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Abstract

Reciprocal chromosomal translocations (RCTs) leading to the formation of fusion genes are important drivers of
hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative
support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-
throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of
translocation partner genes (TPGs). Our results show that fusion genes are generally overexpressed due to increased
promoter activity of 59 TPGs and to more stable 39-UTR regions of 39 TPGs. Furthermore, expression profiling of 59 TPGs and
of interaction partners of 39 TPGs indicates that these features can help to explain tissue specificity of hematological
translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain
combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different
components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in
determining which 59 and 39 TPGs will combine in specific fusion genes. It is generally accepted that chromosomal
proximity in the nucleus can explain the specific pairing of 59 and 39 TPGS and the recurrence of hematological
translocations. Using recently available data for chromosomal contact probabilities (Hi-C) we show that TPGs are
preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that,
in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken
together, our results support a model in which genomic features related to regulation of expression and replication timing
determine the set of candidate genes more likely to be translocated in hematological tissues, with functional constraints
being responsible for specific gene combinations.
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Introduction

Chromosomal translocations are genomic rearrangements in

which reciprocal exchange of genetic material between two non-

homologous chromosomes results in the formation of novel fusion

genes. Some of these fusion genes display oncogenic properties and

have a strong impact on cancer progression and prognosis,

particularly in hematological malignancies [1]. Therefore, several

hundred translocations have been described in hematological

cancers, although recent reports support their emerging role also

in solid tumors [2]. However, whether the fusion gene resulting

from a reciprocal chromosomal translocation (RCT) is a driver of

tumor progression or just a passenger event is not yet fully

understood in all cases [3]. Common and important features of

RCTs were reviewed recently [4], but to the best of our knowledge

a thorough and extensive data-mining study has not yet been

performed.

A fairly comprehensive catalog of genes involved in RCTs is

available in public manually-curated databases. Mitelman Data-

base of Chromosome Aberrations and Gene Fusions in Cancer

provides extensive documentation of clinical cases, making

possible the estimation of clinical frequencies of translocations.

TICdb [5], on the other hand, provides manually curated mapped

translocation breakpoints, allowing analysis of the sequences

flanking those breakpoints. Several such analyses have been

performed over the last years, highlighting the association of

various sequence motifs with the presence of double-strand breaks

(DSB) in some types of translocations. Current consensus about

the general requirements for breakage and fusion is that an

increased frequency of DSBs at particular genomic locations,

together with close spatial proximity of certain loci [6,7],

determine the probability of some RCTs and why some

combinations of translocation partner genes (TPGs) are more

likely to occur (for a review, see [8]). However, quantitative

support for this as a general mechanism applicable to oncogenic

RCTs in general is still lacking.

The aim of this paper is to characterize the genomic hallmarks

of TPGs using computational and statistical analyses of available

clinical and high-throughput datasets. We focus on hematological

malignancies, as they constitute the largest set of well-documented

RCTs described to date. In this study we have made use of a large

collection of data sources. We have used gene expression data for

various tissues obtained from publicly available datasets, as well as

multiple genomic features from the human genome assembly, to
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analyze TPG expression and regulation. For the analysis of fusion

protein functions we have used InterPro domain features, gene

ontology annotations and a recently available protein-protein

interaction dataset. We have also used recent high-throughput

data on spatial and temporal architecture of the nucleus to search

for potential characteristic features of TPGs.

While the mechanisms that could potentially lead to RCT

formation are well-studied, it is now emerging that oncogene

selection during tumorigenesis could be the decisive factor for

RCT appearance in tumors [9]. Thus the logic of this study is to

try to explain RCT occurrence from the point of view of functional

selection.

First, we compare various features of TPGs with non-

translocated genes and find statistical support for some character-

istic properties of TPGs related to expression levels and regulation

of transcription. We also address the issue of non-random TPG

pairing in RCTs, examining issues like nuclear distance, the types

of protein domains retained in fusion proteins or replication time.

We try to explain some open questions in the field, such as why

RCTs are tissue-specific [10] and why they drive oncogenesis in

specific lineages [11]. Finally we address the recurrence of RTCs

and their clinical frequencies [1]. Taken together, our data,

robustly supported by quantitative methods, provide new insights

into the global features shared by TPGs and afford a unified

explanation of the mechanisms responsible for the specificity and

recurrence of RCTs.

Results

Expression and regulation of expression of 59 and 39

TPGs
Most hematological 59 and 39 TPGs are specifically involved in

hematological translocations, with only a few of them translocated

in other tissue types (10% and 4% for 59 and 39 TPGs respectively,

according to TICdb). In an attempt to explain this fact, we first

analyzed the expression of all TPGs in normal tissues. Expression

of both 59 and 39 TPGs is significantly higher than average gene

expression (all RefSeq genes), but only 59TPGs (not 39 TPGs) are

more highly expressed than hematopoietic-specific genes in

hematological tissues (see Figure 1A and supplementary Figure

S1A). Analysis of gene expression in other tissue types revealed

that 59 TPGs, but not 39 TPGs, are more highly expressed in

tissues of hematopoietic origin than in tissues of epithelial or

mesenchymal origin (see Figure 1B and Figure S1B). This is true

for around 65% of 59 TPGs. Likewise, when we compared the

expression of 59 TPGs with their corresponding 39 TPGs we found

that 59 TPGs generally have higher expression levels (see

Figure 1C). This was robustly replicated in data from various

tissues of hematopoietic lineage and in different microarray

datasets for almost 70% of translocations checked. Moreover, we

studied lineage-specificity by analyzing expression of 59 TPGs

involved in translocations reported in lymphoid (HEM-L, 177

translocations) and in myeloid (HEM-M, 201 translocations)

malignancies. Their expression levels in two cell lines of lymphoid

and myeloid origin (GM128 and K562, respectively) confirmed a

lineage-specific pattern (only 59 TPGs in HEM-L show higher

expression in GM128 compared to K562), as shown in Figure 1D.

