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Abstract

Background: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of
the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of ,50% of
healthy adults, whereas ,50% of the general population is rarely or never colonized by this pathogen. Because microbial
consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the
composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization.

Methodology/Principal Findings: Nasal specimens were collected longitudinally from five healthy adults and a cross-
section of hospitalized patients (26 S. aureus carriers and 16 non-carriers). Culture-independent analysis of 16S rRNA
sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum
Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp.), with proportionally less representation of other
phyla, including Firmicutes (e.g., Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp). In contrast, inpatient nasal
microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most
notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated
with the abundances of several microbial groups, including S. epidermidis (p = 0.004).

Conclusions/Significance: The nares environment is colonized by a temporally stable microbiota that is distinct from other
regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial
competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.
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Introduction

Staphylococcus aureus is an invasive human pathogen with

increasing incidence and morbidity in hospitals and the commu-

nity. Both healthy persons and those with underlying illness are at

risk for diverse skin and soft tissue infections, endocarditis,

osteomyelitis, meningitis, bacteremia, and pneumonia (including

pneumonia arising as a complication of influenza [1]), with

mortality rates ranging from 6–40% [2,3]. The high frequency of

poorly responsive and recurrent S. aureus disease in apparently

immunocompetent hosts is a challenging feature of these infections

[4]. Groups that are particularly susceptible include children in

daycare [5], sports teams [6,7,8,9], jailed inmates [10,11,12], and

military personnel [13,14,15,16]. Moreover, the emergence and

rapid spread of methicillin-resistant S. aureus (MRSA) has placed

substantial burden on the healthcare system.

Colonization of the nares is a potent and increasingly prevalent

risk factor for subsequent S. aureus infection [17,18,19,20]. In at

least 80% of S. aureus bacteremia cases in colonized subjects, the

infecting strain is identical to a nasal colonizing strain detected

prior to onset of bacteremia [17,21]. Followed longitudinally,

approximately 20–30% of persons are colonized persistently with

S. aureus, 30% are colonized intermittently, and 50% never, or

rarely, are colonized [22,23]. Why some individuals apparently are

resistant to colonization, and thus at lower risk of infection,

remains an open question. Understanding the biology of this

pathogen, especially its ecological niche in humans and the initial

step in infection, colonization, may therefore provide new

modalities to limit pathogenesis.

S. aureus carriage is influenced by myriad host and environ-

mental factors [24,25]. To establish itself in the nares, S. aureus

must successfully compete with many co-occurring microorgan-

PLoS ONE | www.plosone.org 1 May 2010 | Volume 5 | Issue 5 | e10598



isms, including corynebacteria, coagulase-negative staphylococci,

and Streptococcus pneumoniae [26]. We hypothesize that competition

and cooperation between S. aureus and nares-associated microbial

communities directly impacts the incidence and prevalence of S.

aureus colonization and subsequent infection. Although prior

studies have analyzed associations between S. aureus and other

well-characterized microorganisms [27,28,29], the microbial

consortia that normally inhabit the nasal cavity may be more

complex than indicated by traditional microbiological culture.

Consequently, the microbial ecology of S. aureus colonization

likely is incompletely understood. To surmount these potential

limitations, we used culture-independent analyses of 16S

ribosomal RNA sequences to more fully characterize the

repertoire of indigenous microbial communities within the

human nares of healthy and hospitalized adults in relation to S.

aureus colonization.

Results

Study Design
To determine the frequency, diversity, and temporal stability of

resident microbial communities, we collected nasal specimens

longitudinally from the left and right nares of five healthy adults

(Subjects A–E) over the course of 2–24 weeks (timepoints are listed

in Fig. 1). For comparison, axilla, groin, and nasal specimens were

collected in parallel from one individual (Subject A) to assess

whether the nares harbor the same types of microorganisms as

other regions of the integument. All healthy adults showered daily,

4/5 used antiperspirants and 1/5 used deodorant daily.

Hospitalized adults were sampled in a case-control study of 20

MRSA-colonized patients and 24 patients without MRSA

colonization (based on routine nasal swab culture) while admitted

to the intensive care units in two hospitals. Colonization was

identified by results of culture of both nares with nasal swabs

inoculated onto CHROMagar (Materials and Methods). Because

patients without MRSA by culture could be either colonized with

methicillin-sensitive S. aureus (MSSA) or not colonized by S. aureus,

DNA prepared from nasal swabs was subjected to S. aureus-specific

femA gene PCR [30] to detect all S. aureus (i.e., MSSA and MRSA).

Two specimens were excluded on the basis of poor DNA recovery

(i.e., negative rDNA PCR results, described below). All MRSA

culture-positive patients were positive for S. aureus by femA PCR,

indicating a low false negative rate (,1/16) of this PCR assay.

Patients with negative cultures for MRSA and positive S. aureus

PCR results were presumptively classified as MSSA. In aggregate,

18 inpatients were classified as MRSA carriers, 8 as MSSA

carriers, and 16 S. aureus non-colonized.

