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Group analysis in diffusion tensor imaging is challenging. Comparisons of tensor
morphology across groups have typically been performed on scalar measures of
diffusivity, such as fractional anisotropy (FA), disregarding the complex three-dimensional
morphologies of diffusion tensors. Scalar measures consider only the magnitude of the
diffusion but not directions. In the present study, we have introduced a new approach
based on directional statistics to use directional information of diffusion tensors in
statistical group analysis based on Bingham distribution. We have investigated different
directional statistical models to find the best fit. During the experiments, we confirmed
that carrying out directional statistical analysis along the tract is much more effective
than voxel- or skeleton-guided directional statistics. Hence, we propose a new method
called tract profiling and directional statistics (TPDS) applicable to fiber bundles. As a
case study, the method has been applied to identify connectivity differences of patients
with major depressive disorder. The results obtained with the directional statistic-based
analysis are consistent with those of NBS, but additionally, we found significant changes
in the right hemisphere striatum, ACC, and prefrontal, parietal, temporal, and occipital
connections as well as left hemispheric differences in the limbic areas such as the
thalamus, amygdala, and hippocampus. The results are also evaluated with respect
to fiber lengths. Comparison with the output of the network-based statistical toolbox
indicated that the benefit of the proposed method becomes much more distinctive as
the tract length increases. The likelihood of finding clusters of voxels that differ in long
tracts is higher in TPDS, while that relationship is not clearly established in NBS.

Keywords: diffusion tensor imaging, directional statistic, group analysis, tract profile, major depression

INTRODUCTION

Diffusion tensor imaging (DTI) can reveal complicated structural differences in patient groups by
using the orientation and integrity of white matter tracts to identify white matter abnormalities. The
diffusion tensor is the covariance matrix of diffusion coefficients calculated from gradient directions
for each voxel. Although DTI is by nature a nonscalar image which provides directional information
for the neural tracts, group-based DTI analyses are mainly conducted using scalar descriptors such
as fractional anisotropy (FA) (Basser, 1995), relative anisotropy (RA) (Basser and Pierpaoli, 2011),
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axial diffusivity (AD), and radial diffusivity (RD) (Song et al.,
2002). Such scalar metrics do not describe the full tensor shape
or distribution and do not capture all of the information available
in the data. By developing advanced metrics for connectivity
analysis between groups of subjects in a nonscalar fashion,
findings regarding abnormalities can be improved.

The principal diffusion direction (PDD), which is the
eigenvector that corresponds to the largest eigenvalue of the
tensor, captures the estimation of the fiber direction within the
voxel. PDD has been used mainly in directionally encoded color
(DEC) maps (Pajevic and Pierpaoli, 1999) which facilitate visual
comparison but not quantitative group analysis. In order to
evaluate PDD, which is a vector, statistical methods that analyze
vector and tensor data are needed.

Directional statistics is conducted on vectors and directions
based on observations on compact Riemannian manifolds
(Pennec, 2006). Hence, it can encapsulate much more
information than scalar metrics about the diffusion. Without the
limitation of scalar statistics, one can evaluate dispersion and
coherence values among the populations, fit directional model to
the data, and perform hypothesis testing for group-based studies.

In the literature, directional statistics have been used to
characterize fiber orientation distribution functions, to estimate
fiber dispersion quantitatively via fanning and bending fiber
geometries throughout the brain (Sotiropoulos et al., 2012; Tariq
et al., 2016). In addition, directional statistics have also been
utilized to extract bundle-specific metrics from crossing fiber
models (Riffert et al., 2014) and fiber tractography (Parker et al.,
2003). However, Watson distribution, which has been used in
previous directional statistics in group analysis, contains limited
parameters (Schwartzman et al., 2005; Hutchinson et al., 2012).
Watson distribution is a bimodal probability distribution on
a two-dimensional unit sphere S2 in R3 which is symmetrical
around mean direction, where each direction and its negative
have the same probability. In our previous study (Metin and
Gökçay, 2014), it has been shown that Bingham distribution
better fits into PDD distributions for white matter tracts
and improves the depiction of variability among subjects in
anisotropic tensors areas, such as fiber crossings. This is because
Bingham distribution is a generalization of Watson distribution:
it is bimodal and elliptic around mean direction.

Group analysis methods on DTI or DWI data can be classified
into three: (1) region of interest (ROI)-based methods, (2) voxel-
based analysis, and (3) fiber tract-based analysis. ROI-based
methods are very labor intensive plus error-prone. On the other
hand, voxel-wise comparison is open to misalignment of voxels
because during registration of individual subject’s data to a
common space, topological variabilities may not be thoroughly
resolved (Jones and Cercignani, 2010) for each fine structure.
The amount of smoothing can greatly affect the final results, but
there is no principled way of deciding how much smoothing is
“correct” (Jones et al., 2005). For instance, tract-based spatial
statistics (TBSS) tackles the alignment and smoothing problem
for voxel-wise statistics by combining strengths of VBM-style
analyses and tractography-based approaches (Smith et al., 2006).
In short, analyses that involve fiber tracts are contingent upon
computation of quantitative parameters of interest along the

tracts (Goodlett et al., 2009) within diffusion tensor images.
The properties of the fiber tract can be scalar values derived
from tensors such as MD, FA, or trace, as well as shape
information such as curvature and torsion of the specific tract
(Mandl et al., 2010).

In this study, we propose a new tract-based framework using
directional information in diffusion tensors to improve statistical
group analysis, named as track profiling and directional statistics
(TPDS). For this purpose, we have (1) generated a new data
structure called tract profile by clustering fibers across subjects
and (2) developed a method based on directional statistics to
compare white matter (WM) differences of different groups
across each tract profile. Overall, this new DTI group analysis
method is called TPDS.

In order to demonstrate the superiority of the proposed
framework, we compared the tract profiling method with two
widely used techniques: TBSS (Smith et al., 2006) and voxel-
based analysis (VBA) (Hecke et al., 2009). Furthermore, we
ran a third comparison with the network-based statistic (NBS)
toolbox (Zalesky et al., 2010) which utilizes nonparametric
statistical testing to identify the components of an N × N
undirected connectivity matrix that differ significantly between
two distinct populations.

As a proof of concept, we demonstrated the strength of TPDS
in the identification of differences of structural connectivity
in major depressive disorder in a small data set (n = 30).
Although depression has traditionally been viewed as an affective
disorder, the last few decades of research have shown that MDD
is also associated with considerable disturbances in cognitive
functioning, including executive functions, attention, memory,
and psychomotor speed (Castaneda et al., 2008; McClintock et al.,
2010). In MDD, multidimensional, systems-level differences
are reported in discrete, but functionally integrated pathways
(Mayberg, 2003). Therefore, differences in MDD can be expected
to cover a wide range of WM tracts. So far, especially white matter
disturbances and connectivity differences have been analyzed
using DTI-based analysis in MDD (Seminowicz et al., 2004; Zou
et al., 2008; Cullen et al., 2010; Kieseppä et al., 2010; McClintock
et al., 2010; Helm et al., 2018). Most of these studies state that loss
of integrity occurs in the WM fiber tracts of the frontal, temporal,
and cingulate cortex of MDD patients. White matter integrity
can be described as biophysical white matter changes as a result
of microstructural characteristic in both intra- and extra-axonal
environments of WM such as axonal water fraction (AWF), intra-
axonal diffusivity, and extra-axonal axial and radial diffusivities.
More specifically, reported abnormalities in the connectivity
of the DLPFC and ACC circuits (Helm et al., 2018), as well
as subcortical regions, complement other findings specified in
affective disorders (Sexton et al., 2009).

