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Abstract

Background: Phase 2 trial endpoints that can be utilized in high-risk biochemical
recurrence (BCR) after prostatectomy as a way of more rapidly identifying treat-
ments for phase 3 trials are urgently needed. The efficacy of abiraterone acetate
plus prednisone (AAP) in BCR is unknown.

Objective: To compare the rates of complete biochemical responses after testos-
terone recovery after 8 mo of AAP and degarelix, a gonadotropin-releasing hor-
mone antagonist, alone or in combination.

Design, setting, and participants: Patients with BCR (prostate-specific antigen
[PSA] >1.0 ng/ml, PSA doubling time <9 mo, no metastases on standard imaging,
and testosterone >150 ng/dl) after prostatectomy (with or without prior radiother-
apy) were included in this study.

Intervention: Patients were randomized to AAP (arm 1), AAP with degarelix (arm
2), or degarelix (arm 3) for 8 mo, and monitored for 18 mo.

Outcome measurements and statistical analysis: The primary endpoint was unde-
tectable PSA with testosterone >150 ng/dl at 18 mo. Secondary endpoints were
undetectable PSA at 8 mo and time to testosterone recovery.
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Results and limitations: For the 122 patients enrolled, no difference was found
between treatments for the primary endpoint (arm 1: 5.1% [95% confidence interval
{CI}: 1-17%], arm 2: 17.1% [95% CI: 7-32%], arm 3: 11.9% [95% CI: 4-26%]; arm 1 vs
2,p=0.93; arm 2 vs 3, p = 0.36). AAP therapy showed the shortest median time to
testosterone recovery (36.0 wk [95% CI: 35.9-36.1]) relative to degarelix (52.9 wk
[95% CI: 49.0-56.0], p < 0.001). Rates of undetectable PSA at 8 mo differed between
AAP with degarelix and degarelix alone (p = 0.04), but not between AAP alone and
degarelix alone (p = 0.12). Limitations of this study include a lack of long-term
follow-up.

Conclusions: Rates of undetectable PSA levels with testosterone recovery were
similar between arms, suggesting that increased androgen suppression with AAP
and androgen deprivation therapy (ADT) is unlikely to eradicate recurrent disease
compared with ADT alone.

Patient summary: We evaluated the use of abiraterone acetate plus prednisone
(AAP) and androgen deprivation therapy (ADT), AAP alone, or ADT alone in men
with biochemically recurrent, nonmetastatic prostate cancer. While more men
who received the combination had an undetectable prostate-specific antigen
(PSA) level at 8 mo on treatment, once men came off treatment and testosterone
level rose, there was no difference in the rates of undetectable PSA levels. This sug-
gests that the combination is not able to eradicate disease any better than ADT

alone.

© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The transformative and practice-changing trials in prostate
cancer, first in metastatic castration-resistant prostate can-
cer and later in noncastrate or hormone-sensitive meta-
static disease, used time-to-event endpoints that required
large numbers of patients and years of follow-up [1,2].
Now that multiple effective therapies are available—with
even more in development—there are numerous potential
combinations. Given the long natural history of biochemical
recurrence (BCR) after prostatectomy, there is a need for
response-based endpoints that occur early rather than
time-to-event endpoints that occur late when evaluating
new therapies in this population so that only the most
promising ones are selected for more definitive study.

To address this, we employed a novel response end-
point—undetectable levels of prostate-specific antigen
(PSA) with testosterone recovery—to assess the potential
elimination of disease in patients with high-risk biochemi-
cally recurrent disease [3,4]. Androgens are directly impli-
cated in prostate cancer pathogenesis and progression;
hence, an undetectable PSA level in the setting of recovered
testosterone in a man with a history of BCR suggests that his
disease is inactive.