Culture-Independent Microbe Identification
Bacteria present in specimens were identified by phylogenetic

analysis of rDNA sequences, amplified from DNA isolated from

swabs by PCR with pan-bacterial primers. Among healthy adults,

PCR amplification was successful in 63/74 (85%) nasal specimens

and 9/9 (100%) groin specimens, but only 4/11 (36%) axilla

specimens. The failure of some samples to amplify was likely due

to insufficient biomass. Although sampling methods could have

been optimized to increase biomass (e.g., through wet-swabs or

lavage), we followed the standard procedures used in the hospitals

Figure 1. Relative abundance of predominant bacterial taxa followed longitudinally in healthy adults. Shading indicates the proportion
of each rDNA library represented by a particular rDNA sequence type. Rows represent species or genus-level taxonomic groups and columns
represent individual specimens. Data are presented only for the 25 most abundant taxa, which account for 90% of rDNA sequences analyzed.
doi:10.1371/journal.pone.0010598.g001
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in order to compare data from all specimens. PCR successfully

detected bacterial 16S rDNA in 26/28 (93%) inpatients colonized

with S. aureus and 16/16 (100%) without S. aureus colonization.

Broad-range rDNA amplicons were subjected to high-through-

put pyrosequencing on the Roche 454 GS-FLX platform. The

reverse rRNA PCR primer (SSU338R [31]) included a barcode

sequence unique to each specimen in order to amplify and

quantify multiple bacterial 16S rDNA sequences simultaneously

(multiplex pyrosequencing reactions) [32]. To maximize the

accuracy of bacterial identification, we rigorously screened

sequences to remove poor quality reads. The resulting dataset

consisted of 33,289 polished sequences, with a median length of

237 nucleotides (range 177–268 nt.) and a mean of 268 sequences

per specimen. Good’s coverage values ranged from 88%–100%

per subject (mean 98%) therefore the true biodiversity of each

specimen was adequately sampled.

rRNA sequences were provisionally identified by BLAST query

of 16S rRNA sequences extracted from the All-Species Living

Tree Project database (version LTP_S95; [33]) and results

corroborated through the RDP Classifier tool [34,35], parsimony

insertion into the SILVA SSURef_98 tree [36], and pairwise

distance comparisons to aligned staphylococcal sequences. Al-

though the LTP database contains only a fraction of the 16S

rRNA sequences present in GenBank or EMBL, its focus on type

strains, rather than environmental sequences, can provide more

accurate taxonomic assignments of human-associated bacterial

rDNA, which typically are closely related to well-characterized

microbial taxa [37,38,39]. Indeed, 91% of the rRNA sequences

were assigned to the species-level (BLAST %ID scores $97%) and

93% assigned to the genus-level (BLAST %ID scores $95%). The

remaining sequences were classified to higher taxonomic levels.

Excellent concordance was observed between BLAST, RDP, and

SILVA classifications (,0.1% of sequences had discordant results,

which were resolved in favor of matches between two of the three

methods).

Ecology of the Healthy Nares Microbiota
The majority of nares rRNA sequences obtained from healthy

individuals belonged to only two bacterial phyla, the Actinobac-

teria (i.e., High-G+C Gram positive organisms such as coryne-

bacteria; 68% of sequences) and Firmicutes (i.e., Low-G+C Gram

positive organisms such as staphylococci; 27% of sequences;

Table 1 and Table S1). Proteobacteria (4.%), Bacteroidetes (1.4%),

Fusobacteria (0.21%), Cyanobacteria (0.08%), Tenericutes

(0.07%) and Deinococcus (0.01%) accounted for the remainder

of phylum-level diversity. Members of the Actinobacteria and

Firmicutes also dominated specimens obtained from the groin and

axilla (Fig. 1, Table 1, Table S1). Similar distributions of

predominant phyla have been reported for integument-associated

microbiotas of healthy individuals [37,40,41] and those with

chronic wounds [39].

Although the precise distributions of species-level microbial

groups differed from specimen to specimen, consistent patterns of

microbial taxa were observed over time within each individual and

anatomical location (Fig. 1, Fig. 2). For instance, all of the

longitudinal groin specimens from Subject A were dominated by

corynebacterial species (e.g. C. mucifaciens, C. minutissiumum) that

were not present, or much less abundant, in the axilla and nares

samples of Subject A, including specimens collected on the same

day. Similarly, sequences representative of Propionibacterium acnes

were prevalent in the longitudinal nares samples of all subjects, but

were observed far less frequently in axilla and groin swabs.

Staphylococcus epidermidis was prevalent in the nares and axilla

specimens, but not the groin, whereas S. aureus was observed only

in the nares of two individuals. Specimens collected at the same

time point from the left and right nares of the same individual did

not differ appreciably in community composition relative to one

another (Fig. 1), therefore these sequences were pooled for

subsequent analyses.

Quantitative assessment of similarities between populations

(using the Morisita-Horn similarity index) indicated that the nares,

axilla and groin harbor distinct and temporally stable microbial

communities (Figs. 2 and 3, Table 2). In general, nares samples

were more similar to one another than to groin or axilla

specimens, even when collected from the same host on the same

day (e.g., p,0.001 for intra-subject comparisons of axilla vs. groin,

axilla vs. nares, and groin vs. nares in Subject A; Table 2).

Interestingly, the axilla and groin microbiotas of Subject A were

no more similar to the nares communities of Subject A than to

those of Subjects B–E (Fig. 2 and 3, Table 2).

The nares microbiotas of Subjects B, C, and D were

indistinguishable from one another, whereas those of Subjects A

and E were unique (Figs. 1, 2, and 3). For example, despite some

temporal variability, the longitudinal nares samples of Subject A

were significantly more similar to each other than to the nares

populations of the other subjects (p,0.001 for within-subject to

between-subject comparisons; Table 2). Of possible note, Subject

A and E are male, Subjects B–D are female, and Subjects A and B

and Subjects D and E are co-habitating couples. Thus,

cohabitation did not result in convergence of nares microbiotas.