MATERIALS AND METHODS

Data Acquisition
In order to demonstrate the benefits of TPDS, we used T1-
weighted, T2-weighted, and DTI MR data obtained from healthy
subjects and patients with MDD.
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Subjects
The control group consisted of 14 healthy subjects (8 female and 6
male) with age 31.71 ± 7.62, who had no history of neurological
disease and also are not taking any medication. The depression
group consisted of medication-naïve 16 subjects (8 female and 8
male, age: 31.12± 8.95)1. The data was collected as part of a local
institutional project funded by METU (BAP-07-04-2012). Project
management and subject recruitment were handled by a larger
project2 for which the results will be published elsewhere.

MRI Parameters
Whole-brain MRI scans were collected using the Siemens
MAGNETOM 3 T scanner situated at the Bilkent University
UMRAM center. T1-weighted [repetition (TR): 2,500 ms, echo
time (TE): 3 ms, inversion time (TI): 1,000 ms, flip angle (FA):
8◦, sagittal plane 1 mm isotropic resolution], T2-weighted (TR:
5,900 ms, TE: 108 ms, FA: 120◦, spacing: 2.2, slice thickness
2 mm), and DWII scans (TR: 8,270 ms, TE: 83 ms, FA: 90◦,
spacing: 2.2, seven images with b-factor = 0 s/mm2, 45 directions
b-factor = 700 s/mm2) are collected from the participants in
a single session.

Data Processing
Pre Processing
We have implemented a fully automated pipeline to perform
preprocessing as illustrated in Figure 1. The overall pipeline
has been designed using the Connectome Mapper (Daducci
et al., 2012). At the individual subject level, preprocessing steps
are performed using several software toolkits. The first step
is intrasubject registration of T1, T2, and DWI images using
FSL’s FLIRT as described in Jenkinson and Smith (2001) and
Jenkinson et al. (2012). The registration is first done between
the T2-weighted image and DWI B0 images, and then the high-
resolution T1-weighted image is registered to the T2-weighted
image. To eliminate the problem of transforming diffusion
tensors, all of the images are registered to the DWI B0 image. This
way, all image operations are performed on the diffusion image.

1TUBITAK 1001, no: 109E081, Ethical board approval: Ankara University Medical
College.
2A black point is called a border point if it is six-adjacent to at least one white point.
A black point is called an end point if it has exactly one black 26-neighbor. Black
point p is simple in (Z3, 26, 6, B) if and only if all the following conditions hold
(Palágyi et al., 2001):

(1) The set N26
(
p
)
∩ (B\

{
p
}
) is not empty (p is not an isolated point).

(2) The set N26
(
p
)
∩ (B\

{
p
}
). is 26-ected

(3) The set
(
Z3
\B
)
∩ N6

(
p
)

is not empty (p is a border point).
(4) The set

(
Z3
\B
)
∩ N6

(
p
)

is six-connected in the set
(
Z3
\B
)
∩N18

(
p
)
.

For segmentation and parcellation of ROIs, FreeSurfer (Fischl
et al., 2002) has been used. These steps transform the subject’s
MRI to uniform space and segment white and gray matter as
well as cortical and subcortical structures based on the underlying
atlas. The parcellation algorithm (Fischl et al., 2004) reveals 83
distinct cortical and subcortical structures of the brain using the
Desikan–Killiany atlas (Desikan et al., 2006). All of these steps
constitute the top row of Figure 1.

DTI processing begins with motion and eddy current artifact
correction in FSL. Tensor estimation is done by Diffusion Toolkit
(DTK) (Wang et al., 2007). For tractography (Parker et al., 2003;
Cook et al., 2005), streamline fiber-tracking algorithm in Camino
has been used. Each voxel in the parcellated image is selected
as seeds. Eighty-three distinct cortical and subcortical areas are
masked, and the generated binary image is used as the seed file
of the algorithm for particular ROIs. For tracking, the fourth-
order Runge–Kutta method has been chosen to propagate the
tracks using a constant step size. Nearest-neighbor interpolation
is applied around local voxel data. A minimum length criterion,
10 mm, is enforced to eliminate premature tract termination due
to low SNR and low pathway anisotropy (Behrman-Lay et al.,
2015). Each fiber bundle is pruned so that it only contains fibers
connecting relevant regions. The number of streamlines depends
on the size of the ROI. No additional elimination technique
has been applied other than minimum length. These steps are
illustrated in the second row of Figure 1.

Using the Connectome Mapper (Daducci et al., 2012), a
connection matrix is generated to calculate the connectivity of
the areas via the fiber tracts obtained in the first and second
rows of Figure 1. After this step, the fiber tracts that connect
corresponding brain areas will be bundled to construct relevant
fiber bundles. In order to perform group analysis, one last step
is necessary: the corresponding bundles of all subjects must
be aligned. Therefore, both control and patient images are
registered to the ICBM DTI-81 atlas using affine registration. The
transformation obtained during this registration is applied to the
fiber bundles as seen in the last row of Figure 1.

Tract Profiling
Tract profiles are cross sections of the fiber tracts that connect
the ROIs specified by the connection matrix generated in
preprocessing. For the connections in each ROI pair, a fiber
bundle is formed based on the intersections of cross-sectional
areas of all subjects’ DWI. Then, the medial line of the fiber
bundle is computed. Finally, a cross-sectional profile is generated
along the medial line so that the distribution of PDDs along each
cross section is aggregated separately for each subject group.

FIGURE 1 | Components of the pre-processing pipeline before TPDS is performed.
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Overlapping Fiber Calculation
Overlapping fibers/voxels are calculated across all of the subjects.
This is done for each fiber bundle by calculating its maximum
overlap. During this process, some specific bundles might be left
out as outliers. In Figure 2, the overlapping fiber bundle is shown
between the two ROIs: thalamus (green) and rostral anterior
cingulate (purple). The bundles shown with the yellow, cyan,
green, and red colors are marked as outliers and left out of the
overlapping area.

The voxel image can be represented as image P where P =
(Z3, m, n, B) (Kong and Rosenfeld, 1989). Each element in Z3

is called a point of P and each point in B ⊆ Z3 is called a black
point and assigned 1. Each point in Z3

\B is called a white point
and assigned 0. m holds black points and n holds white points.