BCR is defined as a rising PSA level with no visible dis-
ease on conventional imaging (computed tomography
[CT], bone scan, or magnetic resonance imaging [MRI]),
reflective of a low-volume setting where the disease is bio-
logically less heterogeneous and oncogenic changes in the
androgen receptor axis are infrequent, unlike what is found
in castration-resistant disease [5-8]. A wide range of prog-
noses is associated with this disease state. PSA doubling
time is among the most consistent validated prognostic

markers predicting for the development of overt metas-
tases, and is frequently used to identify those at high risk
of developing metastatic disease or symptoms, or dying of
their cancer [8-12]. For men with a PSA doubling time of
3-9 mo, metastasis-free survival (MFS) is approximately 4
yr (95% confidence interval [CI]: 2-4), whereas for all men
with BCR, the median MFS is 10 yr (95% CI: 8-14) [11].

Androgen deprivation therapy (ADT) is a standard first-
line treatment for high-risk biochemically recurrent pros-
tate cancer, but it is not curative. Cells that are resistant
to ADT and survive in a low-androgen environment may
ultimately regrow as castration-resistant tumors that, for
most men, will be lethal. Direct profiling of residual disease
in the prostate after neoadjuvant ADT demonstrates persis-
tent PSA expression, reflecting incomplete inhibition of
androgen receptor signaling, and tumor mutation profiles
that may suggest early resistance [13-18].

Abiraterone acetate is a prodrug of abiraterone, which is
a selective CYP17 inhibitor of androgen biosynthesis that,
when given in combination with prednisone and ADT,
reduces blood and intratumoral testosterone by >1 log
[14]. That the combination of abiraterone acetate plus pred-
nisone (AAP) and ADT prolongs life is now well supported
by phase 3 trials in both the castration-resistant and
noncastrate/hormone-sensitive disease settings, and there
are promising data in the neoadjuvant setting for high-
risk localized disease, with improvements in complete
pathologic response and 4-yr BCR-free survival [19-22].

We hypothesized that AAP in combination with degare-
lix, a gonadotropin-releasing hormone antagonist, could
potentially eliminate disease in patients with high-risk, bio-
chemically recurrent prostate cancer. To test this, we sought
an endpoint that could be attained in the near term,
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recognizing the inherent difficulties associated with MFS
and overall survival (OS) endpoints, which can be affected
by subsequent therapy and require many years of follow-
up. To circumvent these challenges, patients were random-
ized and treated for 8 mo with either AAP or degarelix, or
the combination, and as a benchmark for success for this
trial, we selected a binary endpoint of an undetectable
serum PSA level with testosterone recovery at 18 mo from
treatment initiation. Achieving this endpoint would not be
definitive; however, it would support moving this combina-
tion forward into larger, definitive trials [3].

2. Patients and methods

This randomized phase 2 trial (ClinicalTrials.gov identifier:
NCT01751451) was conducted at Memorial Sloan Kettering Cancer Cen-
ter, Johns Hopkins University, Weill Cornell Medicine, Rutgers Cancer
Institute of New Jersey, Karmanos Cancer Institute, University of North
Carolina at Chapel Hill, Duke University, Oregon Health & Science
University, New York University, NorthShore University HealthSystem,
and Urology Cancer Center and GU Research Network. The protocol
was approved by the respective institutional review boards; all patients
signed a study-specific informed consent form.

2.1. Patients

All patients had undergone a radical prostatectomy (RP) for localized
prostate cancer and had experienced a biochemical (ie, PSA) recurrence.
All had rising serum PSA levels based on at least three time points taken
at least 1 wk apart, with a minimum PSA level of 1 ng/ml. PSA doubling
time at the time of trial entry was <9 mo. A testosterone level of at least
150 ng/dl was required. CT or MRI and bone scan were performed to
exclude those with metastatic disease, although pelvic or retroperitoneal
lymph nodes smaller than 2 cm in short axis were allowed. Prior salvage
radiation therapy and ADT of <8 mo of duration in the neoadjuvant or
salvage radiation therapy setting were allowed. Required laboratory val-
ues included hemoglobin >9 g/dl, platelets 100 000 mm?, creatinine <1.5
mg/dl, and alanine aminotransferase (ALT)/aspartate aminotransferase
(AST)/total bilirubin <1.5 upper limit of normal. Uncontrolled hyperten-
sion, defined as systolic blood pressure >160 mmHg or diastolic pres-
sure >95 mmHg, was exclusionary. Concomitant medications
including CYP2D6 substrates and CYP3A4 inducers were not permitted.
Prior ketoconazole, abiraterone acetate, and enzalutamide were not
allowed.

