
Citation: Shou, B.L.; Chatterjee, D.;

Russel, J.W.; Zhou, A.L.; Florissi, I.S.;

Lewis, T.; Verma, A.; Benharash, P.;

Choi, C.W. Pre-Operative Machine

Learning for Heart Transplant

Patients Bridged with Temporary

Mechanical Circulatory Support. J.

Cardiovasc. Dev. Dis. 2022, 9, 311.

https://doi.org/10.3390/jcdd9090311

Academic Editor: Chin Siang Ong

Received: 27 August 2022

Accepted: 16 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cardiovascular 

Development and Disease

Article

Pre-Operative Machine Learning for Heart Transplant Patients
Bridged with Temporary Mechanical Circulatory Support †

Benjamin L. Shou 1,* , Devina Chatterjee 2, Joseph W. Russel 3, Alice L. Zhou 1 , Isabella S. Florissi 1 ,
Tabatha Lewis 3, Arjun Verma 4, Peyman Benharash 4 and Chun Woo Choi 5

1 Division of Cardiac Surgery, Heart and Vascular Institute, Department of Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD 21287, USA

2 School of Medicine, University of Maryland, Baltimore, MD 21201, USA
3 College of Letters & Science, University of California, Los Angeles, CA 90095, USA
4 Division of Cardiac Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
5 Department of Cardiothoracic Surgery, Virtua Health, Virtua Our Lady of Lourdes Hospital,

Camden, NJ 08103, USA
* Correspondence: bshou1@jhmi.edu
† This study was presented at the 2022 International Society for Heart and Lung Transplantation Annual

Meeting (27–30 April 2022, Boston, MA, USA).

Abstract: AbstractBackground: Existing prediction models for post-transplant mortality in patients
bridged to heart transplantation with temporary mechanical circulatory support (tMCS) perform
poorly. A more reliable model would allow clinicians to provide better pre-operative risk assessment
and develop more targeted therapies for high-risk patients. Methods: We identified adult patients in
the United Network for Organ Sharing database undergoing isolated heart transplantation between
01/2009 and 12/2017 who were supported with tMCS at the time of transplant. We constructed a
machine learning model using extreme gradient boosting (XGBoost) with a 70:30 train:test split to
predict 1-year post-operative mortality. All pre-transplant variables available in the UNOS database
were included to train the model. Shapley Additive Explanations was used to identify and interpret
the most important features for XGBoost predictions. Results: A total of 1584 patients were included,
with a median age of 56 (interquartile range: 46–62) and 74% male. Actual 1-year mortality was
12.1%. Out of 498 available variables, 43 were selected for the final model. The area under the
receiver operator characteristics curve (AUC) for the XGBoost model was 0.71 (95% CI: 0.62–0.78).
The most important variables predictive of 1-year mortality included recipient functional status, age,
pulmonary capillary wedge pressure (PCWP), cardiac output, ECMO usage, and serum creatinine.
Conclusions: An interpretable machine learning model trained on a large clinical database demon-
strated good performance in predicting 1-year mortality for patients bridged to heart transplantation
with tMCS. Machine learning may be used to enhance clinician judgement in the care of markedly
high-risk transplant recipients.

Keywords: machine learning; heart transplant; cardiac surgery; mechanical circulatory support

1. Introduction

Orthotopic heart transplantation remains the gold standard therapy for patients with
end-stage heart failure [1]. However, some patients on the waiting list can have urgent
hemodynamic instability before a donor heart becomes available. In these cases, temporary
mechanical circulatory support (tMCS) devices, including venoarterial extracorporeal
membrane oxygenation (VA-ECMO), intra-aortic balloon pump (IABP), and percutaneous
ventricular assist devices (PVAD), may be used as a bridge to transplant (BTT). In 2018, the
United Network for Organ Sharing (UNOS) implemented a revised heart allocation system
in which patients with uncomplicated, durable left ventricular assist devices (LVAD) saw
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a decrease in waitlist priority, while those supported with tMCS were bumped up to the
highest priority [2].