In order to reveal possible mechanisms for such expression

differences we analyzed a number of genomic features of TPGs

using available tracks from UCSC Genome Browser. Analysis of

promoter features in several cell lines suggests that the difference in

expression of 59 and 39 TPGs could be explained by promoter

activity. First, trimethylation of H3K4, which is a marker of active

promoters, is higher for 59 TPGs than for 39 TPGs in cell lines of

hematopoietic origin (Figure 2A). Likewise, we calculated the

probability of observing Polymerase II (Pol2) binding in the

promoter region of TPGs (23 kb/+3 kb) as the ratio of cell lines in

which a Pol2 peak is found. Normalized Pol2 frequency (ratios

were normalized to zero mean and unit standard deviation for all

RefSeq genes) was significantly higher in cell lines of hematopoi-

etic origin than in non-hematopoietic for 59 TPGs, but not for 39

TPGs. Moreover, Pol2 binding probability was higher in

promoters of 59 TPGs than in 39 TPGs in hematopoietic cell

lines (Figure 2B). These findings suggest that tissue-specific

expression of 59 TPGs could be explained by more active

transcription in hematopoietic cells, regardless of other issues

such as mRNA stability.

Since 39 TPGs contribute their 39-UTR to fusion transcripts,

they could also have an impact on expression levels of fusion genes

because 39-UTRs are known to have a regulatory role in mRNA

stability and half-life. For instance, it has been shown that genes

more tightly regulated have longer 39-UTRs with more regulatory

elements in them [12]. We explored this by comparing several

features of 39-UTRs of TPGs. We observed that 39 TPGs have

significantly shorter 39-UTRs than 59 TPGs. Moreover, there were

fewer conserved elements and microRNA target sites in 39-UTRs

of 39 TPGs (Figure 3). MicroRNAs are known to be major players

in post-transcriptional regulation, frequently playing the role of

tumor-suppressors by inhibiting expression of proto-oncogenes

[13]. All this indicates that 39 TPGs might also play a role in

changing the regulation of expression of oncogenic fusion genes.

Analysis of domains and protein interaction interfaces
We have previously shown that the complex network of TPGs

involved in RCTs can be decomposed into a simpler network of

protein domain combinations [14], indicating that selection for

certain domain combinations is a powerful mechanism driving

preferential pairing of TPGs. To further explore this issue, we

analyzed the number of domains and protein interaction interfaces

(PIIs) that are retained or lost in fusion proteins upon translocation

(see Methods for details about extraction of domains and PIIs).

While proteins encoded by 39 TPGs retain significantly more

Author Summary

A common genetic lesion leading to hematological cancer
is the creation of fusion genes as a result of reciprocal
translocations between chromosomes. Such translocations
are non-random, in the sense that certain genes are more
likely to be fused than others, and they appear to be
tissue-specific. Current models tend to explain the non-
random nature of chromosomal translocations suggesting
that chromosome breaks are favored at certain sites and
that the distance between genes in the nucleus deter-
mines the probability of their being fused together. In this
work we have analyzed several genomic features in a large
collection of genes involved in chromosomal transloca-
tions in hematological cancers, using robust computation-
al methods. Our findings suggest that nuclear distance is a
general pre-requisite but does not determine the specific
combinations of genes fused together. We find that
genomic features related to transcription and replication,
together with constraints derived from the functional
domains present in the proteins encoded by fusion genes,
better explain which genes participate in specific chromo-
somal translocations and the tissue types in which they are
found. The association of such genomic features with the
position occupied by genes in the nucleus explains the
apparent causal role attributed to spatial position.

Features of Genes in Oncogenic Translocations
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domains and PIIs than they lose, the opposite is true for proteins

encoded by 59 TPGs (Figure 4, panels A and B). In fact, quite a

few proteins encoded by 59 TPGs contained no domains at all, or

contained domains that were difficult to associate with oncogenic

functions, suggesting that the major role of 59 TPGs is

transcriptional up-regulation of fusion genes rather than contrib-

uting specific protein domains to fusion proteins.

In order to define this more strictly, we classified protein

domains according to their functional ontologies. The details of

this manually curated classification procedure are described in

Methods and the lists of annotated domains and their classes are

given in supplementary Table S1. Type 1 domain classes include

DNA-binding (D), protein interaction (P), kinase (K) and histone

modification domains (H), whereas type 2 domains comprise other

types of domains not involved in oncogenesis and domains with

unknown function (O), as well as protein parts without recogniz-

able domains (N). Total numbers of retained domains of each class

are presented in Figure 4C, which shows that K and H domains

are almost absent in 59 TPGs, whereas D and P domains are the

most frequent in both 59 and 39 TPGs. Likewise, Figure 5 shows

that the occurrence of type 1 and 2 domains in 59 TPGs and 39

TPGs from the same translocation are strongly dependent, with

significant under-representation of type 2-type 2 domain co-

occurrences (in agreement with their limited oncogenic potential).

Using permutations with a Benjamini-Hochberg FDR cutoff of

10% we discovered 13 over- and 8 under-represented domain

class pairs in hematological translocations (Figure 5). Most over-

represented pairs of domain classes are in agreement with known

mechanisms of oncogenicity of fusion proteins described in the

literature (see Discussion).

To further explore the non-randomness of domain co-occur-

rence in translocations for more complex sets than domain pairs,

Figure 1. Expression of 59 and 39 TPGs. A: Average expression in hematological tissues of 59 and 39 TPGs compared to expression of all RefSeq
genes (all genes) and a subset of genes known to be expressed in hematological tissue (H/S genes, according to UniProt database). B: Expression of
TPGs in hematopoietic tissues (HEM) compared to non-hematopoietic tissues of epithelial (EPI) and mesenchymal (MES) origin. C: Expression
difference between 59 TPGs and 39 TPGs in various samples of hematopoietic origin from two datasets (D1 and D2, see Methods): bone marrow (BM),
peripheral blood mononuclear cells (PBMC), spleen (SPL), T-cells (T), lymph node (LN) and tonsil (TNSL). All differences are highly significant (###).
D: Difference in expression of 59TPG between GM128 cell line (of lymphoid origin) and K562 cell line (of myeloid origin) for translocations reported in
cells of lymphoid (HEM-L) and myeloid (HEM-M) origin. Higher value means more expression in GM128 compared to K562. Differences are significant
in both groups, as indicated by Wilcoxon test. ***, **, *, ns: P,0.001, 0.01, 0.05, Mann-Whitney U test. ###, ##, ns: P,0.001, P,0.01, non-
significant, Wilcoxon signed rank test.
doi:10.1371/journal.pcbi.1002797.g001

Features of Genes in Oncogenic Translocations
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we performed clusterization of fusion protein functional profiles,

defined as binary strings where each bit indicates whether a TPG

retained at least one domain of a certain class. Clusterization using

an expectation-maximization algorithm with cross-validation

yielded an estimate of n = 6 clusters, with four clusters (C0, C2,

C3 and C4) containing fusions with ‘‘regulation of transcription’’

signature and the other two (C1 and C5) having a ‘‘kinase’’

signature. Notably, small clusters C2 and C5 include only true

chimeric proteins in which both TPGs have similar functions.