2.2. Study design

Patients were randomized in an open-label fashion 1:1:1 to receive AAP,
AAP with degarelix, or degarelix alone (Fig. 1). Abiraterone acetate was
administered orally as a fasting medication at 1000 mg daily, with pred-
nisone 5 mg orally twice a day. A subcutaneous injection of degarelix 80
mg was given monthly after an initial loading dose of 240 mg. Treatment
lasted for 8 mo, then patients entered follow-up and were seen monthly
for toxicity assessments, serum PSA, and testosterone levels for up to 18
mo. If patients developed a confirmed rise in PSA (defined as a 25% rise
above nadir) during the treatment period, they were taken off study for
disease progression. During follow-up, patients were taken off study for
disease progression if their PSA was detectable and confirmed detectable
at a second time point. All laboratory tests were assessed locally. Five
sites used an assay with a lower limit of detection of <0.06, and six sites’
assay used a lower limit of detection of 0.10.

The protocol provided guidance for dose holding and dose reductions
for hepatotoxicity, hypertension, and pulmonary edema/anasarca. Seri-
ous adverse events were provided to the sponsor (Memorial Sloan Ket-
tering Cancer Center, the lead site) and Janssen Scientific Affairs; local
institutional review board notification occurred via standard site
regulations.

The primary endpoint was undetectable PSA with testosterone >150
ng/dl, measured at 18 mo from the start of treatment. Secondary end-
points included the percentage of patients with undetectable PSA at 8
mo, adverse events, and testosterone recovery rates. A post hoc explora-
tory analysis was performed to assess PSA progression-free survival
(PES).

2.3. Statistical analysis

A total of 120 patients were planned for the three treatment groups.
Each AAP group (monotherapy and in combination with degarelix) was
compared with the degarelix-alone arm. With 40 patients per group, it
was assumed that the probability of success in the degarelix-only group
was <0.25 and the probability of success was at least 0.20 greater than
degarelix alone in the AAP-based groups. Under these projections, there
was a >80% chance of finding for either AAP-based treatment relative to
degarelix alone using a Fisher’s exact test with a one-sided 0.20 signifi-
cance level. The choice of a 0.20 significance level was intended to
reduce the sample size required for this comparative trial. Owing to
the high risk of a type I error, a significant outcome would not imply
definitive evidence of superiority for either AAP-based treatment rela-
tive to degarelix alone; however, it would provide sufficient evidence
that testing of AAP should proceed.

Fisher’'s exact test was utilized to compare each AAP group
(monotherapy or in combination with degarelix) relative to degarelix
alone for the primary and secondary efficacy endpoints. In an explora-
tory analysis, the Kaplan-Meier estimate was used to compute PSA PFS
estimates, and the cumulative incidence function was applied to esti-
mate the probability of testosterone recovery over time. The logrank test
and Gray’s test were used, respectively, to compare these endpoints
across treatment arms. Fisher’s exact and Wilcoxon rank sum tests were
conducted to assess for associations between select clinical factors (age,
prior ADT, prior salvage radiation therapy, tumor stage at RP, and time
from RP to study entry) and the primary endpoint.

3. Results

3.1. Patients

A total of 122 patients were randomized 1:1:1 to receive
AAP, AAP with degarelix, or degarelix alone; 120 received
at least one dose of study drug. Ten patients with unde-
tectable PSA at 18 mo had not recovered testosterone, so
their treatment was considered a failure. The intent-to-
treat population (n = 122) was used to evaluate the primary
endpoint, and the two patients who were not treated were
not included in exploratory and secondary analyses.