In order to be used in multisubject analysis, adaptation of this
definition can be made as follows. For given ROI pairs (i,j), letP0,
P1, . . . , PK be a set where K is the number of subjects, and Pk is
the fiber bundle image from subject k. A point in P is assigned as
black point if and only if it is also black point for all sets in P0,
P1, . . . , PK for a given ROI(i,j).

Medial Line Generation
The skeleton of the overlapping bundles is calculated. The curve
skeleton is a one-dimensional set which runs through the center
of the overlapping bundles in such a way that it preserves
the topological properties of the overlapping area. Connectivity
conditions are defined as follows. The sequence of points (x0, x1,
. . . , xn) is a j-path of length n ≥ 0 from the point x0 to point xn
in a nonempty set of points X if each point of the sequence is in
X and xi is j-adjacent to xi − 1 for each 1 ≤ i ≤ n. The adjacency
can be defined as Nj(p) the set of points j-adjacent, to the point p,
where j = 6, 18, 26. Connectivity can be defined as j-connected if
there is a j-path between them in X.

In order to construct the aforementioned skeleton, first of
all, curve thinning (Blum, 1967; Kong and Rosenfeld, 1989) is
used on P. The medial line of the fiber bundles was generated
as depicted in Palágyi et al. (2001). As such, in each iteration,
border points of P were deleted until no more deletion was
possible. The algorithm is implemented as sequential iterations
where each step checks for six subroutines for each of the six-
directions that are immediate neighbors of a black point in P.
In each iteration, border points are deleted upon satisfying a
condition called simple point condition2. In this way, the object

FIGURE 2 | Tract profiling: Generation of an overlapping tract bundle between
two ROIs (shown by green and blue) for all of the subjects regardless of the
groups.

is shrunk uniformly in each direction. The operation is continued
until no more shrinking is possible for each direction. By adding
connectivity conditions, the skeleton ends up with the medial line
in the near center of the object. In Figure 2, the example medial
line for the fiber bundle is shown with dark blue.

Finally, the resulting medial line is smoothed by generating
a b-spline representation as follows. In order to generate
b-spline representation of the medial line, the voxel coordinates
on the medial line are represented as data points {Pk} , k ∈
MedialLine . A b-spline curve that fits the data is parameterized

by t ∈ [0, 1], where X (t) =
n∑

i=0
Ui,d(t)Qi, the control points Qi

are unknown quantities that have been evaluated using the least-
squares fitting method described below:

For n control points Q̂ =


Q0
Q1
...

Qn

, and m sample points P̂ =


P0
P1
...

Pm

, the least-square error function between the b-spline

curve and the sample points is the scalar valued function:

E(Q̂) =
1
2

m∑
k=0

∣∣∣∣∣∣
n∑

j=0

Uj,d (tk) Qj − P

∣∣∣∣∣∣
2

To minimize the error function, E, where it is quadratic in the
components of Q̂, it is a graph of a paraboloid, so it has global
minimum that can be found when all its first-order derivatives
are 0. The first-order partial derivatives can be written as control
points, Qi

∂E
∂Qi
=

m∑
k=0

 n∑
j=0

Uj,d (tk) Qj − Pk

Uj,d (tk)

∂E
∂Qi
=

m∑
k=0

n∑
j=0

Ui,d (tk) Uj,d (tk) Qj −

m∑
k=0

Ui,d (tk) Pk

FIGURE 3 | Tract profiling: Representation of the medial line of the
overlapping bundle with b-splines and generation tract profiles.
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It can be written as
m∑

k=0

n∑
j=0

ak,iak,jQj −
m∑

k=0
ak,iPk, where ak,i =

Uk,d(tk) for 0 ≤ i ≤ n, by setting the partial derivatives to zero
vector, and it leads to the system of equations:

0 =
m∑

k=0

n∑
j=0

ak,iak,jQj −

m∑
k=0

ak,iPk = ATAQ̂− AT P̂

Where A = [arc] is a matrix with m + 1 rows and n + 1 columns.

Q̂ = (ATA)−1AT P̂ =
[
(ATA)−1AT

]
P̂ = XP̂

Since A is tridiagonal where it has a contiguous set of upper bands
and lower bands, the equation can be solved with the Cholesky
decomposition and the vector of control points Q̂ can be found.

Since derivative of spline is 1 less order of yet another
b-spline where new control points are defined as Qi =

p
ui+1+1−ui+1

(Pi+1 − Pi) from the surface tangent, a normal vector has been
computed and cross-sectional areas have been extracted.

Calculation of Tract Cross Sections
The skeleton is sliced with 2-mm regular intervals so that cross-
sectional areas that are perpendicular to the b-spline are obtained
using normal vectors computed from the surface tangents in
Figure 3. For each voxel in P that intersects with these cross-
sectional areas, PDDs that represent individual subjects are added
as tract profiles representing that slice. Hence, for a tract with
J slices, there are J tract profiles that contain PDDs which are
representative of the subject group. An example tract profile (i.e.,
a slice with PDDs) from a single subject is shown in Figure 4.
The PDDs from the subjects for a specific group are aggregated
as follows. At each slice, there are fixed number of voxels, and
at each voxel, there can be multiple PDDs, each coming from a
different subject, depending on whether the subject’s tract goes
through that voxel or not.

Directional Statistics
Statistical analysis is executed exclusively on areas that are defined
by tract profiles eliminates voxel-wise comparison. Hence,
misalignment problems no longer exist. Hypothesis testing is
conducted only at cross-sectional tract profiles that are separated
by 2-mm regular intervals. For the set of PDDs embodied in
each tract profile j, a parametric directional statistic distribution
is fitted. Through such parametrization, the PDDs of all subjects
that fit into the tract profile j are projected onto a sphere.

Watson distribution in Figure 5 is bimodal and symmetrical
around mean direction. Watson distribution assumes that
diametrically opposite points have the same probability. Also,
the probability density function of axial distributions process
antipodal symmetry [i.e., f (−l,−m,−n) = g(l,m,n)]. The
probability distribution of random vectors that belong to the
Watson’s family is spherical on a sphere. Directional statistics
have been used in the analysis of DTI previously (Schwartzman
et al., 2005; Hutchinson et al., 2012), and it has been shown that
DTI principal direction analysis using directional statistics can
better identify the differences in anatomic structure between
populations compared with statistical tests of scalar values such

as FA. Both of these studies used Watson distribution to analyze
principal directions. On the other hand, Bingham distribution
(Figure 6) is bimodal and elliptical (Fisher et al., 1993; Cheng
et al., 2014). Bingham distribution is free from symmetrical
constrains; hence, it provides more advanced distribution fitting
options in comparison with Watson distribution.