Figure 6A shows the resulting cluster profiles and counts. We then

overlaid these clusters onto the network of fusion genes (Figure 6B;

for each translocation, edge color indicates the cluster to which it

belongs). This shows that clusters tend to be restricted to non-

overlapping sets of hubs and that events where the same gene

belongs to translocations of both ‘‘regulation of transcription’’ and

‘‘kinase’’ clusters are extremely rare.

To investigate the role of TPGs containing only type 2 domains

we analyzed their predicted impact on the expression of their

corresponding fusion genes. As shown above, 59 TPGS are

characterized by higher expression levels whereas 39 TPGs are

characterized by shorter 39-UTRs. Thus, we computed the

relative difference of expression between 59 TPGs and 39 TPGs

from different translocations based on the presence of type 1 or

type 2 domains in 59 TPGs. Similarly, we calculated the decrease

in length of the 39-UTR of fusion proteins in translocations with 39

TPGs containing or lacking type 1 domains. In both cases, we

found evidence (Figure 7 and Figure S2) that TPGs without type 1

domains can lead to overexpression of the fusion gene (in the case

of 59 TPGS) or improved stability of its mRNA (for 39 TPGs).

As mentioned above, expression levels of 39 TPGs could not

explain why most of them are translocated exclusively in

hematological tissues. To explore other possible ways in which

39 TPGs could contribute to tissue-specificity, we identified all

protein interaction interfaces (PII) in proteins encoded by 39

TPGs, and extracted data about the proteins that interact with

those PIIs. With this information we built a network of interactions

between PIIs in 39 TPGs and their interaction partners, shown in

Figure 8A (the network for 59 TPGs is shown in supplementary

Figure S3). This network has a complex structure with many self-

interactions and overlaps between interaction partners of different

TPGs, many of which comprise large hubs. We then calculated the

expression of these interaction partners in several tissues in the

same expression datasets that we had used before. Interestingly,

expression levels of interaction partners of 39 TPGs were, on

average, significantly higher in hematopoietic than in epithelial or

mesenchymal tissues (Figure 8B and supplementary Figure S4).

Likewise, 84% of 39 TPG interaction partners are highly expressed

in hematopoietic stem cells from bone marrow and 70% to 80% of

them are highly expressed in various peripheral blood cells,

according to annotations in DAVID database [15]

(GNF_U133A_QUARTILE used, these percentages are signifi-

cant with Benjamini-corrected P-values less than 0.05). Taken

Figure 2. Characteristics of promoters of 59 and 39 TPGs. A: Averaged histone H3K4 trimethylation mark around promoters of TPGs for K562
and GM128 cell lines (log2 values of signal, normalized to max. value). B: Normalized Pol2 peak frequency for 59 and 39 TPGs in cell lines of
hematopoietic (red bars) and non-hematopoietic (grey bars) origin. ***, ns: P,0.001, non-significant; Wilcoxon signed rank test.
doi:10.1371/journal.pcbi.1002797.g002

Figure 3. Characteristics of 39UTRs of 59 and 39 TPGs. A: 39UTR length. B: number of conserved elements (phastConsElements44way track,
hg18 genome assembly from http://genome.ucsc.edu/. C: number of microRNA target sites (PITA Top Targets from http://ophid.utoronto.ca/mirDIP.
***, **: P,0.0001, 0.001, Wilcoxon signed rank test.
doi:10.1371/journal.pcbi.1002797.g003

Features of Genes in Oncogenic Translocations
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Figure 4. Domains (panel A) and protein interaction interfaces (panel B), retained and lost by fused TPG parts. ###: P,0.0001,
Wilcoxon signed rank test for difference between retained and lost elements in a TPG. C: Total counts for different types of domains retained by
TPGs: DNA-binding (D), protein interaction (P), histone modification (H), kinase (K) or other (O).
doi:10.1371/journal.pcbi.1002797.g004

Figure 5. Co-occurrence matrix of various functional classes of domains in hematological translocations. Values in the table show ratio
of real count to mean count of permuted data, non-significant ratios are masked as ns. Green and red values represent significantly under- and over-
represented co-occurrences, respectively (using 10% FDR cutoff for p-values estimated with 106 random permutations). Values at margins indicate
total numbers of translocations with domains of corresponding sets (type 1 domains D, P, H or K and type 2 domains O and N). Types of 59 TPG and 39
TPG domain sets are dependent (P = 0.02, two-sided Fisher exact test). Translocations where both TPGs have type 2 domains constitute 13% of all
translocations and are under-represented 0.78 fold (P,1026, permutation test).
doi:10.1371/journal.pcbi.1002797.g005

Features of Genes in Oncogenic Translocations
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together, these results suggest that 39 TPGs might influence tissue-

specificity of translocations indirectly, via tissue-specific expression

of the proteins interacting with them.

Spatial position in nucleus
Preferential fusion of certain 59 and 39 TPGs in hematological

cancers is generally attributed to the spatial proximity of those loci

within the nuclear space. This has been demonstrated for a few

recurrent translocations [8], but the relevance of spatial proximity

as a general feature capable of driving specific translocations in

hematological malignancies has not been assessed on a large scale.