The median age of the patients was 65 yr (range, 43-83
yr), and 43% (53/122) had Gleason >8 disease (Table 1). Of
the patients, 57% (70/122) had pT3 or pT4 disease, and 61%
(74/122) had received salvage radiotherapy. The median
PSA level at trial entry was 4.4 ng/ml (range, 1.0-48.3 ng/ml).

3.2. Safety

Toxicities were graded according to Common Terminology
Criteria for Adverse Events (CTCAE) version 4.0 [23]. The
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Arm 1: AAP

(n =39 randomized; 37
treated)

122 Patients enrolled

122—Primary endpoint
120—Secondary endpoints

Arm 2: AAP + D

(n =41 randomized and

treated)

Evaluable patients:

Arm3:D

(n =42 randomized and

treated)

Fig. 1 - CONSORT diagram. AAP = abiraterone acetate plus prednisone; D = degarelix.

Table 1 - Patient characteristics.

Baseline characteristics

Arm 1: AAP (n = 39)

Arm 2: AAP + D (n = 41)

Arm 3: D (n = 42)

All cohorts(n = 122)

Age (yr)
Race
Black or African American
White
Unknown
Laboratory values
PSA (ng/ml)
Testosterone ng/dl
Albumin (g/dl)
Alkaline phosphatase (units/I)
LDH (units/1)
Hemoglobin (g/dl)
ECOG performance status
1
0
Prostatectomy Gleason score
Unknown
Total Gleason score 6 or 7
Total Gleason score >8
TNM stage
Unknown
pT1-T2 NO or NX
pT3a NO or NX
pT3a N1
pT3b NO or NX
pT3b N1
pT4 NX
Prior therapies
Salvage radiation therapy

64 (43-83)

4(10)
35 (90)
0(0)

3.1 (1.2-35.4)
352 (162-739)
43 (3.3-4.8)

66 (29-134)
170 (96-554)
14.3 (12.3-18.9)

4(10)
35 (90)

2(5.1)
20 (51.3)
17 (43.6)

2(5)
8(21)
13 (33)
2(5)
10 (26)
3(8)
1(3)

23 (59)

65 (53-74)

6 (15)
33 (80)
2 (5)

5.8 (1.2-45.1)
318 (176-841)
43 (3.5-5.0)

66 (36-111)
170 (135-459)
14.3 (11.9-16.6)

2 (5)
39 (95)

1(2)
21 (51)
11 (27)
0 (0)

24 (59)

66 (46-78)

3(7)
39 (93)
0 (0)

4.1 (1.0-48.3)
355.5 (151-904)
43 (3.4-4.9)

70 (42-139)
173 (121-539)
14.2 (12.4-17.2)

3(7)
39 (93)

25 (59.5)
17 (40.5)

2(5)
18 (43)
9(21)
1(2)
10 (34)
2(5)
0(0)

27 (64)

65 (43-83)

13 (11)
107 (88)
2(1)

4.4 (1.0-48.3)
331 (151-904)
43 (3.3-5.0)

67 (29-134)
170 (96-554)
14.3 (11.9-18.9)

9(7)
113 (93)

2 (1.6)
67 (54.9)
53 (43.4)

5(4)
47 (39)
33 (27)
3(2)
26 (21)
7(6)
1(1)

74 (61)

AAP = abiraterone acetate plus prednisone; D = degarelix; ECOG = Eastern Cooperative Oncology Group; LDH = lactate dehydrogenase; PSA = prostate-specific

antigen; TNM = tumor node metastasis.

Data are given as n (%) or median (range).
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Table 2 - Treatment-related adverse events."

