefolius had an average π value of 0.0097 and 0.0104, respectively. The π values of

these selected genes are not more representative than those from RAD tags when used to

describe the genetic diversity of a species. Our study revealed that the π values P. notoginseng
estimated using RAD sequencing data were 0.0017 at a species-wide level and 0.0011 ~ 0.0017

at a population level. These data indicated that the nucleotide diversity level of Sanqi was low.

Using RAD tags, Xiao [51] reported the genetic diversity of Phoebe zhennan, an endemic and

endangered species in China. The π values of this tree species ranged from 0.0010 to 0.0016

among different populations[51], which is very similar to the estimated Sanqi range. The geno-

mic nucleotide diversity of cultivated soybean (Glycine max) was 0.0005 ~ 0.0010[52], as esti-

mated by SLAF-seq, which is another reduced-representation sequencing technology similar

to RAD sequencing [53]; the estimated values were even lower than those of P. notoginseng
and P. zhennan.

Table 3. The results of the AMOVA analysis.

Source of variation Sum of squares Variance components Percentage variation (%)

Among populations 1.597 0.00429 3.46939

Within populations 7.167 0.11944 96.53061

Total 8.764 0.12374

doi:10.1371/journal.pone.0166419.t003

Fig 5. Bayesian inference of the number of clusters (K) of Panax notoginseng based on Structure analysis.

doi:10.1371/journal.pone.0166419.g005
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Heterozygosity(H), including observed heterozygosity(Ho) and expected heterozygosity

(He), is another important statistic in population genetics. Although the heterozygosity values

estimated using different DNA markers will vary in plants [54], we made a comparison of the

heterozygosity values estimated with different markers in P. notoginseng and two relatives, P.

ginseng and P. quinquefolius. The He value of P. notoginseng estimated from polymorphic sites

using RAD sequencing was 0.1554. The total genetic diversity of wild P. ginseng estimated

from allozyme data was low at the species level (He = 0.0230) [55], but its average expected het-

erozygosity estimated using the RAPD method was 0.1348 [56]. For cultivated populations of

Fig 6. Principal coordinates analysis (PCoA) plot generated by adegenet.

doi:10.1371/journal.pone.0166419.g006

Table 4. The demographic parameters estimated using IM model.

Value θ1 θ2 θA m1 m2

HiPt 0.6683 2.1004 1770.7055 0.0010 0.0015

HiSmith 0.7320 2.1004 1770.7055 0.0010 0.0015

HPD90Lo 0.0955 0.4455 1376.0838 0.0010 0.0015

HPD90Hi 3.1506 7.8288 2330.8136 1.7050 2.0265

doi:10.1371/journal.pone.0166419.t004
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P. quinquefolius, the He values were 0.1637 based on RAPD data [56] and 0.3100 based on allo-

zyme data [57].

The effective size (Ne)of a population, reflecting the rate at which genetic diversity will be

lost, will be reduced by a population bottleneck [46]. The IM analysis revealed that the effective

population sizes of Guangxi group (θ1) and Yunnan group (θ2) were both much smaller than

that of the ancestral population (θA), which meaning that serious population contraction has

occurred in the two distribution areas of Sanqi.

All the findings mentioned above indicated that P. notoginseng probably experienced

domestication bottlenecks [58,59] and thus lost a certain amount of genetic diversity. This bot-

tleneck probably occurred in the early domestication process when only a limited number of

individuals of the progenitor species were used by the early farmers, which left most of the

genetic diversity in the progenitor behind. During the subsequent cultivation process, weak

artificial selection for special agronomic traits has been carried out in Sanqi, but only seeds

from the strongest plants in each generation were chosen to give rise to the next generation.

This winnowing can also cause a severe loss of genetic diversity [3,58]. Scrophularia singpoensis
is a famous medicinal plant in China with a domestication history about 1000 years. The

cpDNA nucleotide diversity is 0.00076 and 0.00301 of cultivated and wild populations, respec-

tively [60]. Genetic diversity of the cultivated species is usually low whether it has been domes-

ticated for a long time or not [60–63].

Almost no genetic differentiation among populations

Genetic differentiation usually results from a long evolutionary period and is affected by bio-

logical features, such as mating systems, life history traits and gene flow. The differentiation

index (FST) among Sanqi populations ranged from 0.0016 to 0.0193, which is significantly

lower than the average FST values of species with mixed mating systems or with short-lived

perennial history [54], suggesting that all populations of Sanqi were genetically similar. Wright

[64] explained that if FST < 0.0500, there is almost no differentiation between populations. Fur-

thermore, AMOVA analysis revealed that only 3.47% of the genetic variation occurred

between populations and that approximately 96.5% of the genetic variation occurred within

populations. The results of the Structure analysis and Principal Coordinates Analysis also sup-

ported this conclusion. Wang et al. [65] analyzed the chemical variation of P. notoginseng and

found no significant differences in saponin concentration among different groups; however,

the saponin concentration exhibited great variation among individual samples. This distribu-

tion pattern of chemical variation coincided with the pattern of genetic variation revealed in

the present study. A mixed NJ tree estimated from 11713 bp further supported this conclusion

(S4 Fig), too. Population structure is strongly influenced by genetic exchange patterns (gene

flow) within and between populations [66], and only when the lack of gene flow occurs, will

the mutation and genetic drift cause populations to genetically diverge from one another [46].