Both Principal Components Analysis and hierarchical clustering

corroborated these results (Fig. 4) and thereby provide additional

evidence of anatomy-specific microbiotas.

The temporal variation observed in microbial populations could

represent either microbial succession, as newly colonizing

microbes displaced other species, or stochastic fluctuations about

a fairly constant mean. The latter model, rather than succession, is

more consistent with these data because communities remained

generally similar to baseline samples over time (Fig. 5).

Ecology of the Nares Microbiota in Hospitalized Patients
Similar to healthy adults, most of the phylum-level nasal

biodiversity observed in the inpatient population was restricted to

the Firmicutes (71% of inpatient sequences) and Actinobacteria

(20% of inpatient sequences). However, Firmicutes were signifi-

cantly more abundant in inpatients compared to healthy adults

(71% vs. 27% sequence abundance, respectively; Table 1 and

Table S2), whereas Actinobacteria were concomitantly less

abundant (20% vs. 68% for inpatients vs. healthy).

Differences in the abundances of Firmicutes between inpatients

and healthy adults (Table 1) were due primarily to increased

abundances of just two species, S. aureus and S. epidermidis, which

together accounted for .50% (10,201/18,080) of the inpatient

nares sequences. Similarly, most of the reduction in Actinobacteria

in inpatients was associated with significantly diminished abun-

dance of Propionibacterium acnes (Table 1).

No differences were apparent between the nasal microbiotas of

MRSA and MSSA colonized individuals (data not shown),

therefore datasets were combined to compare with non-colonized

individuals. Among inpatients, S. aureus colonization was nega-

tively correlated with S. epidermidis abundance (p = 0.004; Table 1).

S. aureus sequences were the most abundant sequence-types

encountered in patients classified as S. aureus-carriers by femA

PCR, whereas S. epidermidis sequences were most abundant in the

non-carriers (Table 1, Fig. 6). These results both confirm the

diagnostic utility of the femA PCR assay used to classify patients

and indicate that both staphylococcal species can dominate the

nares microbiota of certain inpatients. Although several other

Ecology of S. aureus Carriage
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species, such as Corynebacterium spp., also were less abundant in S.

aureus-colonized subjects, this study was not sufficiently powered to

gain statistical significance. However, the phylum Actinobacteria

as a whole was reduced in abundance in S. aureus colonized

inpatients (p = 0.06).

The dataset presented in Table 1, which pools data from many

subjects, masks substantial individual-to-individual variation in

nares populations (Fig. 6). The negative correlation between the

abundances of S. aureus and S. epidermidis in S. aureus colonized and

non-colonized inpatients is readily apparent (Fig. 6A), as is the

significant loss of Actinobacteria in inpatients compared with

healthy adults (Fig. 6B). In only one patient (V11) were both S.

aureus and S. epidermidis present in relative abundances .25%.

Furthermore, a subset of inpatients exhibited elevated levels of

Proteobacteria (mainly members of the orders Enterobacteriales and

Pseudomonadales) and Firmicutes other than S. aureus and S.

epidermidis. Thus, blooms in S. aureus or S. epidermidis were not

characteristic of all inpatients, as might be expected given the

Table 1. Nares-associated bacterial diversity in healthy and hospitalized adults1.

Inpatient

S. aureus Carriage2

Top Blast Hit3 Neg Pos p4 Healthy

Firmicutes 54.0%5 66.5%5 25.6%5

Staphylococcus aureus 0.1 46.1 , 0.001 4.5

Staphylococcus epidermidis 43.7 8.2 0.004 10.3

Peptoniphilus spp. 1.8 1.3 3.2

Anaerococcus spp. 1.1 1.0 1.4

Other Firmicutes 7.3 9.8 6.2

Actinobacteria 34.4 14.9 0.06 69.0

Propionibacterium acnes 12.2 3.4 42.4

Corynebacterium accolens 5.6 5.2 7.3

Corynebacterium pseudodiphtheriticum 0.0 1.9 4.8

Corynebacterium tuberculostearicum 5.7 1.0 8.0

Mycobacterium spp. 0.1 0.2 3.4

Other Actinobacteria 10.8 3.1 3.1

Proteobacteria 8.6 17.0 4.0

Enterobacter ludwigii 0.1 5.3 0.1

Other Proteobacteria 8.5 11.7 3.9

Bacteroidetes 1.11 0.34 1.36

Fusobacteria 0.08 0.02 0.21

Cyanobacteria 0.02 0.02 0.08

Deinococcus 0.02 0.00 0.01

Tenericutes 0.04 0.00 0.07

Sequences6: 5227 9095 16411

Subjects7: 16 26 5

Specimens8: 16 26 63

Observed 99% OTUs9: 36.8 34.7 52.4

Estimated 99% OTU richness10: 108.0 113.8 244.6

Shannon diversity: 3.5 3.4 4.5

Shannon evenness: 68% 67% 79%

Simpson diversity: 6.6 6.9 14.1

1Table summarizes most abundant species/genera 0f 16S rRNA sequences in anterior nares swabs. See supplemental information for complete dataset.
2S. aureus non-colonized (Neg) with colonized (Pos) ICU patients, classified by culture and femA gene PCR.
3Inferred from highest bit-score in BLAST query. Blast %IDs ,97 are named only to the genus level. Sequence abundances are listed for phyla (bold) and the 10 most
abundant species/genera (italics; 90% of total sequences).