Adverse event ARM 1: AAP (n = 37)

ARM 2: AAP + D (n = 41)

ARM 3: D (n = 42) All cohorts (N = 120)

Grade1 Grade2 Grade3 Gradel Grade2 Grade3 Gradel Grade2 Grade3 Any grade

Hot flashes 21 (57 1(3) - 28(68)  5(12) - 35(83) 2(5) - 92 (77)
Fatigue 16 (43 1(3) = 16 (39) 2(5) = 24(57) 1(2) 1(2) 61 (51)
Injection site reaction - - - 9 (22) 1(2) - 9(21) - - 19 (16)
ALT increased 4(11) 2 (5) 2 (5) 3(7) 2 (5) 2 (5) 4(10) - - 19 (16)
Hypertension 2 (5) 4(11) 1(3) 2(5) 4(10) 2 (5) 1(2) 1(2) 1(2) 18 (15)
AST increased 7 (19) 1(3) 1(3) 4(10) 1(2) 1(2) 3(7) - - 18 (15)
Insomnia 5 (14) - 1(3) 3(7) - - 6 (14) 1(2) - 16 (13)
Depression 2 (5) - - 2 (5) 1(2) - 3(7) 2 (5) - 10 (8)
Nausea 4(11) - - 4 (10) - - - - - 8 (7)
Hyperglycemia = 1(3) = 1(2) 1(2) 2(5) = 1(2) 1(2) 7 (6)
Breast pain 5(14) 2 (5) - - - - - - - 7 (6)
Urinary frequency 3 (8) 1(3) - - 1(2) - 1(2) - - 6 (5)
Anemia 1(3) - 1(3) 1(2) - - 3(7) - - 6 (5)
Gynecomastia 4(11) - - 1(2) - - 1(2) - - 6 (5)
Headache 2 (5) 1(3) - 2 (5) - - 1(2) - - 6 (5)

AAP = abiraterone acetate plus prednisone; ALT = alanine aminotransferase; AST = aspartate transaminase; CTCAE = Common Terminology Criteria for Adverse

Events; D = degarelix.
Data are presented as n (%).

¢ Adverse events are reported only if they occurred in >5% of the overall patient population. CTCAE version 4.0 was used for this trial.

most common toxicities across all three arms were hot
flashes (77%) and fatigue (51%; Table 2). Elevations in AST
or ALT of any grade occurred in 15-16% of patients overall.
In the AAP arms, 2-3% of patients experienced a grade 3
increase in AST and 5% experienced a grade 3 increase in
ALT. Hypertension of any grade was identified in 19%, 20%,
and 7% of patients in the AAP, AAP with degarelix, and
degarelix arms, respectively. Ten patients experienced dose
interruptions due to adverse events. Three patients had
dose reductions of AAP. One patient discontinued because
of transaminitis.

3.3. Efficacy

The primary endpoint, undetectable PSA with testosterone
recovery at 18 mo, was achieved in 5.1% (95% CI: 1-17%)
of patients in the AAP arm, 17.1% (95% CI: 7-32%) in the
AAP with degarelix arm, and 11.9% (95% CI: 4-26%) in the
degarelix-only arm (Table 3). No difference was found in
either AAP arm relative to degarelix (arm 1 vs 3, p = 0.93;
arm 2 vs 3, p = 0.36). Ten patients had an undetectable
PSA level at 18 mo, but had not recovered testosterone,
and two were never treated. Sensitivity analyses were per-
formed, and whether these patients are included as meeting
the endpoint, not meeting the endpoint, or excluded from

Table 3 - Efficacy as measured by PSA.

the analysis did not change the overall primary endpoint
results (Supplementary Table 1).

Secondary endpoints included the percentage of patients
who achieved an undetectable PSA level at 8 mo, which was
highest in the AAP with degarelix arm (87.8%) and lowest
with degarelix alone (66.7%), and was achieved in 83.8% of
patients treated with AAP alone (Table 3). The rate of unde-
tectable PSA levels at 8 mo differed between AAP with
degarelix and degarelix-alone arms (p = 0.04), but not
between AAP-alone and degarelix-alone arms (p = 0.12).

Among patients who recovered their testosterone within
18 mo, the time to PSA progression was longest in the AAP
with degarelix arm (median 64.4 wk, 95% CI: 57.9-NA), and
shortest in those receiving AAP alone (median 37.5 wk, 95%
Cl: 36.3-44.0); the degarelix-alone arm experienced PSA
progression at a median of 54.9 wk (95% CI: 47.9-60.7;
Fig. 2A). The median time from the start of treatment to
testosterone recovery was 56 wk (95% CI: 54.6-60.3) in
the combination arm, 52.9 wk (95% CI: 49.0-56.0) with
degarelix, and 36 wk (95% CI: 35.9-36.1) in the AAP arm
(Fig. 2B). The AAP-alone arm had a more rapid testosterone
recovery than either degarelix arm (p < 0.001).