The overall gene flow of P. notoginseng, Nm, is> 1, suggesting that frequent genetic exchange

among populations could hold back the genetic differentiation from occurring [67]. Similar to

most medicinal plants, the strong gene flow in P. notoginseng comes from the frequent seed

exchanges among different farms. In addition, there was a lack of breeding selection during

the domestication process such that no cultivars or landraces have been created, and P. noto-
ginseng is still a mixed population of individuals with heterogeneous phenotypic features such

as red or yellow seeds and green or dark red stems [68,69]. This kind of lack of strong artificial

selection on special agronomic traits is also the cause of the absence of genetic differentiation

in Sanqi. In addition, Sanqi has relatively short cultivation history, and insufficient splitting

time between populations should be a cause of the lack of differentiation, too [60]. Some
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cultivated medicinal plants usually have no genetic differentiation with most genetic variation

occurring within populations even though they have longer cultivation history than Sanqi or

have phenotypic or agro-ecological groups [70–72]. And the insufficient splitting time also

resulted in the lack of the differentiation between the Guangxi group and Yunnan group

although the migration rates (demographic parameters, m1 and m2) between them were not

significant.

Implications for the Conservation of Genetic Resources

Reduced genetic variation might restrict the fitness of domesticated individuals. P.notoginseng
faces serious recurrent cropping obstacles. After a three-year cropping period, the farmers

must wait for 7~10 years until the soil can be used to plant Sanqi again. In addition, as a medic-

inal plant, the planting scale of P. notoginseng is seriously influenced by the market demand.

When the price is low, the number and size of plantations decrease quickly. For example, the

Guangxi Zhuang Autonomous Region of China used to be the main P. notoginseng production

district, and there were many plantations in the Jingxi, Napo and Debo counties of Guangxi

before 1988 [73]. However, with the price of Sanqi falling sharply on a large scale in the late

1980s, most of the plantations have disappeared and only three populations (NP, RL and CF)

were found in Jingxi county when we collected the materials used in the present study in 2011.

Some genetic resources have likely been lost with the disappearance of most plantations.

Therefore, germplasm nurseries and banks should be built as soon as possible to maintain and

protect the existing genetic resources of P. notoginseng.

Although the genetic diversity of P. notoginseng was low at both the species and population

levels, several traditional plantations such as NP and PL had a relatively higher genetic diversity

level than did others based on He and π values as well as on the private allele numbers (shown

in Table 1).The NP plantation is located in the Jingxi county of Guangxi, and the owners of this

plantation have been cultivating Sanqi for approximately 40 years. It is likely that continuous

cultivation has allowed large amounts of genetic variation to still be available today, though

most such plantations disappeared in the 1980s. Furthermore, all of the seeds used to propagate

the crops were collected from their own plantation during cultivation, which suggests that there

was almost no seed flow between NP and other plantations. This cultivation model ensured that

the NP population had the most private alleles. Thus, the NP plantation should be the first

choice for us to collect the genetic resources for breeding or conservation.

In addition to the NP population, the PL plantation, which has a traditional Sanqi cultiva-

tion history, had high genetic diversity. This plantation, located in the Wenshan county of the

Yunnan province, is a large planting base for a Sanqi production company. Many individuals

of P. notoginseng with various excellent agricultural traits (e.g., purple roots) [68] have been

collected from other plantations and planted in this one. In other words, the samples from this

plantation not only harbored higher genetic diversity but also had the most variable agricul-

tural traits. These valuable resources should be protected as soon as possible so they can be

used in future breeding projects.

The possible geographical origins of Sanqi domestication

The first historical record of Sanqi can be found in the “Compendium of Materia Medica”, a

book on Chinese herbal medicine published in 1596. In this book, Sanqi is described to have

been discovered in the mountains of west Guangxi. Approximately 150 years later, cultivated

Sanqi has been shown to be sold in Wenshan, Yunnan, based on observations recorded in the

“Annals of Kaihua Prefecture”, published in 1757. The possible geographical origin of Sanqi

domestication is therefore still controversial [73]. Private alleles may provide evidence on the
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center of origin of this crop [62]. The results of the present study revealed that the NP popula-

tion located in Guangxi had the highest private allele number, which suggests that the primi-

tive domestication of Sanqi probably occurred first in Guangxi and then dispersed to Yunnan.

Although Sanqi has been cultivated for just approximately 400 years, no wild resources can be

found today. The wild individuals were probably driven to extinction by over harvesting in the

past years. On the other hand, the cultivated Sanqi probably originated from the hybrid events

of wild relative species, which could be deduced by its owning of admixed ancestry as revealed

by structure analysis [74–79]. Fortunately, wild populations of several generic species such as

P. stipuleanatus, P. zingiberensis, P. japonicus and P. vietnamensis still exist in Yunnan, which

could potentially provide genetic resources for the improvement of cultivated Sanqi and the

further research of Sanqi origin.
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