4p-value for Student’s t-test comparison of colonized and non-colonized patients. Only values ,0.1 are noted.
5Abundance of sequences for each category. Values are averages for subjects in a category.
6Number of sequences analyzed in each category.
7Subjects included in category.
8Specimens included in category. If more than one specimen/subject were analyzed, mean rRNA abundances were weighted by the number of specimens so that all
subjects contribute equally to the mean value.

9Operational taxonomic units (OTUs) were assembled by complete-linkage clustering at a threshold of 99% uncorrected sequence identity. Tabulated values are means
obtained through 1000 boot-strap replicates using rarefaction to normalize for differences in sampling efficiency.

10Schao1 non-parametric estimate of species richness for 99% OTUs.
doi:10.1371/journal.pone.0010598.t001
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range of morbidities that likely were exhibited by the inpatient

population.

In a zero-sum assay such as broad-range PCR, a bloom of one

type of microbe would lower the proportions of all other microbes

in a sequence library, regardless of whether the bloom actually

affected the growth of the other microbes. However, removal of S.

aureus sequences from the sequence datasets revealed different

distributions of microbial groups in S. aureus colonized compared

with non-colonized individuals (Fig. 7). Of most relevance, the

abundance of S. epidermidis was greatly reduced relative to most

other bacterial taxa in S. aureus colonized individuals. This suggests

that S. aureus may alter the composition of the underlying nares

bacterial communities, rather than simply grow without impacting

or displacing other microbial communities.

Reduced Biodiversity in Inpatient Nares Microbiota
Healthy adults harbored significantly more species-rich and

diverse nares microbiotas than did hospitalized individuals

(Table 1, Fig. 8). Approximately twice as many species-level

microbial groups (defined as 99% OTUs) were identified in

healthy adult nares microbiotas as were found in inpatient

microbiotas (p,0.001; 245 vs. 112 OTUs, respectively; Table 1)

as estimated by the Schao1 non-parametric species-richness index

(p,0.001; Sobs: 52 vs. 36 OTUs, respectively; Table 1, Fig. 8).

Comparison of Shannon diversity estimates (Table 1, Fig. 8)

indicated that inpatient nares microbiotas also were both less

diverse (p,0.05) and less even (p,0.05) than healthy microbiotas.

Each of these results is consistent with the observed blooms in S.

aureus and S. epidermidis.

Accuracy of Sequence-based Classification of
Staphylococcus Species

As described above, sequences were classified and clustered on

the basis of BLAST results. Similar results also were obtained

when sequences were clustered into 97% and 99% operational

taxonomic units (OTUs). We chose to present BLAST-based

Figure 2. Similarities between microbiotas determined longitudinally for healthy adults. Morisita-Horn Community Similarity Indices
(CMH) were calculated for each pairwise combination of samples and plotted as a heatmap that compares all values. Color gradient denotes CMH

values, which range from 0.0 (no similarity between communities) to 1.0 (identical communities). Ax: Axilla samples. Grn: Groin samples. Nar: Nares
samples.
doi:10.1371/journal.pone.0010598.g002
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comparisons, because they tend to mitigate possible over-

estimation of OTU-based clusters that can result from sequencing

errors, ambiguous alignment, and/or intra-species chimeras

[42,43]. Because the strength of our conclusions with respect to

correlations between the abundances of S. aureus and other nares-

associated species (particularly S. epidermidis) is dependent on the

accuracy of the rDNA sequence-based microbe identification, we

sought to corroborate the results of S. aureus and S. epidermidis

classifications through more detailed sequence analysis.

Because relatively short (,250 nt) pyrosequencing reads might

not be as phylogenetically informative as longer sequences, we

cloned and Sanger sequenced broad-range amplicons generated

from each inpatient sample using the primers 8F and 805R [31],

which samples approximately one-half of the 16S rRNA sequence.

A total of 3758 Sanger sequences were generated and assigned to

taxa in parallel with the pyrosequencing reads discussed above. In

general, similar microbial distributions were observed between the

two sequencing platforms, despite the use of different PCR primer

sets and phylogenetic analysis of partially overlapping sections of

the 16S rRNA sequence (Table S2). Indeed, the relative

abundances of most taxa varied by less than five-fold between

platforms. Of note, S. aureus and S. epidermidis abundances were

qualitatively similar, and thus indicated no systematic bias due to

shorter pyrosequencing reads. However, several exceptions were

apparent, most notably Propionibacterium acnes, which was the 3rd

most abundant group in the pyrosequencing dataset, but present

at much reduced levels in the Sanger dataset. These differences

may have resulted from primer bias or sequence-length dependent

ambiguities in classification.

To further corroborate taxonomic assignments, each presump-

tive S. aureus and S. epidermidis sequence was aligned to the SILVA

SSURef database (v. 98), then pairwise similarities were calculated

against staphylococcal sequences in the Living Tree Project

(LTP_S95) rDNA database. For each nares sequence, its highest

similarity was noted in comparison to 1) the subset of cognate

sequences in the LTP_S95 database (i.e., presumptive S. aureus

sequences in our dataset vs. S. aureus sequences in the database)

and 2) all other staphylococcal sequences in the LTP_s95 dataset.