Patients who met the primary endpoint, as compared
with those who did not, were more likely to be older (me-

Treatment Secondary endpoint: Median time to Primary endpoint: undetectable PSA at 18 mo
undetectable PSA at 8 mo (n = testosterone recovery ° (n = with testosterone recovery (n = 122)
120) 120)
Arm 1: abiraterone acetate plus 31 (83.8) 36 wk 2(5.1)
prednisone
Arm 2: abiraterone acetate plus 36 (87.8) 56 wk 7 (17.1)
prednisone with degarelix
Arm 3: degarelix 28 (66.7) 53 wk 5(11.9)

PSA = prostate-specific antigen.
Data are presented as n (%).
2 Time to testosterone recovery was calculated from treatment start.




EUROPEAN UROLOGY OPEN SCIENCE 34 (2021) 70-78 75

1.0

0.8

0.6

PSA Progression Free Survival
0.4

0.2

0.0

) Weeks from Start of Treatment
No at risk

AAP 37 36 17 8 0
AAP + Degarelix 41 41 35 23 0
Degarelix

0.6 0.8 1.0
|
i

0.4

Probability of Testosterone Recovery

0.2

T T T T T
0 20 40 60 80

) Weeks from Start of Treatment
No at risk

AAP 37 36 3 0 0
AAP + Degarelix 41 41 36 13
Degarelix

o

Fig. 2 - (A) Kaplan-Meier curves for PSA progression-free survival across treatment arms. The probability of developing a detectable serum PSA level once
treatment was discontinued varied by study arm. On average, the abiraterone acetate arm was the soonest to develop a detectable PSA level, followed by
degarelix alone, and then the combination arm. (B) Kaplan-Meier curves for the probability of testosterone recovery across treatment arms. On average,
testosterone recovery occurred first in the abiraterone acetate plus prednisone arm, and then recovered at similar rates between the degarelix-alone arm and
the combination arm. AAP = abiraterone acetate plus prednisone; PSA = prostate-specific antigen.

dian age 69.5 vs 64.0 yr; p = 0.004) and have had prior sal-
vage radiation (79% vs 47%; p = 0.04), with a longer time
between RP and starting on trial (median time 270 vs 175
d; p = 0.06). There was no association between meeting
the primary endpoint and prior ADT or tumor stage at the
time of RP.

Data are available for bona fide researchers who request
it from the authors.

4. Discussion

The more complete androgen suppression resulting from
the combination of AAP and degarelix enabled 17.1% (95%
Cl: 7-32%) of patients with BCR to achieve an undetectable
PSA level after testosterone recovery. However, this effect
did not differ between treatment arms, and 11.9% (95% CI:
4-26%) of patients who received ADT alone achieved a sim-
ilar outcome. In an exploratory analysis, PSA PFS was long-
est with combination therapy, which may in part be
attributable to the longer time to testosterone recovery.
The group with the shortest PSA PFS was the AAP arm that
experienced testosterone recovery approximately 4-5 mo
earlier than patients in the other arms. Additionally,
although the PSA PFS curves separate, the difference in time
to PSA PFS between the degarelix arm (median 54.9 wk, 95%
Cl: 47.9-60.7) and the AAP and degarelix combination arm
(median 64.4 wk, 95% CI: 57.9-NA) was 10 wk, which is
arguably not clinically meaningful.