Watson distribution is defined as follows (Mardia and Jupp,
1999):

Watson Distribution Wp (x;µ, κ) = cp (κ) eκ
(
µT x

)2
;

cp (κ) =
0
( p

2
)

2πp/2M
( 1

2 ,
p
2 , κ

)
where x is the unit random vector, µ is the mean vector, is the
concentration value, M is Kummer’s confluent hypergeometric
function, 0 is a gamma function, and p is the dimension of the
distribution. To estimate maximum likelihood of this function,
we take logarithm. Hence, the log-likelihood function is

l (µ, κ± x1, . . . ,±xn) = κ

n∑
i=1

(
xT

i µ
)2
− nlog M

(
1
2
,

p
2
, κ

)

= n
{
κµT T̄µ− logM

(
1
2
,

p
2
, κ

)}
where T̄ is the scatter matrix of the given data. Differentiation
with respect to κ gives

Dp (κ) = µ̂T T̄µ̂; for p = 3;=
M(1.5, 3.5, κ)

3∗M(0.5, 1.5, κ)
.

And to find its maximum likelihood estimate, we need a
derivative of Dp (κ) for p = 3

D
′

3 =
M (2.5, 3.5, κ)

5M (0.5, 1.5, κ)
−

1
9
∗

(
M(1.5, 2.5, κ)

M(0.5, 1.5, κ)

)2
.

The Newton–Raphson method can be used tfind maximum
values for Dp (κ) and the biggest eigenvalue of scatter matrix, t1,
for a bipolar distribution or t3 for a girdle distribution.

Bingham distribution is defined as a trivariatnormal
distribution on a unit sphere. Different from Watson
distribution, it has three orthogonal directions as µ1, µ2,
µ3 and concentration values (κn) for each orientation vector
(Watson and Williams, 1956).

Concentration values define the dispersion of the distribution,
where

(1) κ1 = κ2 = 0 results in a spherical distribution of axes.
(2) κ1 = κ2 � 0 results in a symmetric bipolar distribution.
(3) κ1 < κ2 � 0 results in an asymmetric

bipolar distribution.
(4) κ1 � κ2 < 0 results in an asymmetric girdle distribution.
(5) If κ1 � 0 and κ2 = 0, then Watson distribution is

obtained.
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The probability distribution function of Bingham distribution
is defined as follows (Bingham, 1974):

Bingham Distribution Bp (x;K) = cp (K) exT Kx
;

cp (K) =
0
( p

2
)

2πp/2F
( 1

2 ,
p
2 , K

)
where x is the unit random vector, K is the 3 × 3 orthogonal
orientation matrix with concentration values, F denotes the
confluent hypergeometric function of matrix argument, 0 is the
gamma function, and p is the dimension of the distribution. For a
given random sample ±x1, . . . ,±xn, the log-likelihood function
can be written as:

l (K;±x1, . . . ,±xn) = n
{

log tr
(
AT̄
)
− logF(

1
2
,

p
2
, K)

}

FIGURE 4 | Tract profiling: Illustration of the PDDs from a single subject in a
sample tract profile.

We can write K and T̄ in polar form as = UKUT ,
T̄ = VtVT with U and V being orthogonal. K =
diag(κ1, . . . , κp) and t = (t̄1, . . . , t̄p), where κ1 ≥ . . . ≥ κp and
t̄1 ≥ . . . ≥ t̄p. As suggested by Bingham himself, the following
approximations can be used.

For the bipolar case:

d = t̄2 − t̄3, s = t̄1 + t̄2, κ0 = −D−1
3 (t̄1)

κ1 ≈ 0, κ2 ≈ κ0 + δ, κ3 = κ0 − δ

For the girdle case:

d = t̄1 − t̄2, s = t̄1 + t̄2, κ0 = −D−1
3 (t̄3)

κ1 ≈ 0, κ2 = −2δ, κ3 = κ0 − δ

where δ = 2dκ0
s(κ0−1.5)+1

After parametric representation through either Watson or
Bingham distribution, two group of subjects can be compared
by using an eclipse of confidence defined by the p value. For
fitting a single group’s data, the mean direction vector of the
group is computed. If it lies inside the eclipse of confidence of the
targeted distribution, then the null hypothesis is likely, justifying
a reasonable fit to the associated directional distribution. On
the other hand, if the confidence ellipse around the mean
direction does not overlap for a given confidence level, then
the null hypothesis is unlikely, rejecting the fit. For two groups,
the case with different means is indicated by separated cones
of confidence, which in turn indicates significant differences.
On the other hand, overlapping cones of confidence indicate
insignificant differences, hence acceptance of the null hypothesis.

FIGURE 5 | Watson Distribution.
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An example distribution is provided in Figure 7, for two groups
of subjects, for representation with the Bingham distribution.

Details of the eclipse of confidence can be given as follows.
The maximum likelihood estimates of concentration parameters
κ1, κ2 can be obtained from maximizing the log-likelihood
function, where wn are the eigenvalues of the principal
eigenvector of the orientation matrix:

F = −Nlog (4π)− N logd ( κ1, κ2)+ κ1w1κ2w2

Maximum likelihood estimators of κ1, κ2 in the Bingham
distribution for given eigenvalues w1,w2 can be estimated as
calculated by Mardia and Zemroch (1977).

The confidence ellipse around the mean direction within the
specified percentage (%) of the estimated concentration values of
distribution as

emn
% =

√√√√[ X2
%

2N(1mn)

]
for1mn = (κm − κn)(wm − wn)andX2

%

is the chi-squared value for two degrees of freedom and % is p
value for confidence interval.

For p = 0.01 and having κ3 = 0 (Fisher et al., 1993) ends up with
the semi-axes of the confidence eclipse about the mean direction
associated with w3 as below:

e32 = −1.517
1

k2N(w3 − w2)
ande31 = −1.517

1
k1N(w3 − w1)

Performance Analysis
We have conducted two performance tests to analyze the
effectiveness of the proposed method. First, we have analyzed the
models generated by TPDS in comparison with VBA and TBSS.
Hereby, we have adapted directional statistics to TPDS, TBSS, and
VBA to compare their overall efficiency in representing vector-
based statistical models. This test aimed to show the efficiency
of tract profiling over voxel-based and skeleton-based analysis.
Second, we have applied the full TPDS algorithm to the two
subject populations (i.e., MDD versus healthy controls) and
compared the results with NBS. This test aimed to show the
efficiency of combining tract profiles with directional statistics
over conventional methods. In this test, the effects of fiber length
in estimating group differences were also evaluated.

Analysis of the Strengths of VBA, TBSS, and TPDS in
Tract Modeling
In this test, we used a single group (i.e., healthy subjects). The
statistics were derived using three different methods, VBA, TBSS,
and TPDS, only on white matter areas—not using GM ROIs.
As seen in Figure 8, the white matter areas that have been
segmented using FreeSurfer are mapped to ICBM DTI-81 atlas
(Mori et al., 2008) to allow for intersubject data aggregation. For
VBA analysis, the atlas-based white matter areas are overlayed
for all subjects for further processing. For TPDS analysis, tract
profiles are generated from the atlas mappings of all subjects. In
TBSS, before performing atlas mapping, skelotonized areas are

generated from individual subject tracts. The rest of the data
processing pipeline is the same for all three methods. At the
first step, for each WM ROI, based on which method is used
for defining the tract, PDDs are generated. Then these PDDs are
parametrically modeled by two separate directional distributions,
namely Bingham and Watson. Finally, in the last step, several
PDDs are generated to represent the entire group using the newly
developed parametrical models, and goodness of fit is computed
to evaluate how good the chosen model is.