Consequently, the use of tMCS as a bridge to transplant strategy has steadily in-
creased [3], yet, existing pre-operative risk evaluation methods for determining post-
transplant mortality have not been thoroughly validated in this distinctively complex and
high-risk population [4–8]. For example, the Index for Mortality Prediction After Cardiac
Transplantation (IMPACT) score [6] predicts 1-year post-transplant mortality. However,
it was developed in a general heart transplant cohort and remains unvalidated for those
bridged with tMCS. Similarly, the CARRS risk score [7], which is meant for a high-risk
cohort, remains unvalidated in tMCS bridge patients and was developed using single-
center data.

Machine learning (ML) has emerged as a powerful tool with wide biomedical appli-
cations. State-of-the-art ML algorithms which utilize supervised learning techniques can
analyze complex relationships between inputted variables (“features”) to predict outcomes,
often outperforming simpler models like regression [9,10]. These strategies have demon-
strated great promise in important clinical issues such as asymptomatic cardiovascular
disease risk [11], general heart transplant outcomes [12], and ischemia analysis from cardiac
imaging [13]. Using a large national database, we sought to build an interpretable ML
model which predicts 1-year post-transplant mortality for tMCS BTT patients.

2. Materials and Methods

This study was approved by the Johns Hopkins School of Medicine Institutional
Review Board (IRB00159748) with a waiver of informed consent.

2.1. Patient Selection

We included all adult (≥18 years old at time of listing) orthotopic heart transplant
recipients in the United Network for Organ Sharing (UNOS) database between 1 January
2009 and 31 December 2017. Re-transplant and multi-organ transplant patients, as well
as those with a total artificial heart, were excluded (Figure 1). Patients belonged to the
temporary mechanical circulatory support (tMCS) group if they were supported with
venoarterial extracorporeal membrane oxygenation (VA-ECMO), intra-aortic balloon pump
(IABP), or percutaneous ventricular assist device (PVAD) at the time of transplant.
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2.2. Primary Outcome

Our primary outcome was 1-year post-transplant mortality.

2.3. Machine Learning Model Development

Our ML method of choice was extreme gradient boosting (XGBoost [14]). We used
a 70:30 train:test split, meaning that 70% of patients were randomly selected as our de-
velopment/training cohort and the remaining 30% were used as our validation/testing
cohort, making sure to balance the number of events in both groups. Variables not able
to be known at or before the time of transplantation (i.e., data collection for variable had
to have taken place after the transplant procedure, such as post-operative complications)
were manually identified and excluded. For variables which have more than one collection
time point (e.g., at time of listing or at time of transplant), all time points were collected
and appropriately labeled. Continuous or ordinal variables were treated numerically. Cat-
egorical variables were one-hot encoded. A grid search was used to optimize XGBoost
hyperparameters and to prevent model overfitting. We tested the following hyperparame-
ter combinations in the grid search: maximum tree depth [2, 3, 4], eta [0.5, 0.1, 0.01], gamma
[0, 10, 15, 20], and minimum child weight [0, 10, 20]. Since our primary outcome class was
highly imbalanced (i.e., many more survived compared to those who died), we attempted
to control for this by setting the “scale_pos_weight” parameter to 7.8, which was the ratio
of negative instances (“0”, alive) to positive instances (“1”, dead), in accordance with the
original XGBoost documentation. The final hyperparameters used were: max depth = 2,
eta = 0.01, gamma = 15, and minimum child weight = 10. We used a local model-agnostic
method called Shapley Additive Explanations [15] (SHAP) to intuitively explain how the
most salient features contributed to the model. It calculates scores (SHAP values) for each
feature by comparing what the model predicts with and without that particular variable,
thus measuring the incremental benefit of adding in any individual feature. Missing values
were automatically imputed on a case-by-case basis in the XGBoost model, as described in
the original documentation [14].

2.4. Statistical Analysis

Demographics and baseline patient characteristics were compared using Mann–Whitney
U tests for continuous variables and Chi-square tests for categorical variables. Unadjusted
1-year post-transplant Kaplan–Meier survival curves were generated for the tMCS and non-
tMCS groups and compared using the log-rank test. Bootstrapping with 1000 replications
was used to assess model variability and to generate 95% confidence intervals (CIs). Area
under the receiver operator characteristics curve (AUC), otherwise known as c-statistic,
was the primary evaluation metric. Statistical comparisons for models were made using
DeLong’s test [16]. A p value < 0.05 was considered statistically significant. Models were
developed and statistical analyses were performed using R version 4.0.3, Python version
3.8.8, and Stata 17.