The primary endpoint of the trial—undetectable PSA
with testosterone recovery at 18 mo—was utilized to
address the recognized need for earlier readouts of efficacy,
shifting from late time-to-event-progression endpoints to
earlier response endpoints based on the principles outlined

by the Prostate Cancer Working Group 3 [24]. This endpoint
will require more extensive study and is not a surrogate for
survival; however, given the long natural history of this dis-
ease and the biologic rationale as a tumor driven by andro-
gens, we felt it appropriate for use in this phase 2 setting
[8]. A contemporary study in the phase 2 setting of salvage
radiotherapy utilized a fixed course of ADT with enzalu-
tamide and employed a 2-yr PSA PFS endpoint with expec-
tations of testosterone recovery at that time point [25];
although the treatment and population differ from our trial,
this study also utilized detectable PSA as a near-term end-
point after testosterone recovery [25]. For comparison, the
pivotal phase 3 trial using a survival endpoint in high-risk
biochemically recurrent disease initiated by the National
Cancer Institute of Canada Clinical Trials Group (NCIC
CTG) randomized 1386 men to intermittent versus continu-
ous ADT and took nearly 14 yr to conduct [26]. Between
2003 and 2020, ten drugs were approved by the Food and
Drug Administration for the treatment of castration-
resistant prostate cancer; many of these are now being used
or evaluated for use in earlier disease states. With more
agents and combinations available for testing, the demand
for efficient phase 2 trial design has increased. New life-
prolonging therapies that can be administered upon pro-
gression on a clinical trial can also blunt OS outcomes.

In the contemporary setting of androgen receptor inhibi-
tors, the EMBARK trial (NCT02319837) is enrolling 1860
patients with BCR across 200 international sites and evalu-
ating the continuous use of ADT alone, enzalutamide alone,
and enzalutamide in combination with ADT, and uses a pri-
mary endpoint of MFS. Another trial in BCR, AFT-19
(NCT03009981), will randomize 504 patients to ADT alone,
ADT with apalutamide and AAP, and ADT with apalutamide
for 12 mo. This trial will use a primary endpoint of PSA PFS,
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with MFS as a secondary endpoint. Smaller phase 2 trials
such as the one reported here (122 patients) are not
intended to be definitive trials; rather these utilize an eco-
nomical design and response endpoint to help inform deci-
sions for the development of these larger-scale, costly
studies with long maturity times.

Despite the modest sample size, this study took longer to
complete than anticipated, with 5 yr elapsing between the
trial opening and data cutoff. A primary reason was pro-
longed accrual time due to difficulty in identifying high-
risk patients. Opening additional study sites might have
helped mitigate. A limitation of this trial is a lack of long-
term follow-up, so the durability of PSA response and time
to subsequent treatment, as well as whether this endpoint
predicts for MFS or OS, are unknown. Patients who met
the primary endpoint were older, and more likely to have
had prior salvage radiation therapy, than those who did
not meet the primary endpoint, but the sample size is too
small to draw firm conclusions.

It should be noted that our understanding and character-
ization of biochemically recurrent disease, previously
defined by conventional bone scan and CT/MRI, are changing
with advances in positron emission tomography (PET) imag-
ing such as Ga-68-labeled Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68
(HBED-CC)] prostate-specific membrane antigen (PSMA)
PET/CT and '®F-fluciclovine PET/CT [27-31]. While it is rec-
ognized that patients with BCR likely harbor micrometas-
tases, this becomes more obvious with greater imaging
sensitivity and provides opportunities for trial designs. Con-
temporary phase 2 trials may enroll PSMA-positive/
conventional scan-negative (negative for metastatic dis-
ease) patients alongside PSMA-negative/conventional
scan-negative patients provided that the endpoint, such as
the one utilized in this trial, captures both populations [6].

5. Conclusions

Although the primary endpoint did not differ between
treatment arms, the knowledge that 12% of men achieved
an undetectable PSA level after testosterone recovery with
standard ADT sets a benchmark for future trials. Further
study of this endpoint as it relates to OS and MFS will be
necessary. Our understanding of intratumoral androgens,
genomic alterations, and alternative pathways, coupled
with advances in drug development, has the potential to
transform the management of BCR. Efficient phase 2 trial
designs with meaningful response measures will enable
drug development to keep abreast of the science.
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