We therefore used high-throughput spatial proximity data

(represented as interchromosomal contact frequencies) available

for human lymphoblastoid cell line GM06990 [16,17], in order to

check whether known 59-39 TPG pairs are closer in the nucleus, on

average, than random genes. As shown in Figure 9A, mean

Figure 6. Unsupervised clustering of translocation fusion proteins based on their domain profiles yields 6 translocation classes (C0
to C5). A: Relative probabilities of proteins encoded by 59 or 39 TPGs to have at least one domain of D/P/H/K/O functional class for each of the six
translocation classes. B. Network of TPGs (arrows point from 59 to 39 TPG) showing how translocation classes are consistent with specific
combinations of TPGs (MLL translocations include classes C3 and C4, ALK and PDGFRB translocations are almost exclusively class C1, etc). Edge
thickness indicates number of different TPG variants comprising a given translocation.
doi:10.1371/journal.pcbi.1002797.g006

Figure 7. TPGs with type 2 domains (not known to be involved in DNA-binding, protein-interaction, kinase or histone modification)
play a role in boosting transcription and mRNA stability of fusion gene. Comparison of TPGs with type 1 domains (grey boxes) and type 2
domains (white boxes). A: Transcription increase afforded by 59 TPGs, calculated as ((Pol2 occupancy of 59TPG promoter)2(Pol2 occupancy of 39TPG
promoter)). B: Decrease of 39-UTR length afforded by 39 TPGs, calculated as log2((39-UTR length of 59 TPG)/(39-UTR length of 39 TPG)). *, **: P,0.05,
0.01; two-tailed T-test.
doi:10.1371/journal.pcbi.1002797.g007

Features of Genes in Oncogenic Translocations
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contact frequency calculated for 239 TPG pairs (black line) is

significantly higher than for randomly selected Refseq genes (light

green), indicating a preferential position in a contact-enriched

zone of the nucleus. However, neither replacing a 59 or a 39 TPG

with a random Refseq gene (red and dark green lines) nor, more

importantly, randomly permuting 59-39 TPG pairs (blue line),

significantly decreased the average distance between paired genes.

This suggests that spatial proximity, in itself, does not have a major

role in determining the preferential pairing of specific TPGs in

hematological neoplasms.

A more refined way to test the relevance of spatial proximity for

lineage-specificity of translocations is to select translocations

reported only in lymphoid or in myeloid malignancies (HEM-L

and HEM-M subsets mentioned above) and to measure the

distance between those loci in cell lines of lymphoid and myeloid

lineage. Therefore, we compared distances between TPG pairs in

GM06990 cells (lymphoblastoid origin) and in K562 cells (myeloid

origin), for which Hi-C data were also available. As shown in

Figure 9B, we found no lineage-specific trends: TPG pairs from

HEM-L and HEM-M translocations were at similar distances in

GM06990 and K562 cells. Moreover, we observed very significant

correlation of distances between cell lines (see Figure 9B).

To gain further insights into the relative positions of TPGs in

the nucleus, we performed clusterization of Hi-C distances to

obtain clusters corresponding to central and peripheral locations

(supplementary Figure S5). We found that 59 TPGs are

significantly over-represented in the central (proximal) cluster of

the nucleus (Figure 9C, supplementary Figure S5C). Likewise, 59

TPGs are, on average, closer to all other nuclear loci (excluding

loci on the same chromosome) than RefSeq genes, according to

their higher mean contact frequency (supplementary Figure S5E).

This, in contrast, was not observed for 39 TPGs, indicating that 59

TPGs occupy a more central position in the nuclear space whereas

39 TPGs are more evenly distributed. The overall association of

TPGs with regions in the central cluster is shown in supplementary

Figure S5D.

Replication timing (RT) is highly correlated, at the chromo-

somal level, with the organization of chromosomal domains within

Figure 8. Analysis of interaction partners of 39 TPGs. A: Network of protein interaction interfaces (PIIs) retained by 39 TPGs and their
interaction partners. Edges point from a 39 TPG towards its interacting proteins. Red nodes indicate genes that are on average more expressed in
hematopoietic than in non-hematopoietic samples. B: Expression of interacting partners in tissues of epithelial (EPI), hematopoietic (HEM) and
mesenchymal (MES) lineage. If multiple 39TPGs have the same interacting protein, it is included the corresponding number of times. ### - p,0.001,
Wilcoxon signed rank test.
doi:10.1371/journal.pcbi.1002797.g008

Features of Genes in Oncogenic Translocations
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territories [18]. Furthermore, the RT of a chromosomal region is

associated with mutation rate [19] and somatic copy number

alterations are often bounded by early replicating regions [20]. We

grouped smoothed RT data for GM06990 cell line into early and

late replicating regions based on distribution of all RefSeq genes

(supplementary Figure S6) and analyzed RT values of TPG-

containing regions. As shown in Figure 9C and supplementary

Figure S6B, both 59 TPGs and 39 TPGs are significantly over-

represented in early-replicating regions. Likewise, TPGs are

replicated significantly earlier than all RefSeq genes based on

raw RT values for their genomic regions (supplementary Figure

S6D), with 59 and 39 TPGs having similar timing. To further

strengthen this observation, we repeated our analysis on more

samples from the ReplicationDomain database. The results

obtained for hematological samples were in good agreement with

GM06990 cell line, while non-hematological samples only show

slight trends (supplementary Figure S6C).

Translocation features related to clinical frequency
Another relevant question about the forces that drive specific

combinations of TPGs in hematological malignancies is why some

translocations are more frequently found in clinical samples

whereas other translocations are never, or rarely, recurrent. It has

been previously argued [7] that clinical frequency (estimated from

the number of reported cases in Mitelman database) is correlated

with spatial proximity for rearranged loci, leading the authors to

suggest that high-order spatial genome organization, with non-

random localization of these loci in relation to the center of

nucleus, might increase their spatial proximity. Therefore, we

extracted data for all translocations reported in hematological

malignancies in Mitelman database and computed the contact

frequency of various combinations of genes. First, we found that

the average distance between TPGs in rare translocations

(reported only once) is the same as the distance between TPGs

in frequent translocations (reported more than once) (Figure 10A).

Furthermore, when we compared RT and contact frequency

across the whole genome (excluding their own chromosome) for

TPGs in rare and frequent translocations we did not observe any

significant difference, as shown in supplementary Figure S7 (which

shows separately 59 TPGs and 39 TPGs). Again, this observation

suggests that spatial proximity is not sufficient to account for the

recurrence of specific translocations, and that additional factors

must be considered.

We therefore evaluated the role that other TPG properties

might play in increasing the frequency of certain translocations.

First, we found that expression levels of 59 TPGs were significantly

higher in recurrent translocations (reported more than once) than

in rare (Figure 10B). Similarly, we explored whether the number of

known PIIs in 39 TPGs might be associated with the frequency of

their involvement in translocations. We found that 39 TPGs

reported more than once have significantly more PIIs than rare 39

TPGs (Figure 10C).