3. Results
3.1. Patient Characteristics

We identified a total of 19,017 patients who underwent isolated, first-time orthotopic
heart transplantation (OHT) during the study period, out of which 1584 were bridged to
transplant with tMCS (Table S1). IABP was used in 1190 cases, VA-ECMO in 114 cases,
and PVAD in 356 cases. A total of 76 patients were supported on more than one type of
tMCS device at the time of transplant. Among those bridged with tMCS, those who died
within 1 year were more likely to be older (59 vs. 55 years old, p < 0.001), have diabetes
(36% vs. 27%, p = 0.01), an implantable cardiac defibrillator (80% vs. 73%, p = 0.03), higher
serum creatinine (1.30 vs. 1.14 mg/dL, p = 0.001), and a marginally higher body mass index
(27.2 vs. 26.0 kg/m2, p = 0.02) (Table 1). Interestingly, those who died were more likely
to have a lower pulmonary capillary wedge pressure (20.5 vs. 22.0 mmHg, p = 0.04) and
less inotrope usage (50% vs. 58%, p = 0.04) at the time of transplant. Out of the 1584 tMCS
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patients, 1267 (70%) and 317 (30%) patients were randomly assigned to the development
and validation cohorts, respectively. Compared to patients who did not require tMCS, the
tMCS BTT group had lower survival at 1 year (87.9% vs. 90.3%, p = 0.006) (Figure S1).

Table 1. Baseline characteristics and demographics for patients who required temporary mechanical
circulatory support for bridge to transplant between survivors and non-survivors at 1-year post-
transplant. Variables represent recipient characteristics unless otherwise indicated.

Variable Survived
n = 1405

Died
n = 179 p Value

Age, years 55 (45–62) 59 (50–64) <0.001

Male sex 1037 (73.8%) 132 (73.7%) 0.99

Diabetes 383 (27.3%) 65 (36.3%) 0.01

Body mass index (kg/m2) 26.0 (23.1–29.8) 27.2 (23.7–30.8) 0.019

Ischemic time, hours 3.1 (2.4–3.8) 3.2 (2.6–3.8) 0.42

Total days on waitlist 34 (12–90) 43 (12–117) 0.17

Ethnicity

0.34

White 903 (64.3%) 111 (62.0%)

Black 333 (23.7%) 38 (21.2%)

Hispanic 106 (7.5%) 19 (10.6%)

Other 63 (4.5%) 11 (6.1%)

Donor age, years 30 (23–41) 34 (23–45) 0.12

Donor male sex 949 (67.5%) 117 (65.4%) 0.56

Hemodynamics at listing

Cardiac output 3.9 (3.14–4.82) 4 (3.185–4.7) 0.70

PCWP 22.0 (16.0–28.0) 21.0 (15.0–28.0) 0.66

MPAP 32 (25–38) 31.5 (24–39.5) 0.45

PA systolic pressure 45 (36–54) 48 (37–56.5) 0.17

PA diastolic pressure 23 (17–28) 22 (16.5–29.5) 0.99

Inotrope usage 661 (47.0%) 82 (45.8%) 0.75

Hemodynamics at transplant

Cardiac output 4 (3.19–5) 4.14 (3.4–5.1) 0.10

PCWP 22.0 (16.0–28.0) 20.5 (13.5–27.0) 0.04

MPAP 31 (24–39) 30 (23–38) 0.28

PA systolic pressure 45 (35–55) 42 (34–55) 0.36

PA diastolic pressure 23 (16–29) 22 (16–28) 0.22

Inotrope usage 813 (57.9%) 89 (49.7%) 0.04

Serum creatinine (mg/dl) 1.14 (0.90–1.50) 1.30 (1.00–1.70) 0.001

Total bilirubin (mg/dL) 0.9 (0.6–1.4) 1.0 (0.6–1.7) 0.05

Implantable cardiac defibrillator 1015 (72.6%) 142 (80.2%) 0.03
PCWP: pulmonary capillary wedge pressure; MPAP: mean pulmonary artery pressure; PA: pulmonary artery.
Data are presented as median (IQR) for continuous measures, and n (%) for categorical measures.