PDD Generation
For each subject, primary diffusion directions are extracted
for each voxel inside the given WM area using the primary
eigenvector of the diffusion tensor. The WM area differs based
on the chosen representation. In VBA, the WM area is extracted
based on segmentation of the specific WM ROI. In TBSS, it is
based on the skeleton of the tract in the WM ROI. In TPDS, it is
embodied within each tract profile that composes the entire tract
in the WM ROI. Aggregated data from all subjects compose the
data to be fitted for each WM area.

Distribution Fitting
Watson and Bingham distributions were fitted to model each
tract using the maximum likelihood method. For each tract, the
parameters of the theoretical model were estimated from the pdf
at hand. Then this theoretical probability density function was
evaluated iteratively using synthetic random vector data for a
total of 700 vectors that were almost uniformly distributed along
a sphere. Finally, the difference between the estimated pdf and the
random pdf is tested for null hypothesis.

Goodness of Fit Testing
Pearson’s chi-square tests have been used for goodness of fit tests
to evaluate whether the observed frequency distribution differs
from the theoretical distribution. Comparison of distributions is
done using ANOVA and the chi-square test statistics was also
used for each ROI.

In order to apply Pearson’s chi-square tests to check whether
the observed frequency distribution differs from a theoretical
distribution, the following steps are applied on the original data
and synthetic random vector data and the respective models.

(1) For Watson distribution, the sample mean direction, R̄, has
been evaluated as a regular vector sum of the vectors under
a population of vectors. The mean direction is a unit vector
that is in the same direction with R: x̄ =

∑
i xi
R , ȳ =

∑
i yi

R ,

z̄ =
∑

i zi R .
(2) For Bingham distribution, the axis of moment of inertia

of sample, t̄, has been evaluated using the scatter
matrix of distribution S. For the bipolar case, it is
the biggest eigenvector, and for girdle case, it is the
smallest eigenvector.

(3) The transformations θ̄, φ̄ have been evaluated in order to
shift either R̄ or t̄. to positive z-axis.

(4) The transformation has been applied to original
and synthetic data.
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(5) The angle θ has been calculated as the angle between the
positive x-axis and the projected vector on the x–y plane:
0 < θ < 2π .

(6) The observed frequencies and the excted frequencies were
θ1 < θ < θ2, where the number frequency bins is 50 and
θ2 – θ1 ≈ 7.2o.

Analysis of the Group Difference Maps Generated by
NBS and TPDS
In this part, the proposed framework will be applied to test for
differences of fiber tract profiles between MDD patients and
control subjects. Based on the same fiber tracts and connectivity
matrix for healthy volunteers, comparisons will be made with
the results of the network-based statistics. For this purpose, we
used the 83× 83 connectivity matrix generated at the end of data
preprocessing by the Connectome Mapper (Figure 1).

In NBS, for each group, each pairwise association (i,j) between
ROI i and ROI j is treated separately. First, Fisher’s r-to-z
transform has been applied to ensure normality. Then, the test
statistic of interest—which is the normalized number of fiber
bundles—is compared between the groups using t-statistic. In
order to correct for multiple comparisons, permutation testing
was used to select the p value controlled for the FWE for each
connected component. For each permutation, the same threshold
is applied to define a set of suprathreshold links of connected
components. Suprathreshold and the number of permutations
were set according to the default parameter settings of NBS with
corrected p < 0.005.

In TPDS, the following procedure is repeated for each possible
connection between distinct ROI pairs (i.e., 83 × 83 times
divided by 2). Tract profiles between each ROI i and ROI j
are extracted for the healthy and MDD groups. Then for each
slice in the tract profiles, significance is tested with a threshold
value of p < 0.005. If there are n contiguous slices that satisfy
this, it is indicated that the connection between ROIs i and j is
significantly different between the control and patient groups. It
is possible that there are multiple clusters of n contiguous slices
that satisfy this condition. In order to reflect this information, we
prepared a new 83 × 83 connectivity matrix, which contained
the number of significantly different clusters between the two
groups that are compared. Therefore, the difference map that is
achieved through TPDS reflects a weighted graph, weight being
the number of significantly different clusters between the two
groups for that particular i to j connection. The more the number
of significantly different n contiguous slices, the more the weight
of the difference map.

Selection of n must be done according to a criterion related
to the plausible tract lengths. In order to eliminate premature
tract termination that result from low SNR and low pathway
anisotropy (Behrman-Lay et al., 2015), 10 mm is the shortest
tract length to be considered. Since DTI image has 2.2 mm
spacing, choosing n as 4 satisfies this constraint. In other words,
at least four consecutive cross-sectional areas must be found
within a fiber bundle where the PDD of each cross-sectional area
belongs to significantly different Bingham distributions for the
control and MDD groups.

RESULTS

The results of the performance tests that we performed to
investigate the effectiveness of TPDS are as follows.

Comparison of VBA and TBSS With
TPDS Using Directional Statistics
As can be seen in Table 1, among VBA, TBSS, and TPDS, the
best fitted distribution is more representative in TPDS because
the goodness of fit scores are better according to p values. In
addition, based on the results of TPDS, the Bingham distribution
is reported to be more favorable than the Watson distribution
because only 2 out of 48 white matter tracts are represented
better with Watson. Obviously, it is evident that TPDS is a
better alternative to represent tracts in comparison with VBA and
TBSS, because it favors a more parametrical fit to the entire set
of fiber tracts.

A close inspection of Table 1 reveals that in terms of
representing a given WM tract parametrically, TBSS is superior
to VBA, and TPDS is superior to TBSS. It is evident that VBA
contains more noise than TBSS and TPDS, because it contains
the entire WM area from all subjects. Due to high noise, VBA fails
to represent some of the tracts parametrically. On the other hand,
TBSS is better than VBA, because it removes the areas—hence the
noise associated in these parts—that lie outside the fiber bundles
which constitute the skeleton. However, TBSS is not better than
TPDS, because it smooths out the tracts while forming the
skeleton and loses specificity. Overall, the tract profiles computed
in TPDS are selective in choosing representative samples of the
DWIs that are more informative, because outliers are removed
while computing the medial line. Since the data points all belong
to the same tract and on the same cross section over the medial
line, very similar diffusion properties are expected for each
analysis point. This tends to eliminate all negative effects of
misalignment of images and partial volume effect. Due to this
property, the computational effectiveness of TPDS is higher than
other methods, because the model can be decided with much less
number of data points.

The advantage of the Bingham distribution might be explained
through the ease of fitting a girdle distribution in comparison
with fitting a homogeneous mean direction distribution. The
girdle distribution allows for more parameters; hence, it
makes the development of a more general model possible.
Furthermore, the computational accuracy of the Bingham
distribution is better because the tracts represented with this
distribution fit to the PDD of the actual tracts with a smaller
p value.