Figure 9. Spatial positioning and replication timing of TPGs. A: Mean pairwise Hi-C distance distributions (for n = 239 TPG pairs) obtained
using various permutation schemes (N = 105 permutations); black line: original TPG pairs; blue: 59 and 39 TPGs randomly shuffled; red and dark green:
either 59 or 39 TPGs replaced by random Refseq genes (Rnd); light green: random Refseq genes of the same size chosen arbitrarily as 59 or 39 TPG.
Computed P-values for mean Hi-C distance of the original TPG set against permuted distributions are shown in the plot. B: Spatial closeness of TPG
loci from translocations reported in tumors of lymphoid (HEM-L) and myeloid (HEM-M) origin, computed based on Hi-C data for GM06990 (of
lymphoid origin) and K562 (of myeloid origin) cell lines. Difference between log2(Hi-C reads) of GM06990 value and K562 value is shown (higher value
means closeness in GM06990 compared to K562). Wilcoxon matched ranks test P-values (P1) and Spearman correlation coefficients (R) computed
based on pairwise comparisons of distances for each translocation in HEM-L and HEM-M set. Correlation of Hi-C data between two cell lines is highly
significant (***, P,0.001, T-test). Hi-C closeness differences are statistically the same for HEM-L and HEM-M (P2, Mann-Whitney test). C: TPG frequency
in central (proximal) and early replicating genomic loci, based on Hi-C and RT data respectively. Percentage of TPGs in central (early) genomic loci and
odds ratios of these percentage compared to background set (all RefSeq genes) are presented. P-values computed based on binomial distribution.
doi:10.1371/journal.pcbi.1002797.g009

Features of Genes in Oncogenic Translocations
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Discussion

TPG features that drive oncogenic translocations
Chromosomal translocations frequently lead to cancer devel-

opment via promoter substitution and loss of transcriptional

control [21]. In agreement with this, we find that TPGs display

significantly increased expression levels. In the case of 59 TPGs,

this seems to be the result of increased promoter activity, as shown

by the presence of significantly more H3K4me3 marks and pol2

peaks near the TSS and evidence early replication timing. As

regards 39 TPGs, we found that they have shorter 39-UTRs with

less regulatory elements than corresponding 59 TPGs, thus

facilitating the escape of fusion genes from post-transcriptional

control. In this regard, it has been previously reported that some

chromosomal translocations lead to oncogenic transformation by

disrupting microRNA-mediated gene repression [22] and that

replacing the 39-UTR of MLL with 39-UTRs of its TPGs removes

post-transcriptional inhibition of its expression [23]. Such loss of

post-transcriptional control could contribute to the oncogenicity of

MLL translocations. We propose that a similar mechanism could

be important, more generally, to determine the oncogenic

potential of translocations in hematological neoplasms. This

confirms that genes involved in fusions are generally selected

because they cause overexpression of oncogenes, as seen for many

mutations [4,21].

It has also been shown that co-transcriptional processes can

influence genome stability due to transcription-induced R-loops in

which activation-induced-deaminases (AID) introduce DNA

breaks [24]. Indeed, such a mechanism has been invoked to

explain the presence of RCTs in B-cell malignancies [25,26].

More recently, analysis of the genomes of 21 breast cancer samples

has revealed that regions of somatic hypermutation tend to

associate with breakpoints of somatic rearrangements [27], again

suggesting that AID enzymes might play a role in co-transcrip-

tional generation of DNA breaks. Thus, transcription might

establish a link between gene involvement in RCTs and DSB

frequency across the genome. This, however, would not explain

why 39 TPGs with moderate expression levels are preferred over

other hematological tissue-specific genes. This could be explained

by other mechanisms leading to the generation of DNA breaks

which are not directly related to high transcription rates, such as

replication. It is now clear that DNA breaks leading to some forms

of chromosomal rearrangement can be induced during replication

[28]. However, recent studies in yeast show that error-prone DNA

due to template switching is associated with late-replicating regions

[29], while we observe that TPGs are over-represented in early-

replicating regions. Given that early-replicating regions contain

active genes with important cellular functions [30], this is

reminiscent of the master gene hypothesis according to which

genes involved in RCTs are chosen because of their functional

attributes [31].

In this regard, we have previously suggested that the need to

combine certain protein domains imposes selective constraints on

fusion proteins, so that those combinations with greater oncogenic

potential are more frequently found in tumor cells [14]. Similarly,

other authors have found that features such as intrinsic structural

disorder of fusion proteins are important for their oncogenic

properties [32]. However, the role played by functional selection is

usually overlooked in models that try to explain specific

combinations of TPGs in oncogenic translocations. Here, we have

found that oncogenic translocations retain a significant percentage

of domains and protein interaction interfaces of 39 TPGs. We

further used InterPro annotations to classify all protein domains

into five broad classes, assuming that an oncogenic fusion protein

should contain at least one domain with oncogenic properties.

Such classification scheme is supported by the fact that fusion

proteins in which both TPGs contain ‘‘type 2’’ domains (that is,

domains not belonging to any of the four major functional

categories with oncogenic potential) are significantly under-

represented. Among over-represented domain combinations are

the co-ocurrence of protein interaction domains (many of which

are capable of protein oligomerization) with DNA-binding and

kinase domains, as well as co-occurence of two kinase domains,

which result in aberrant cellular signaling [33]. Likewise, our data

show that co-occurrence of histone modification and protein

interaction domains is non-random, which is consistent with the

important role played by aberrant chromatin modification in

cancer [34], and in particular in translocations involving MLL

[35,36].

Interestingly, most over-represented domain co-occurrences

involve one type 1 and one type 2 domain, indicating that in

most fusion genes one of the TPGs is simply promoting

overexpression of the fusion protein. A 59-TPG with type 2

domains could contribute a strong promoter, whereas a 39-TPG

with a type 2 domain might stabilize the fusion mRNA by

contributing its 39-UTR. Our analysis of expression gain of 59

TPGs, as well as potential mRNA stability gain of 39 TPGs,

suggests that both mechanisms are generally operative.