3.2. Model Performance

Out of 498 pre-transplant variables available in the original dataset, 43 were auto-
matically selected for inclusion in the final XGBoost model based on predictive utility
(“gain”) (Table S2). The final XGBoost model performed favorably in predicting 1-year
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post-transplant mortality with an AUC of 0.71 (95% CI: 0.62–0.78) (Figure 2). The precision
recall curve (AUCPR = 0.357) for the XGBoost model is provided in Figure S2.
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3.3. Model Explanations

We have plotted the values of the top 7 features which contributed most to predicting
mortality via the Shapley Additive Explanations (SHAP) method (Figure 3). SHAP analysis
allows us to examine the importance of each feature in relationship each other in the full
model. The most salient features which explained 1-year mortality were recipient factors:
functional status at transplant, age, pulmonary capillary wedge pressure (PCWP), cardiac
output (CO), ECMO usage, and serum creatinine. In Figure 3, we can appreciate that a
worse functional status (more purple color) increases the prediction of mortality (more
positive SHAP value on the x-axis). Similarly, increasing age at listing and transplant also
increases mortality, as does ECMO usage and higher creatinine. For all patients in this
cohort, an age at transplant of 53 years or under was protective in the model, while an
age of 54 or older was predictive of mortality (Figure S3). Interestingly, higher PCWP and
lower cardiac output were protective against mortality. Although the top 7 most important
variables were recipient characteristics, donor factors also made important contributions to
the model. For example, higher donor PaO2 was consistently protective for all patients.
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Figure 3. Shapley Additive Explanations (SHAP) summary plot for the top 7 most important
features for model prediction, ranked by mean absolute SHAP value. Each dot represents one
patient/observation. The x-axis is SHAP value, with a more negative value meaning that the feature
for that observation drove the model to predict an outcome of survival at 1 year, while a positive
value drove an outcome of death. Yellow and purple colors represent low and high numerical values
of the feature in the dataset, respectively. For example, a higher age at listing tended to drive the
model to predict death, since there are increasingly purple dots as the SHAP value increases.

We can also observe the importance of the top 7 variables (with all other variables
treated as a single group) on predicting mortality for each individual (Figure 4). There is
significant heterogeneity within this cohort as there are distinct clusters of patients (“obser-
vations” on the x-axis) in terms of how features vary in driving a dead (positive SHAP value)
vs. alive (negative SHAP value) prediction. For example, for observations 660–780, cardiac
output played a more important role in the XGBoost model than it did for observations
800–900, since the pink bars (cardiac output) had a larger absolute SHAP value. Similarly,
functional status was a more important predictor for observations 820–920 compared to
660–780. There were no statistically significant associations between the observed clusters
and support device type.
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This plot contains information about how features contributed to model prediction for each observa-
tion. Bars further away from a SHAP value of zero, in either positive or negative direction, mean
that the feature contributed more to the model. Features with negative SHAP values predicted
survival while positive values predicted death. This figure does not illustrate the actual values and
directionality of the features; please refer to Figure 3.

4. Discussion

First, we have built a machine learning model which is the first of its kind to predict
1-year post-transplant mortality in patients bridged with tMCS. Second, our model was
able to accurately predict mortality using only pre-transplant variables and thus provides
clinically relevant information for pre-operative risk stratification. Third, we have presented
a framework for ML model interpretation, which has allowed us to examine the most
clinically meaningful variables and their influences on driving the model’s prediction
of mortality.

Many risk scores have been developed for heart transplant recipients and generally
exhibit wide variations and poor-to-modest performance depending on the specific valida-
tion cohort [17]. Like the well-established Society of Thoracic Surgeons (STS) Adult Cardiac
Surgery Models [18], risk scores predominantly use standard regression techniques and
may not fully capture complex and non-linear interactions between variables. Notably, the
IMPACT score, one of the more well-studied heart transplant risk tools, typically performs
with an AUC in the 0.5 s to 0.6 s. To overcome this obstacle of standard regression, various
machine learning algorithms have also been built for various topics within cardiac surgery.
XGBoost and random forest techniques have been used to predict operative mortality for
cardiac surgery operations without STS risk scores [19]. XGBoost models for predicting
various outcomes following surgical aortic valve replacement have also been shown to cali-
brate well with models derived from STS risk scores [20], and others have offered marginal
survival prediction improvements for the major STS operations with risk scores [21].