Figure 9 presents scatterplots of these two similarity scores plotted

for each nares sequence (Panel A for S. aureus and Panel B for S.

epidermidis). In all instances, the nares sequences were most similar

to sequences from the predicted species, despite the variability in

raw similarity scores. Because the genomic 16S rRNA gene

sequences of S. aureus and S. epidermidis differ by only ca. 1.5%, we

were surprised that nares sequences with BLAST %ID or pairwise

similarity scores less than 98.5% were most closely related to S.

aureus or S. epidermidis. We attribute this seeming discrepancy to

pyrosequencing errors [42,43] and inaccuracies in sequence

alignment, both of which would generally depress all pairwise

similarity scores, yet likely preserve the identity of the true nearest

neighbor sequence in this type of analysis.

Discussion

Determination of the biological factors that naturally protect

individuals from S. aureus colonization may lead to novel strategies

for preventing infections. As a first step towards understanding the

microbial ecology of S. aureus carriage, we have analyzed the nares

microbiotas in cohorts of healthy and hospitalized individuals.

Patients were classified as S. aureus colonized cases or S. aureus non-

colonized controls, from which we determined and correlated the

point-prevalences of S. aureus and other microbes in the nares. The

nares microbiotas of a small cohort of healthy adults were tracked

longitudinally to determine the types and temporal variability of

microorganisms that normally inhabit the anterior nares. Al-

though this healthy cohort was not designed to be a control for the

inpatient study, it nevertheless provides important context in

which to interpret the results of the inpatient point-prevalence

survey. For instance, it was critical to first establish whether the

anterior nares are inhabited either by a defined, characteristic

Figure 3. Comparison of community similarity (CMH) between specimen types. The similarity of microbiota in all pairwise combinations of
specimens obtained from healthy adults was assessed using the abundance-based Morisita-Horn similarity index (CMH). Boxplots indicate the spread
of CMH values calculated for the indicated comparison. Each chart summarizes data for a study participant. For instance, the first boxplot (‘‘A Nar vs. A
Nar’’) summarizes data for CMH scores for pairs of Subject A nares samples over time. Statistical significances are reported in Table 2.
doi:10.1371/journal.pone.0010598.g003

Table 2. Community similarity (Morisita-Horn Index) comparisons for healthy adults1.

Subject A Subject B Subject C Subject D Subject E

Axilla Groin Nares Nares Nares Nares Nares

Subject A Axilla 0.87 0.11 *** 0.13 *** 0.14 *** 0.34 ** 0.27 *** 0.26 ***

Groin 0.11 *** 0.78 0.03 *** 0.01 *** 0.06 *** 0.03 *** 0.05 ***

Nares 0.13 *** 0.03 *** 0.67 0.31 *** 0.36 *** 0.46 *** 0.40 ***

B Nares 0.14 *** 0.01 *** 0.31 *** 0.95 0.91 0.79 *** 0.54

C Nares 0.34 *** 0.06 *** 0.36 *** 0.91 0.97 0.84 * 0.61

D Nares 0.27 *** 0.03 *** 0.46 *** 0.79 *** 0.84 ** 0.92 0.63

E Nares 0.26 *** 0.05 *** 0.40 *** 0.54 *** 0.61 * 0.63 *** 0.66

1Median Morisita-Horn scores for all pairwise combinations of specimen types. Statistical significance assesses whether within-group similarity scores (i.e., axilla
specimens vs. axilla specimens), which are in bold, differ significantly from without-group mean similarity scores in the same column (i.e., axilla-specimens vs. groin
specimens), measured by Wilcoxon rank-sum test. In this case, the axilla-axilla score of 0.83 differs significantly from the axilla-groin score of 0.14. Significance levels are
indicated by

*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0010598.t002
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microbiota or by transient microbial assemblages that result from

perpetually changing exposures to bioaerosols, dust particles,

water, etc.

Few in-depth longitudinal studies of the human microbiota

have been reported to date [44]. Our results indicate that the

dominant microorganisms of the axilla, groin, and anterior

nares remain relatively constant on the time-scale of weeks to

months (Figs. 1 and 2), in the absence of mitigating factors.

Although each individual was host to different suites of

microorganisms, many commonalities were observed between

Figure 4. Similarity of microbiotas determined longitudinally for healthy adults. Panel A. Principal Components Analysis of Microbiotas.
Colors indicate the subject and anatomical location from which longitudinal specimens were obtained. No sampling time-dependent trends were
observed in the data, so datapoints are not labeled with respect to time of collection. Panel B. Hierarchical Clustering. Colors indicate the subject and
anatomical location from which longitudinal specimens were obtained. Leafs are labeled by subject and day of collection. See Materials and Methods
for details.
doi:10.1371/journal.pone.0010598.g004
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individuals, such as nasal carriage of P. acnes, S. epidermidis, and

corynebacterial species. Collectively these microorganisms

define a pan-microbiota of the human anterior nares as has

been reported for other anatomical sites, including the

genitourinary tract [45], gut [38,46,47,48], lung [49], and skin

[37,40,41,50,51,52].

The nares microbiotas of most hospitalized patients differed

substantially from those of the healthy cohort in the kinds and

diversities of prevalent microbes. To our knowledge, this is the

first characterization of the human nasal microbiota in a clinical

context. Our results broadly define three types of microbial

populations within the nasal cavity (Fig. 10). First, healthy adults

and a subset of inpatients harbored nares communities

dominated by Actinobacteria (mainly Propionibacterium and

Corynebacterium spp.), with fewer staphylococci. Second, in the

majority of S. aureus-colonized inpatients S. aureus was the

dominant nasal species, with concomitant reductions in the

prevalences of Actinobacteria. Third, many S. aureus non-

colonized patients carried S. epidermidis as the dominant species,

accompanied by reduced levels of Actinobacteria. Thus in this

study, S. aureus carriage was negatively associated with a variety

of other nares-associated microbial species, most significantly S.

epidermidis and P. acnes (Table 1). These results are consistent

with published reports that selected organisms can interfere with

S. aureus colonization [26,29]. However, the culture-indepen-

dent, high-throughput strategy utilized in this study permitted

detailed characterization of whole populations of nasal micro-

organisms, rather than individual species, in relation to S. aureus

occurrence.