Finally, to obtain a global view of the relative contributions of

the various domain features on non-random fusion partner

Figure 10. Clinical frequency of chromosomal translocations is influenced by some features of TPGs but is not dependent on their
spatial proximity. A. Hi-C distance (calculated as contact frequency) between TPG-containing loci for rare (reported once) and frequent (reported
more than once) translocations. B: expression levels of rare and frequent 59 TPGs. C: number of protein interaction interfaces in rare and frequent 39
TPGs. *, ***: P,0.05, 0.0001; All P-values calculated using Mann-Whitney U test.
doi:10.1371/journal.pcbi.1002797.g010
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selection, we performed an unsupervised classification of fusion

proteins based on the functional signatures of their 59 and 39

TPGs. The superimposition of these functional clusters onto the

fusion network reveals that functional profiles of fusion proteins

robustly capture the basic structure of the network.

Our data also suggest that tissue-specificity of translocations

might be explained, at least in part, by tissue-specific expression of

TPGs. First, we found that 59 TPGs involved exclusively in

hematological neoplasms are significantly more expressed in

hematopoietic tissue compared to epithelial and mesenchymal

tissues, which is somehow expected because the oncogenic

potential of fusion genes relies on their expression levels in the

tissue where the translocation takes place. But when we analyzed

59 TPGs involved in translocations reported only in lymphoid or in

myeloid neoplasms, comparing their expression levels in two cell

lines of lymphoid and myeloid origin (GM128 and K562,

respectively), our results confirmed that expression of 59 TPGs is

an important contributor to tissue specificity of RCTs. As for 39

TPGs, we found that their contribution to tissue specificity is

dependent on the expression levels of their interaction partners,

which are significantly higher in hematopoietic than in non-

hematopoietic tissues according to all gene expression datasets

analyzed.

Spatial proximity of TPGs in the formation of specific
chromosomal translocations

It is interesting that some of the genomic features of TPGs that

we have found correlated with tissue-specificity of translocations

are known to be related to the spatial organization of the genome.

Transcriptional activity, for instance, clearly affects the position of

genes: inactive genes inside a chromosome territory are con-

strained in their mobility and thus in their potential to interact

with distant loci [37], so that the ability of actively transcribed

regions to interact in trans requires that those regions loop outside

of their respective territories [38]. Likewise, replication timing is

highly correlated with nuclear position and chromosome archi-

tecture [39–41]. It is well documented that chromosomes occupy

spatially defined territories in the nucleus [42] so that intra-

chromosomal contacts are more frequent than inter-chromosomal

[16]. This organization is tissue specific with some intra-

chromosomal contacts being more frequent in some tissues

[6,43]. Thus it has been speculated that the recurrence and

tissue-specificity of translocations could be explained by the spatial

proximity and physical contact frequency of translocated loci

[6,7]. Our observation that 59 TPGs are preferentially found in

transcriptionally active domains in the center of the nucleus could

provide a link between high-order genome organization and the

potential occurrence of translocations, because a central position

within the nuclear space (which is known to be tightly linked with

transcriptional activity) increases average contact frequency with

other loci [44,45].

However, our results suggest that spatial proximity per se is not a

decisive factor in determining specific combinations of TPGs and

their clinical recurrence. Although it has long been speculated that

spatial proximity determines the specific pairing of TPGs in

translocations [8], data supporting this contention as a general

mechanisms for all types of translocations is lacking. For instance,

Parada et al. [6] used mouse chr5:chr6 and chr12:chr15

chromosome pairs to show that the frequency of translocations is

correlated with the frequency of chromosomal contacts. These

chromosome pairs provide a useful model, as chromosomes 5 and

6 are known to be translocated in hepatocytes but not in

lymphocytes, while the opposite is true for chromosomes 12 and

15. These authors showed that contacts between chr5:chr6 are

significantly more frequent in hepatocytes, while chr12:chr15

contacts are significantly more frequent in lymphocytes. But recent

Hi-C data provides a more global and accurate measure of contact

frequencies between chromosomal loci in a human lymphoblastoid

cell line [16]. Using the distribution of interchromosomal contact

frequencies for all pairs of loci between two chromosomes as a

measure of their closeness, we found that chr12:chr15 (which are

known to be translocated in human hematological malignancies)

are closer than chr5:chr6 (not reported to be translocated).

However, we also observed that chromosomes 5 and 2, frequently

rearranged in translocations involving the ALK gene in anaplastic

large cell lymphoma cases [46], were even farther apart in the

nucleus than chromosomes 5 and 6 (supplementary Figure S8A).

When this analysis was extended to all translocations and all loci,

we found no difference between the average distances for

chromosome pairs that are rearranged in hematological malig-

nancies versus non-rearranged pairs (supplementary Figure S8B).

Thus, while TPGs are non-randomly distributed relative to the

center of the nucleus, we propose that their pairing in specific

combinations is mainly driven by other factors such as gene

activity, which (through their association with high-order genomic

organization) lead indirectly to their nuclear closeness (supple-

mentary Figure S8C).

In this view, spatial proximity is a necessary pre-requisite for the

appearance of a translocation, but it is unlikely to be the only (or

even the most important) factor to explain the specificity and

recurrence of oncogenic translocations [47]. In fact, our data show

that the specificity of TPG pairing and the recurrence of specific

gene pairs are not directly dependent on spatial proximity. Recent

findings in the budding yeast have shown that broken chromo-

somal ends created by DSBs are able to travel relatively long

distances within the nuclear space to search for homologous

templates. Miné-Hattab and Rothstein [48] have demonstrated

that after induction of a DSB the broken chromosome explores up

to 30% of the nuclear volume in diploid cells, about 10-fold larger

than the volume to which chromosomes are constrained in the

absence of breaks. A similar observation was made by Dion et al

[49] in haploid cells, where DSBs stayed for hours searching for a

homologous template. These results show that it is possible to join

regions which are relatively distant in the nucleus, and are

consistent with our contention that spatial proximity is not a strong

determinant of translocation frequency or specificity in hemato-

logical neoplasms on a global scale. Therefore, the specificity of

TPG pairing could be better explained by the preferential

positioning of 59 TPGs in the central zone of the nucleus, which

in turn is related to functional features such as gene expression and

replication timing. This central location might put these genes

within the nuclear distance required to undergo a translocation

with several potential 39 TPGs. Then, selection for fusion proteins

with oncogenic potential will dictate which specific gene pairs are

eventually found in a particular tissue, and their relative frequency

in patient samples.