ML approaches have also demonstrated their potential within the field of transplan-
tation. Kampaktsis et al. [12] built various ML algorithms using a general adult OHT
population from the UNOS dataset and achieved a best AUC of 0.689. Some of the most
salient features identified in their best performing model, which used the AdaBoost frame-
work [22], are the same as ones from our XGBoost model, including recipient creatinine
and age. However, our model also identified new variables including the hemodynamic
variables of pulmonary capillary wedge pressure and cardiac output. Yoon et al. [23] also
attempted post-transplant mortality predictions in a similar UNOS cohort by using Tree of
Predictors, a novel and complex ensemble method, however, their 1 year AUC was 0.641.
Additionally, deep learning frameworks have shown success in predicting post-transplant
hospitalization in pediatric kidney, liver, and heart transplantations [24].

Model interpretability remains a challenge for machine learning. Many ML methods
are considered “black boxes” since they rely on sophisticated back-end processes which are
often incomprehensible to humans [9,25]. Consequently, clinicians, who must have concrete,
clinically relevant, and actionable data, might prefer traditional statistical methodologies
like regression-based techniques since the contribution of individual variables can be
examined. In this study, we have presented a novel implementation of Shapley Additive
Explanations on the UNOS dataset, which opens an otherwise black box. We prefer
SHAP analysis to other model-agnostic methods since it allows for convenient analysis of
individual features on a patient level [15].

The features identified by SHAP analysis, integrating both Figures 3 and 4, are critical
in understanding the tMCS bridge to transplant population. Many of the explanations are
clinically intuitive. Worse functional status, greater age, ECMO usage, and higher serum
creatinine are all classic risk factors and are expected to increase mortality. Functional
status is a mandated field in the UNOS database and uses the Karnofsky performance score,
with 10 possible values ranging from 100% (healthy, no symptoms) to 10% (moribund)
in 10% increments [26]. The score is subjective by nature and not calculated from any
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laboratory values, but in our case, shows high utility in predicting mortality with lower
scores predicting death.

However, having a lower PCWP was predictive of mortality, while a lower CO tended
to be protective. This novel and paradoxical finding may reflect poor baseline health in
patients requiring more intensive hemodynamic support, which would drive CO up and
PCWP down. Although SHAP analysis attempts to visually explain individual feature
influence in a way easily digestible for people, it is important to remember that the final
XGBoost model analyzes complex, non-linear relationships between all variables simul-
taneously. Thus, explanations are most relevant when looking at the model holistically
and at general population-level trends. Additionally, the significant heterogeneity within
our cohort is interesting. Although different tMCS support devices have different clinical
indications, risk factors, and post-transplant outcomes [8], device type alone did not explain
patient clustering in our cohort. This observation further highlights the importance of
using sophisticated methods like XGBoost to identify high-dimensional relationships which
would otherwise be missed.

Limitations

There was class imbalance for the primary outcome (more than 7 survivors for each
non-survivor), which generally limits the performance of any classification model [27].
Compared to more general OHT cohorts, the tMCS cohort is relatively small, especially
since we restricted our time window to 2009 through 2017. We recognize that the 2018
UNOS policy change has resulted in practice changes and outcomes particularly for those
on mechanical support; however, given concerns regarding an inappropriate rise in tMCS
utilization post-policy change and potential for “gaming the system” [28,29], we felt that
restricting our study to a pre-policy change cohort would better allow us to evaluate true
patient-level factors without the noise of provider- and center-level variability. Nonetheless,
the lack of validation in the most contemporary post-policy change cohort remains a limi-
tation. Additionally, given the continuous developments in tMCS device innovation, our
model may not be applicable for future tMCS populations. We also only examined 1-year
mortality since this is often used as a quality metric and allows more equipoise comparison
to other risk scores which use the same outcome. Longer survival time windows, as well
as other post-operative outcomes such as renal failure, rehospitalization, and graft failure,
should be explored. Finally, as with any model, our results should be validated with
external datasets, though this is notably difficult to achieve given the UNOS database’s
comprehensive coverage of all transplants in the United States.

5. Conclusions

An interpretable machine learning model trained on a large clinical database demon-
strated leading performance in predicting 1-year mortality for patients bridged to heart
transplantation with tMCS. We have delineated a machine learning framework which may
be used to investigate individual factors in pre-operative risk assessment for populations
where existing risk scores are poorly validated.
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