Comparison of the Group Differences in
Connectivity Maps Using
Network-Based Statistics and TPDS
In NBS, with corrected p < 0.005, seven regions and eight
connections have been observed to contain lower FA in
MDD. Particularly, the connections in the right hemisphere
and between the superior frontal cortex and rostral/caudal
components of the anterior cingulate cortex, caudate, and inferior
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TABLE 1 | Comparison of voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) with tract profiling and directional statistics (TPDS) (VBA and TBSS have
been adapted to run directional statistics).

WM tract VBA model (p value) TBSS model (p value) TPDS model (p value)

Middle cerebellar peduncle No fit (0.803) No fit (0.425) Bingham (0.021)

Pontine crossing tract No fit (0.092) Bingham (0.043) Bingham (0.004)

Genu of corpus callosum Bingham (0.030) Bingham (0.032) Bingham (0.007)

Body of corpus callosum Bingham (0.001) Bingham (0.001) Bingham (0.031)

Splenium of corpus callosum Bingham (0.046) Bingham (0.036) Bingham (0.045)

Fornix (column and body of fornix) No fit (0.707) No fit (0.135) Bingham (0.017)

Corticospinal tract R No fit (0.067) No fit (0.087) Bingham (0.048)

Corticospinal tract L No fit (0.541) Bingham (0.041) Bingham (0.025)

Medial lemniscus R No fit (0.706) Watson (0.046) Bingham (0.036)

Medial lemniscus L No fit (0.278) No fit (0.078) No fit (0.090)

Inferior cerebellar peduncle R Watson (0.019) Watson (0.037) Bingham (0.016)

Inferior cerebellar peduncle L No fit (0.970) No fit (0.570) Bingham (0.019)

Superior cerebellar peduncle R Watson (0.032) Bingham (0.042) Bingham (0.045)

Superior cerebellar peduncle L Watson (0.026) Bingham (0.044) Bingham (0.012)

Cerebral peduncle R No fit (0.064) Bingham (0.044) Bingham (0.023)

Cerebral peduncle L No fit (0.078) Bingham (0.032) Bingham (0.022)

Anterior limb of internal capsule R Watson (0.030) No fit (0.079) Watson (0.023)

Anterior limb of internal capsule L Bingham (0.002) Bingham (0.038) Watson (0.025)

Posterior limb of internal capsule R Watson (0.014) No fit (0.067) Bingham (0.008)

Posterior limb of internal capsule L Bingham (0.017) Bingham (0.033) Bingham (0.033)

Retrolenticular part of internal capsule R Watson (0.034) No fit (0.074) No fit (0.083)

Retrolenticular part of internal capsule L Watson (0.015) No fit (0.065) No fit (0.106)

Anterior corona radiata R No fit (0.278) Bingham (0.012) Bingham (0.045)

Anterior corona radiata L Bingham (0.0012) Bingham (0.002) Bingham (0.001)

Superior corona radiata R Watson (0.043) Bingham (0.009) Bingham (0.001)

Superior corona radiata L No fit (0.165) Bingham (0.035) Bingham (0.019)

Posterior corona radiata R Watson (0.002) Bingham (0.017) Bingham (0.002)

Posterior corona radiata L Watson (0.001) Bingham (0.019) Bingham (0.006)

Posterior thalamic radiation R Bingham (0.003) Bingham (0.002) Bingham (0.024)

Posterior thalamic radiation L Bingham (0.006) Bingham (0.002) Bingham (0.009)

Sagittal stratum R No fit (0.188) No fit (0.488) Bingham (0.032)

Sagittal stratum L No fit (0.065) No fit (0.265) Bingham (0.047)

External capsule R Bingham (0.006) Bingham (0.006) Bingham (0.001)

External capsule L Bingham (0.001) Bingham (0.001) Bingham (0.001)

Cingulum (cingulate gyrus) R Bingham (0.015) Bingham (0.033) Bingham (0.003)

Cingulum (cingulate gyrus) L Bingham (0.002) Bingham (0.001) Bingham (0.001)

Cingulum (hippocampus) R Watson (0.004) Bingham (0.004) Bingham (0.001)

Cingulum (hippocampus) L No fit (0.118) Bingham (0.019) Bingham (0.041)

Fornix (cres)/stria terminalis Bingham (0.04) No fit (0.050) Bingham (0.009)

Fornix (cres)/stria terminalis Bingham (0.012) No fit (0.128) Bingham (0.005)

Superior longitudinal fasciculus R Watson (0.002) Bingham (0.043) Bingham (0.021)

Superior longitudinal fasciculus L Watson (0.025) Bingham (0.040) Bingham (0.011)

Inferior fronto-occipital fasciculus R Bingham (0.025) Bingham (0.008) Bingham (0.003)

Inferior fronto-occipital fasciculus L Bingham (0.004) Bingham (0.062) Bingham (0.002)

Superior fronto-occipital fasciculus R Bingham (0.003) Bingham (0.018) Bingham (0.001)

Superior fronto-occipital fasciculus L Bingham (0.044) Bingham (0.026) Bingham (0.006)

Uncinate fasciculus R No fit (0.483) No fit (0.091) Bingham (0.003)

Uncinate fasciculus L No fit (0.896) Bingham (0.039) Bingham (0.002)

Tapetum R No fit (0.595) No fit (0.092) Bingham (0.092)

Tapetum L No fit (0.535) No fit (0.103) Bingham (0.004)

parietal cortices had lower FA in MDD. These connections are
shown in Figure 9 as green lines.

In TPDS, significantly different connections between the
healthy and MDD groups are seen in Figure 9 as red lines.

The thickness of the lines reflects the weights or in other
words the number of cross-sectional areas above the threshold
n (e.g., A weight value of 1 indicates that there exists only
one slice cluster with significantly different n contiguous tract
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profiles, whereas a weight value of 6 indicates that there
exist 6 disjoint clusters of n contiguous tract profiles that are
significantly different). The right hemisphere differences reported
by NBS, namely the frontal (superior frontal and rostral middle
frontal) and medial (caudal and rostral anterior cingulate), are
also detected by our method. But, additionally, TPDS revealed

differences between the healthy and MDD populations in limbic,
temporal cortex, occipital cortex, and hippocampal connections,
as well as a few left hemisphere areas such as the amygdala,
hippocampus, and thalamus.

The strength of the tract profile structure lies in the reduction
of the misalignment problem. Furthermore, observations of the

FIGURE 6 | Bingham Distribution.

FIGURE 7 | PDD projections modeled by the Bingham Distribution. (A) Separated (Left) versus overlapping (Right) vector projections of PDDs on unit sphere for two
different subject groups shown with blue and red. (B) Statistically significant (Left) versus insignificant (Right) differencs between populations.
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directional changes become more specific because contributions
of the local changes can be reported along the tract not by the
contribution of isolated voxels but by several slices across the two
ROIs. Therefore, the proposed directional statistics comparison is
expected to be a superior differentiator for especially long tracts.