We propose that the underlying morbidities of the inpatient

population and/or their exposure to the hospital environment

caused a transition from a ‘‘healthy’’ nasal microbiota to either

an S. aureus- or S. epidermidis–dominated microbiota (Fig. 10).

Development of an S. epidermidis-dominated microbiota may

either protect a person from subsequent S. aureus colonization or

be an intermediate stage in succession to a nasal microbiota

dominated by S. aureus. In the latter model, loss of commensal

species, such as P. acnes, rather than gain of S. epidermidis could

be the key determinant of subsequent S. aureus colonization.

Because only point-prevalences of microbial groups were

determined for inpatients in this study, we could not ascertain

whether particular organisms interfere with or promote S. aureus

colonization; longitudinal studies will shed additional light on

the potential for particular microorganisms to inhibit acquisition

of S. aureus (or vice versa). As competing species and strains are

identified, the molecular and physiological factors that influence

adaptation and competition within the nares environment can

be studied in greater depth. For instance, selection for antibiotic

resistance and exchange of resistance-encoding genes are

expected to be critical factors in nares ecology in the clinical

context [53,54].

The inpatient study population, which was drawn from ICUs,

undoubtedly is confounded by myriad co-morbidities, therefore

follow-up studies also are necessary to delineate the interplay

between specific clinical factors, the nares microbiota, and the risk

of S. aureus colonization. Nevertheless, similar findings were

obtained at two medical centers, suggesting that the results were

not unique to a particular patient population or due to

methodological bias. Rather, the underlying morbidities of the

inpatient study population or exposure to the hospital environ-

ment likely account for differences observed between healthy and

inpatient cohorts.

Because colonization by S. aureus is a significant predisposing

factor for subsequent infection, deeper understanding both of

colonization and the ecological niche from which infections

originate (the nares) could lead to novel prevention strategies.

Statistically significant enrichment of particular microbial groups

(e.g. S. epidermidis) in individuals who are not colonized by S. aureus

suggests that specific bacterial products interfere with colonization,

either by competition for local resources, by antibacterial activity,

or by competitive attachment to mucosal sites. Definitive

identification and characterization of interfering bacteria or their

products may provide candidates for novel medical interventions,

both passive and active (e.g., as vaccines or probiotics). For

instance, protective microorganisms might be developed for use as

probiotic agents within the nasal cavity. Alternatively, the products
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Figure 5. Temporal variation in nares microbiotas of healthy individuals. Each line plots the similarity of a baseline nares specimen to
subsequently collected nares specimens from the same individual. Similarity is based on the Morisita-Horn community similarity index.
doi:10.1371/journal.pone.0010598.g005
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of S. aureus-interfering genes could have potential as topical anti-S.

aureus agents that block essential binding sites or generate local

innate immune activity. The targets of specific inhibitory factors

might also suggest candidate antigens for vaccines to prevent S.

aureus colonization and therefore mitigate the effects of this

increasingly prevalent and virulent pathogen.

Materials and Methods

Human subjects and sample collection
The study was approved by the Institutional Review Board of the

University of Colorado, Boulder (protocols 0807.21 and 1009.35).

Prospectively sampled healthy adults provided written informed

Figure 6. Inter-subject variability in nares microbiota. Panel A. Comparison of S. aureus and S. epidermidis proportions in rDNA libraries. Column
heights represent relative abundances of particular microbial groups in hospitalized patients and healthy adults. Hospitalized patients are labeled ‘‘D’’
or ‘‘V’’, based on the hospital ICU at which they were admitted. The dashed lines denote the mean abundances of S. aureus and S. epidermidis -- 4.8%
and 9.3% respectively -- in all nares specimens from healthy adults. rDNA sequences were determined by pyrosequencing. Panel B. All other bacteria,
grouped at taxonomic-order level. Dashed line represents the mean abundance of Actinomycetales in all nares specimens from healthy adults.
doi:10.1371/journal.pone.0010598.g006
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consent to be enrolled in the study. Specimens collected from

hospitalized patients were deidentified of all personal information,

so informed consent was not required. Consequently, we were

unable to collect clinical or demographic information about the

patients beyond MRSA culture results. Nasal swabs were collected

through convenience sampling of patients admitted to the intensive

care units of two academic medical center hospitals in the Rocky

Mountain U.S. region that routinely survey inpatients for nasal

MRSA carriage. Specimens were obtained with sterile, dry swabs

(Becton, Dickinson and Company), which were rotated five times

around the inside of both nostrils while applying constant pressure.

Specimens were randomly selected from those collected at the time

of admission to intensive care units or ward nursing units, at the

time of inter-unit transfer, at time of discharge, or on hospital days

7, 14, 21 etc. Inpatient nasal swabs were used to inoculate MRSA

culture plates then promptly preserved in 70% ethanol and stored at

220uC. Nasal swabs from healthy subjects were self-administered in

a similar manner, however, right and left nares were sampled

separately. Specimens from the axilla and groin were collected by

dry swabbing for 5–10 seconds. All swabs were frozen (220uC)

upon collection from healthy individuals.