The issues discussed here also have important practical

implications. Several studies published over the last few years

have demonstrated the ability of next generation sequencing

(NGS) to identify novel fusion transcripts in cell lines and in

samples from patients with hematological and solid cancers [50–

52]. However, the functional significance of newly identified

fusions is not always clear because it is possible that many of these

novel RCTs are the result of an increased background of genomic

instability, rather than being driver oncogenic events [47,51,53].

Thus, there is a need for methods that identify which of these

tumor specific RCTs are required for establishment and mainte-

nance of the transformed phenotype [52]. The genomic features of
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59 and 39 TPGs that we have identified in this work might help to

develop computational approaches for the prediction of fusion

genes that are more likely to have a causal role in the initiation or

progression of hematological neoplasms.

Methods

Selection of translocations and partner genes
Data from translocations, including the Ensembl transcript ID

of translocation partner genes and the nucleotide position of

breakpoints, were extracted from TICdb v3.1 (http://www.unav.

es/genetica/TICdb/). There are some translocations involving the

same gene pair with different breakpoint positions, which is

redundant for some types of analysis. Therefore in some cases we

have used unique TPG instances for expression studies, and

unique TPG pairs for analysis of genome organization features.

For analysis of the functions of fusion proteins we have used TPG

pairs that were unique in terms of InterPro domain composition.

We successfully extracted from TICdb data for 770 hematopoietic

translocation entries involving 1175 TPGs, comprising 245 TPG

pairs with unique gene names (117 unique 59TPG and 161 unique

39TPGs). Translocations and TPGs for which certain data were

not available (e.g. expression or genomic organization) were not

included in the corresponding analysis. For lineage-specific

analysis, translocations reported in malignancies of lymphoid

(HEM-L, 177 translocations) and myeloid (HEM-M, 201

translocation) origin were selected.

Expression data analysis
Human gene expression data (dataset #1) for three tissue

lineages, epithelial (EPI), hematopoietic (HEM), or mesenchymal

(MES), was extracted from Gene Expression Omnibus (GEO,

www.ncbi.nlm.nih.gov/geo/) as follows. For each tissue lineage we

manually selected four tissues as samples: colon mucosa

(GSE8671), lung epithelium (GSE30660), mammary epithelium

(GSE25487) and pancreatic duct epithelium (GSE19650) for EPI;

bone marrow (GSE32057), peripheral blood mononuclear cells

(GSE11281), spleen (GSE25550) and CD3+ T-cells (GSE6088) for

HEM; omental adipose tissue (GSE3526), meniscal cartilage

(GSE19060), skin fibroblasts (GSE20538) and aortic vascular

smooth muscle cells (GSE11367) for MES. Gene expression levels

for each of four tissue samples were calculated as the average of up

to three randomly selected donor samples available in microarray

data, using only data for non-malignant tissues. All microarray

data were first downloaded as .CEL files and then jointly

normalized by RMA express (http://rmaexpress.bmbolstad.

com/). Analysis was replicated in an independent dataset (dataset

#2) using human gene expression atlas [54] as an alternative

source of data. For that purpose the whole dataset was

downloaded as a normalized matrix file from GEO and then

manually grouped by tissue type. Overall microarray data from

both the manual dataset and gene atlas were in good agreement

and yielded similar results. Thus we present here only graphs

generated using dataset #1, providing graphs for dataset #2 as

supplementary information. For analysis of lineage-specific

expression patterns of 59TPGs we used expression data in

GM12878 and K562 cell lines from ENCODE project

(GSE26312).

Analysis of genomic features
All genomic data were extracted and processed using UCSC

genome browser (http://genome.ucsc.edu/) and Galaxy web

service (http://main.g2.bx.psu.edu/) based on hg18 human

genome assembly. H3K4Me3 (ENCODE track) and Pol II

binding (Yale TFBS track) were used to characterize the

promoters of TPGs in available cell lines, extracting 23 kb/

+3 kb promoter regions of genes according to the annotated

transcription start site (TSS) in RefSeq. Polymerase II (Pol2) peak

frequency was computed as the proportion of cell lines having a

Pol2 peak in the promoter region. To perform an unbiased

comparison, Pol2 peak frequency of all genes was normalized to

zero mean and unit standard deviation, separately for hemato-

poietic and non-hematopoietic cell lines. Lengths of 39UTRs were

obtained from RefSeq and conserved elements were obtained

from phastConsElements44way. Predicted microRNA target sites

were queried using MirDIP web service (http://ophid.utoronto.

ca/mirDIP/) with ‘balanced precision’ option. Alternatively,

phastConsElements44wayPrimates track and ‘4 of 12 databases’

query option were used for 39-UTR analysis and yielded similar

results (data not shown).

Analysis of protein domains
For analysis of putative functions of fusion proteins, retained

InterPro domains and protein interaction interfaces were extracted

from Ensembl Database (http://www.ensembl.org) via extensive

usage of Ensembl Perl API, and from structurally resolved human

interactome data [55] based on their positions in relation to the

breakpoints (according to TICdb). Briefly, we collected InterPro

and protein interaction interface (PII) entries that were located

entirely upstream or downstream the position of breakpoint in 59

or 39 TPGs, respectively. The list of interaction partners for a

given TPG is comprised of all proteins that interact with those PIIs

present in the corresponding part of the fusion protein. Annotation

and gene ontology (GO) terms (if available) were extracted from

InterPro using BioMart and from data provided in [56],

respectively. Domains were then manually classified into five

broad functional categories based on available annotations: K

(kinase), H (histone modification), D (DNA binding), P (protein

interaction) or O (other/none). A complete list of protein domains

classified according to this criterion is provided as supplementary

Table S1. As some InterPro domain features are small and are

present in multiple copies in some proteins, this could cause biases

when trying to analyze domain composition of fusion proteins.

Therefore, instead of raw domain counts we used functional

profiles, defined as binary strings indicating if a TPG has any

domain of a given function. For domain co-occurrence analysis

TPG pairs with unique genes and functional profiles were used.