In order to verify this, the following analysis has been done.
Using TPDS, for each tract connecting 83 different regions, the
z-score of each length is plotted against the z-score of the number

of significantly different profile slices. For this purpose, the
maximum overlapping shape (skeleton) is used. When regression
lines are fitted to investigate the relationship with tract length and
the number of different clusters, it is seen that the likelihood of
finding clusters of voxels that differ in long tracts increase with
respect to path length. This has been also tested using a linear
regression model, where it has been found that the z-score of tract
length significantly correlated with the z-score of the number

FIGURE 8 | Comparison of VBA/TBSS with TPDS data processing pipeline.

FIGURE 9 | Map of ROIS with statistically different connectivity between control and patient groups. Green lines represent the common connections that are found
different between the groups using NBS. Red lines represent the significantly different connections detected by the directional statistics using tract profiling.
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of significantly different profile slices (p < 0.05, adjusted R2:
0.00162) as seen in Figure 10. Although the effect size is small, we
can indicate that TPDS is a powerful method to find differences
in two populations, especially as the tract lengths get longer.

DISCUSSION

In this study, we proposed a novel framework for WM fiber
connectivity analysis using TPDS. In contrast with other group
studies (Goodlett et al., 2009) that are based on FA values,
directional statistics deals with compact Riemannian manifolds,
which allow observations regarding local diversities of principal
diffusion directions of voxels in different groups of subjects.

Comparison of TPDS With Other
Techniques Used in Analysis of Groups
of DWI
Our pipeline implementation can be regarded as quantitative
tractography. We analyze diffusion properties on the exact tracts
and derive the statistics over sample points taking neighborhood
cells into consideration. A similar method has been offered by
Corouge et al. (2006) where diffusion properties along the fiber
tracts, called fiber property profiles, are extracted. In that study,
fiber tract parameterization was based on arc length parameter,
starting from each fiber’s intersection with an “origin” plane.
Goodlett et al. also proposed a similar tract profiling approach,
where diffusion properties are calculated along the tract for each
fiber bundle (Goodlett et al., 2009). Our method introduces
three main improvements to these quantitative tractography

methods. First, we are not just limiting the method with known
anatomical fiber bundles but can derive statistics from any pair
of connected gray matter areas. Second, we have introduced
skeletonization and pruning to allow for applying statistics only
within common areas across the groups. Third, we introduced
vector analysis using directional statistics over scalar analyses
such as FA, MD, etc.

There exist other methods which use directional statistics
in DTI (Schwartzman et al., 2005; Hutchinson et al., 2012).
However, these methods analyze group differences based on
ROIs, not fiber tracts, ignoring the underlying connectivity.
We have devised the tract profiling algorithm to operate on
relevant voxels among the fibers that connect each ROI obtained
from fully automatic brain segmentation and parcellation. Local
registration errors are reduced after calculating cross-sectional
area of the fibers and finding medial lines (i.e., profiles)
to continue tract analysis. Afterwards, Bingham distribution,
which is the most general form of directional distribution, is
used for tract-based directional analysis, ensuring minimum
parametric assumptions about the dataset. To the best of our
knowledge, this approach has not been implemented in group
analysis of DTI before.

Neurite orientation dispersion and density imaging (NODDI)
is a novel neurite imaging and analysis framework and provides
sensible neurite density and orientation dispersion estimates.
Unlike FA, NODDI analyzes density and orientation dispersion
separately. NODDI uses orientation distribution function (ODF),
defined as Watson distribution which constrains the dispersion
about the dominant orientation (Zhang et al., 2012). However,
Bingham distribution fits better to diffusion properties, in
comparison with Watson. Bingham-NODDI extends the NODDI

FIGURE 10 | Scatter diagram of z-score of tract lengths versus significantly different clusters.
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method by generalizing it with Bingham distribution to cover
anisotropic orientation dispersions of neurites (Tariq et al.,
2016). Similarly, in our study, we found that modeling ODF
using Bingham distribution explains the data better regardless
of the tract identification, be it through VBA, TBSS, or our
method, TPDS. A major difference between our approach and
NODDI is in the estimation of the dispersion. The modeling
we used to implement the Bingham distribution estimates
dispersion in the vicinity of the dominant orientation, separately
for the primary and secondary dispersion orientations. This
eliminates the key limitation of NODDI, failing to model
complex neurite configurations such as those arising from
fanning and bending axons. On another front, just like ours,
orientation dispersion (ODI) generated by the NODDI method
can be also used with the TBSS method instead of FA metric
(Timmers et al., 2016; Taoka et al., 2020). In this aspect,
the main difference between our method and NODDI is
in extending fiber dispersion along the tracts that connect
two ROIs. By allowing such extension, our method enables
using fiber dispersions as track characteristics and analyzing
disease-related effects on connectivity of the tracks rather than
the voxel.

We have demonstrated that in addition to scalar diffusibility
changes, analyzing principal diffusion directions along a tract
detects local changes better than scalar values. The strength
of the directional statistics-based analysis we proposed lies in
its applicability to TBSS and VBA as well; it is not limited
to tract profiles.

Voxel-based analysis needs to register the subject’s images to
a common coordinate frame. However, the fiber tracts do not
accurately align during this process due to variation in tract
size and shape. Especially, long-range fiber tracts contain more
shape variation across subjects (Wassermann et al., 2011), so
they are more prone to such misalignment. This problem is
still valid for TBSS because even the voxel skeletons do not
ensure that all relevant voxels correspond to the same tract
(de Groot et al., 2013).

In directional statistics, the misalignment problem though
the tract becomes more critical compared with scalar statistics
like FA. As seen from the results of the first set of performance
tests, tract profiles are superior structures for resolving the shape
differences in comparison with VBA and TBSS, because tract
profiles are better in terms of fitting a model to PDD vectors.
We investigated the goodness of fit characteristics of VBA and
TBSS, respectively, on all WM areas and on skeletonized WM
areas using directional statistics. We found that several tracts in
VBA and TBSS are rejected to fit to the most general Bingham
distribution which contains minimum assumptions about the
data. In comparison when tract profiling is used, most tracts
could be fit parametrically, except a few. A parametrical model
is advantageous in data processing, since it facilitates population-
based comparisons.

The aforementioned tests also show how directional statistics
can be adapted to the widely used analysis methods such as TBSS
or VBA. Instead of FA values, PDD vectors can be used over

each voxel within the skeleton. FA metric uses eigenvalues of
the underlying diffusion characteristics of the voxel and defines
only the amount of diffusion asymmetry where PDD uses the
first eigenvector of the diffusion characteristic. The FA metric
is sensitive to the underlying fiber architecture and correlates
with PDD changes in disease conditions. However, FA does not
have direction property. Different orientations might result in
the same FA value simply because orientational changes of the
diffusion property of the voxel might not end with FA changes,
when there is a difference in eigenvector orientation but not its
value. So, the FA metric is not as sensitive as PDD in detecting
diffusion characteristic differences along the fiber track. As can
be seen in Table 1, Bingham distribution fits better to describe the
differences in the majority of white matter tracks. Further studies
should be conducted to ease adaptation of directional statistics to
TBSS skeletons and also to resolve issues related to the multiple
comparison problem.