MRSA culture
Nasal swabs were cultured on CHROMagar plates (Becton,

Dickinson and Company) in a non-CO2 incubator and deemed

positive if mauve-colored colonies were detected after 18–48 hours

incubation. S. aureus was confirmed by Gram stain, catalase assay,

and/or latex agglutination test.

Figure 7. Impact of S. aureus sequences on distributions of other nares bacteria. Panel A. Percent abundance of top twelve genera. Panel B.
Percent abundance of top twelve genera adjusted by removal of S. aureus from total sequence counts.
doi:10.1371/journal.pone.0010598.g007

Figure 8. Ecological richness and diversity of nares microbiotas. The top panel presents the distributions of species richness indices (Sobs)
calculated for nares specimens obtained from hospitalized or healthy adults. The middle panel summarizes sample biodiversity (Shannon diversity
index Ho) and the lower panel presents species evenness (Ho/Hmax. Ho = Shannon index; Hmax = maximum value of Ho for a specimen). Significance
levels are indicated by * p,0.05; *** p,0.001.
doi:10.1371/journal.pone.0010598.g008
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Figure 9. Accuracy of rDNA sequence-based classification of S. aureus and S. epidermidis. Each nares sequence classified as S. aureus or S.
epidermidis by BLAST query of a highly-curated database (SILVA LTP_S95) was aligned and its pairwise sequence similarity determined in relation to
each sequence in a dataset consisting of all LTP_S95 staphylococcal sequences along with other staphylococcal genomic sequences. Maximum
percent identity scores were identified both to the predicted species (S. aureus or S. epidermidis) and to all other staphylococci in the dataset. These
two scores were plotted for each nares sequence. Points falling above the diagonal line therefore represent nares sequences that were most closely
related to the species predicted by BLAST, whereas points falling below the diagonal suggest mis-classification. The majority of sequences were at
least 97% identical to the predicted species, which justifies species-level identification of rRNA sequences. We interpret the low maximum percent
identity values obtained for some sequences (i.e.,,97% identity to any staphylococcal species, yet a top BLAST hit of S. aureus or S. epidermidis) as
arising from base-calling or alignment errors inherent in analysis of pyrosequencing reads. Panel A. Nares sequences classified as S. aureus. Panel B.
Nares sequences classified as S. epidermidis.
doi:10.1371/journal.pone.0010598.g009

Figure 10. Distinct microbial populations in healthy and hospitalized adults. Pie charts depict average frequencies of dominant
microorganisms in the anterior nares of healthy adults and inpatients, classified by S. aureus carriage status. Arrows outline possible pathways by
which microbial populations develop in hospitalized patients. ‘‘Other’’ represents less abundant taxa, such as Proteobacteria and Firmicutes other
than S. aureus and S. epidermidis.
doi:10.1371/journal.pone.0010598.g010
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DNA extraction
Swab heads were placed in sterile two-ml microcentrifuge tubes

with 500 ml of TEN buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA,

1% NP40 nonionic detergent) and ca. 250 mg of zirconium beads

(0.1 mm, Biospec Products Inc, Bartlesville, OK). Specimens were

agitated in a Mini Beadbeater-8 (Biospec Products Inc, Bartles-

ville, OK) on the highest setting for 3 minutes, incubated at 95uC
for 10 minutes, vortexed for 30 seconds, and then heated and

vortexed a second time. The tubes were either placed on ice or

stored at –20uC before PCR processing. Our previous studies

indicate that this DNA extraction protocol is robust and efficiently

lyses a variety of cell types, including Gram-positive bacteria,

mycobacteria, and yeasts [37,39]. All DNA extraction and PCR

steps were performed in a laminar flow hood that was

decontaminated by UV light.

Multiplexed Pyrosequencing
30 ml PCR reactions contained 12 ml 2.5x HotMasterMix (5

PRIME Inc., MD, USA), 0.4 mM 27F-YM3 [55], 0.2 mM

barcoded SSU338R [31] and 1 ml mixed-community genomic

DNA. A single master PCR cocktail containing all reagents other

than the genomic DNA and barcoded SSU338R [32] primers was

set up then aliquoted into a 96-well PCR microtitre plate. PCR

reactions were performed in duplicate using a protocol of 92uC
15 secs, 52uC 15 secs, and 65uC 45 secs. All samples were initially

amplified through 30 cycles and additional cycles were performed

if necessary for subsequent sequencing (38 cycles was the

maximum).

PCR products were normalized prior to pyrosequencing with

the SequalPrepTM Normalization Plate Kit (Invitrogen Inc., CA,

USA), following the manufacturer’s protocol. Duplicate PCR

reactions were pooled prior to normalization. Amplicons were

eluted from normalization plates in 30 ml of 10 mM Tris-Cl

(pH 8.0). 25 ml aliquots of each amplicon were combined in a

pool, which was lyophilized to ,30 ml. One-half of the pool was

electrophoresed through a 1.5% agarose gel in Tris/Acetate/

EDTA and product excised with a sterile razor blade under low-

wavelength ultraviolet light. DNA was eluted from the gel slice

using the MontageTM DNA Gel Extraction Kit (Millipore Corp.,

MA, USA). This pooled DNA was provided to the Colorado

Consortium for Comparative Genomics for pyrosequencing on a

454 Life Sciences GS-FLX instrument.

Barcoded, raw pyrosequencing reads were polished (bases with

Q score,20 averaged across window of 5 nts. removed) and

deconvoluted using the program bartab [32]. 32,341 sequences

were excluded from analysis base on the following criteria: 1)

trimmed length,175 nt; 2) .0 ambiguous base(s); and/or 3)

absence of barcode or forward primer sequence. One specimen,

D11, produced only 13 high-quality sequences and was removed

from statistical analyses.