Spatial proximity analysis
For analysis of relative position of TPGs in the nucleus we used

normalized contact frequency (Hi-C) data from [16,17]. Cluster-

ization of Hi-C distance data was performed as described in [17],

to obtain central and peripheral clusters. Additionally, we also

analyzed the three clusters (central, centromere-proximal and

centromere-distal) from the original paper. Replication timing

(RT) data for the same cell line (GM06990) and several additional

samples were downloaded from Replication Domain web service

(http://www.replicationdomain.com/) and smoothed using

LOESS. Normalized RT values for all RefSeq genes range from

21.5 to 1.5 and we have considered genes with RT.0.5 as early-

replicating. Chromosomal positions of central and peripheral,

early and late, and TPG-containing loci are presented in

supplementary figures S5 and S6. For analysis of lineage-specific

differences in TPG distances we used Hi-C data for GM06990 and

K562 cell lines [16,17].

Mitelman database (http://cgap.nci.nih.gov/Chromosomes/

Mitelman) was used to provide estimates for clinical frequency

of translocations. For this we counted the number of times that
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each translocation is reported in the database associated to a

hematological malignancy. Data were not subject to any regression

model, but to simple statistical testing: translocations were

categorized as rare (reported only once) and frequent (reported

more than once).

All permutation tests, Hi-C distance data clusterization and

binomial tests were performed in Matlab. All other statistical tests

were performed in GraphPad Prism. As all analyses were

performed for large and heterogeneous sets of genes, non-

parametric tests were used in most cases to ensure robust results

and conclusions. Weka machine learning package (http://www.cs.

waikato.ac.nz/ml/weka/) was used to cluster translocations

according to their functional profiles. All networks were visualized

using Cytoscape software (http://www.cytoscape.org/).

Note added in proof

A paper by Engretiz et al [57] was published after acceptance of

this work, reporting a similar analysis to the one we have

performed here. It arrives at quite different conclusions with

regard to the importance of nuclear distance in establishing

specific combinations of translocation partners. The new report

used chromosomal bands involved in translocations from various

types of cancer, whereas we focused on the actual genes involved

specifically in hematological translocations. As the data and

analysis methods are distinct, future studies may reconcile the two

findings.

Supporting Information

Figure S1 Expression of 59 and 39 TPGs in dataset #2 (human

atlas). A: Average expression of 59 and 39 TPGs compared to

expression of hematological system – related (H/S genes,

according to UniProt expression category in DAVID) and all

RefSeq genes in hematological tissues (bone marrow, spleen,

lymph node and tonsil). B: Expression of TPGs in hematopoietic

(HEM) tissues compared to non-hematopoietic tissues of epithelial

(EPI) and mesenchymal (MES) origin. ***, ns: P,0.001, non-

significant, Mann-Whitney test. ###, #: P,0.001, 0.05,

Wilcoxon signed rank test.

(TIFF)

Figure S2 59 TPGs of type 1 (containing domains known to be

involved in DNA-binding, protein-interaction, kinase or histone

modification) play a role in boosting transcription. Comparison of

59 TPGs belonging to type 1 (grey boxes) and type 2 (not carrying

such domains, white boxes) classes, based on possible expression

increase computed as (expression of 59 TPG/expression of 39TPG)

– 1. Average expression in hematological tissues from datasets #1

(A) and #2 (B). **, *: P,0.01, 0.05; two-tailed T-test.

(TIFF)

Figure S3 Network of 59TPG interactors, according to protein

interaction interfaces retained by 59 TPGs. Genes that are on

average more expressed in hematopoietic samples, than in non-

hematopoietic are marked in red.

(TIFF)

Figure S4 Expression (according to dataset#2) of interactors of

39TPGs. If multiple 39TPGs have the same interactor, it is counted

the corresponding number of times. ### - p,0.001, Wilcoxon

matched pairs test.

(TIFF)

Figure S5 Clusterization of corrected Hi-C data into two

clusters using k-means algorithm. A, B: heatmaps of whole-

genome log2 Hi-C distances before and after clusterization,

respectively (distance is shown as contact frequency, higher

values represent shorter distance). Within- and between-cluster

distances for resulting clusters are shown with white labels.

Larger and smaller clusters clearly represent peripheral and

central regions, respectively. C: Central (proximal) cluster

enrichment trends are same for 2- and 3-cluster clusterization.

Odds ratio of frequency in proximal cluster compared to all

RefSeq genes and p-values computed based on binomial

distribution provided. D: Chromosomal locations of TPGs (red)

and regions belonging to central cluster (green). E: Mean Hi-C

reads count measuring contact frequency of TPG-containing loci

with all genomic loci on other chromosomes. High contact

frequency indicates closeness to center of nucleus. ***, ns -

p,0.001, non-significant, Mann-Whitney test. ### - p,0.001,

Wilcoxon matched pairs test.

(TIFF)

Figure S6 Analysis of replication time (RT) data. A: Clusteriza-

tion of smoothed RT data into early and late regions. B: Early

regions (green) and chromosomal locations of TPGs (red) on

human karyotype. C: RT trends for TPGs in various samples from

ReplicationDomain.org. Data for cell lines (GM06990, REH),

patient samples (CD4+ T-cells and two AML samples) and cells of

non-haematological origin (IMR90, myoblasts) were used. OR –

odds ratio of frequency in early regions as compared to all RefSeq

genes, P – p-values computed based on binomial distribution. D:

Raw RT values of TPG-containing loci and all RefSeq genes. *** -

p,0.001, non-significant, Mann-Whitney test. ns - non-significant,

Wilcoxon matched pairs test.

(TIFF)

Figure S7 Clinical frequency of translocations is not dependent

on spatial proximity (A) or replication timing (B) of 59 or 39 TPGs.

(TIFF)

Figure S8 Arguments suggesting that nuclear distance does not

directly determine the probability of two specific loci being fused

together in a translocation. A: Hi-C distance (expressed as log2

normalized number of contacts, from [22001755]) between

selected chromosome pairs. Higher values indicate closer distance.

Reported translocations and number of reports (from Mitelman

database) displayed inside rectangles. *: P,0.0001, Mann-

Whitney U-test. B: Hi-C distance between chromosome pairs

known (.1) and not reported (0) to be translocated (according to

TICdb and Mitelman database). ns: non-significant, Mann-

Whitney U-test. C: Apparent nuclear closeness of TPGs involved

in translocations might result from the association between high-

order genomic organization and functional features such as gene

activity and replication timing.

(TIFF)

Table S1 List of annotated domains showing InterPro identifiers

and their classification as type 1 or type2 domains (see Methods).

(XLSX)
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