rDNA clone library construction and Sanger sequencing
SSU rRNA genes were amplified from DNA samples by PCR

with primers specific for all bacterial SSU rRNA genes: 8F

(59AGAGTTTGATCCTGGCTCAG) and 805R (59GACTAC-

CAGGGTATCTAAT). Each 30 ml PCR reaction contained 12 ml

2.5x HotMasterMix (5 PRIME Inc., MD, USA), 25 ng of each

primer, and 1 ml genomic DNA lysate. rDNA genes were

amplified through thirty PCR cycles (92uC 30 sec., 52uC 60 sec.,

72uC 90 sec.) and the expected products were inspected using

ethidium-bromide-stained agarose gels (Kodak Inc.). PCR controls

for each set of samples included extracts from unused, sterile swabs

and sterile H2O (negative controls).

PCR amplified DNA fragments were excised from agarose gels

(1.5% agarose gel in tris-borate EDTA), purified using the

QIAquickH gel extraction kit (Qiagen Inc., Valencia, CA), and

cloned into the pCR4H-TOPOH vector (TOPOH TA Cloning kit,

Invitrogen Corp., Carlsbad, CA). For each clone library, 96

transformants were grown overnight at 37uC in 1.5 ml 2xYT

medium using 96-well culture plates. To sequence the inserts of

transformants, 20 ml of each overnight culture was mixed with

20 ml of 10 mM Tris-Cl (pH 8.0), heated 10 minutes at 95uC, and

centrifuged 10 minutes at 1,3606 g in a 96-well plate centrifuge

(Eppendorf Inc., Westbury, NY). One microliter of culture

supernatant was used as template with vector-specific T7 and

T3 primers in a 30 ml PCR reaction (38 cycles as above). Ten

microliter of each PCR product were treated with the ExoSap-IT

kit (USB Corp, Cleveland, OH) and cycle-sequenced using vector-

specific T7 and T3 primers with the Big-Dye Terminator kit

(Applied Biosystems, Inc., Foster City, CA). Sequencing was

performed in-house on a MegaBACE 1000 (Amersham Biosci-

ences, Piscataway, NJ) automated DNA sequencer. Sequence base

calling and contig assembly were performed with the applications

phred and phrap [56,57], as implemented by XplorSeq [58].

Vector and primer sequences were removed along with poor

quality flanking nucleotides (Q,20).

Sequence Analysis
All sequences were aligned to the SILVA SSURef version 98

database using the SINA automated aligner provided by the

SILVA web service [36]. Sequences with SILVA quality scores less

than 75, including potential chimeric sequences, were removed

from the dataset and not subjected to further analysis. Aligned

sequences were inserted into the SSURef SILVA guide tree using

the parsimony insertion function of ARB [59]. Initial taxonomic

assignment of SSU sequences was made by a batch BLAST search

of both GenBank and a local database of rRNA sequences

extracted from the All-species Living Tree Project database

(version LTP_S95; [33]) using the client applications blastcl3

and blastall (NCBI). Taxonomic lineage information was extracted

from GenBank records of top BLAST hits and compared to results

obtained from the Naı̈ve Bayesian Classifier tool provided by the

Ribosomal Database Project [34]. Ambiguities between GenBank

and RDP classifications (,0.1% of sequences) were resolved by

reference to the results of parsimony insertion into the SILVA

guide tree in ARB.

To calculate ecological biodiversity indices, we assigned

sequences to OTUs by furthest-neighbor clustering of uncorrected

pairwise distances, using the application sortx and a distance cutoff

of 99% [58]. The completeness of sequencing was assessed by

Good’s Coverage estimator [60] and estimates of species richness

were calculated using the non-parametric estimators ACE

(abundance-based coverage estimator [61]) and Chao1 [62]

through the program biodiv (D.N. Frank, unpublished. http://

www.phyloware.com). Sequence distances between presumptive S.

aureus and S. epidermidis 16S rRNA sequences and databased

staphylococcal sequences were calculated and compared using

the program xscmpdst (D.N. Frank, unpublished. http://www.

phyloware.com).

Statistical analyses
All analyses used the R-software package (v.2.0.1; [63]).

Differences in the relative abundances of microbial groups

between sample types were assessed by the two-tailed Student’s

t-test for unequal variance (logit-transformation of abundance data

did not alter the reported results for untransformed data).

Morisita-Horn community similarity indices (CMH) were calculat-
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ed using the vegdist function of the R package ‘‘vegan’’ [64].

Differences in CMH values between categories were tested by

Wilcoxon rank-sum test. Hierarchical clustering relied on the R

package ‘‘cluster’’ [65] and were generated using both complete

and average linkage. Dissimilarity matrices used as input were

calculated using either the function daisy (methods ‘‘euclidean’’

and ‘‘manhattan’’ distances) or vegdist (methods ‘‘jaccard’’ and

‘‘horn’’). Heatmaps used the heatmap.2 function available through

the R package ‘‘gplots’’ [66].

DNA sequence accession numbers
Sequences were deposited in GenBank and assigned the

accession numbers HM073607 - HM077276 and HM081990 -

HM099519.
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