PDD analysis using directional statistics is not a summary
statistics of each track but a measurement of diffusional
properties of the fiber bundle connecting a pair of ROIs. The
statistics of each voxel along the fiber track are summarized
by many points using directional statistics along the fiber
bundle. Fiber bundle skeletonization and normalization of PDD
over tract cross sections allows for error correction and noise
cancelation that might arise from tractography artifacts or
misalignment. This should also be valid for trajectory changes of
tracts under disease-related conditions, as long as a prominent
disfiguration or an abnormal morphological change caused by
a tumor deviation does not severely divert the alignment of the
fiber bundles. In such a case, a lot of false positives may affect the
model along the fiber bundles, hindering the correct estimation
of PDDs along the actual but diverted tract.

During the second set of performance tests, the results of
TPDS and NBS are compared to see whether these methods
report the differences between the healthy and MDD populations
consistently. We found that most of the right hemisphere-specific
connectivity differences reported earlier in MDD have been
detected by both of these approaches. The results are much more
consistent among the shorter tracts such as frontal connections
of the anterior cingulate. However, TPDS reveals additional
connectivity differences mainly among longer tracts such as
those between temporal and occipital cortex as well as those
that contain areas with low FA values and higher crossing fibers
such as the amygdala, hippocampus, and thalamus. Another
strength of TPDS is due to its revelation about weights, which
indicate the amount of difference between the subject populations
along the tracts.

These findings are also consistent with MDD models proposed
by Drevets et al. (2008) and Mayberg (2003) where MDD can
be defined through a limbic–cortical dysregulation model. In
this model, the limbic–thalamo–cortical (LTC) circuits, involving
the amygdala, thalamus, and orbital and medial PFC, and the
limbic–cortical–striatal–pallidal–thalamic (LCSPT) circuits are
mainly the affected areas. These connections are found be
affected both using NBS and TPDS. Additionally, TPDS revealed
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temporal, parietal, and occipital cortex connections that are
different in MDD. Mainly the differences on inferior fronto-
occipital tracts can be also supported by other DTI studies that
report significantly decreased FA values among MDD patients
(Cheng et al., 2014).

The ROIs reported to have statistically significant connectivity
differences in MDD versus healthy participants are consistent
with the two well-known lateralization models of emotion.
According to the right hemisphere hypothesis, the right
hemisphere is dominant in processing emotions (Alves et al.,
2008). On the other hand, the valence hypothesis posits that
the left hemisphere processes positive (or approach-related)
information, but the right hemisphere processes negative (or
avoidance-related) information (Alves et al., 2008). Within
the context of MDD, hypoactivity in the left hemisphere
fronto-striatal loops indicates the lack of downregulation of
the subcortical areas. In Figure 9, TPDS—but not NBS—
reported differences in the connectivity of the left hemisphere,
amygdala, thalamus, and hippocampus, consistent with the
valence hypothesis. However, the abundant presentation of right
hemisphere ROIs in Figure 9 supports the right hemisphere
hypothesis indicating that the connectivity within the right
hemisphere may be a biomarker for MDD. TPDS revealed a
larger right hemisphere network which was sidestepped by NBS.
This network is predominantly composed of the basal temporal
lobe structures as well as occipital ROIs such as precuneus
and pericalcarine. The difference in the temporal and parietal
functionality in MDD is reported less in comparison with those
in front striatal structures; however, there is a growing body of
literature that focuses on the hypoactivity of the right hemisphere
temporal areas in MDD (Bruder et al., 2017). The detection of
such ROIs by TPDS is supportive of these studies reported in
Bruder et al. (2017). Finally, several rsfMRI biomarkers of MDD
are reported in Drysdale et al. (2017). After clustering these
biomarkers through machine learning techniques, four different
subtypes of MDD can be derived, based on four different clusters
of ROIs. Unfortunately, the temporal areas of the brain are
excluded in this study, due to a lack of data collection from several
participating research sites. However, the ROI network reported
by both NBS and TPDS in Figure 9 is also reported in Drysdale
et al. (2017), verifying our results in a much larger sample size.

In their meta-analysis of over 231 patients with MDD
and 261 comparison participants, Yi Liao et al. found four
consistent locations of decreased FA: white matter in the
right frontal lobe, right fusiform gyrus, left frontal lobe, and
right occipital lobe. Mainly, the right inferior longitudinal
fasciculus, right inferior fronto-occipital fasciculus, and right
posterior thalamic radiation were involved in such changes
(Liao et al., 2013). This covers most of the connection pairs
we have found in Figure 9, especially the right fusiform gyrus
connections with R. Inferior temporal, parahipppocampal, and
temporal gray matter are important because the NBS method
failed to reveal all of these areas consistent with the meta-
analysis.

In another meta-analysis (Wen et al., 2014), reduced FA
is reported in the DLPFC and UF of patients with late-
life depression (Wen et al., 2014). Those regions are part of

frontostriatal and limbic networks consistent with our findings
in Figure 9. This is also consistent with NBS analysis, especially
the connections colored in green.

Another recent meta-analysis study has analyzed WM
anisotropy and diffusivity in 1,305 MDD patients and 1,602
healthy controls (age range 12–88 years) from 20 samples
worldwide (van Velzen et al., 2020). On adults, lower FA was
observed in 16 of the 25 ROIs. The largest changes have
been found mainly in the anterior corona radiata (ACR),
corona radiata (CR), corpus callosum (CC), genu of the corpus
callosum (GCC), body of the corpus callosum (BCC), and
anterior limb of the internal capsule (ALIC). Significantly
lower FA was also observed in the superior fronto-occipital
fasciculus (SFO), sagittal stratum (SS), internal capsule (IC),
posterior corona radiata (PCR), superior corona radiata (SCR),
inferior fronto-occipital fasciculus (IFO), fornix/stria terminalis
(FXST), external capsule (EC), and cingulate gyrus of the
cingulum bundle (CGC). It is quite important to note that
most of these regions are better fitted by TPDS in comparison
with TBSS and VBA as revealed by our first test on these
methods. The superior fronto-occipital fasciculus (left–right),
sagittal stratum (left–right), superior corona radiata (left–right),
posterior corona radiata (left–right), superior fronto-occipital
fasciculus (left–right), inferior fronto-occipital fasciculus (left–
right), external capsule (left–right), fornix (cres)/stria terminalis
(left–right), and cingulum (left–right) are all better modeled
using TPDS. This is also true for the anterior and superior
corona radiata where only the right anterior corona radiata is
modeled better with TBSS skeleton. The parts of the corpus
callosum are on the other hand fitted better as the genu
of the corpus callosum for TPDS, the body of the corpus
callosum for VBA, and the splenium of the corpus callosum
for TBSS. Overall, the benefit of TPDS is demonstrated in
two different ways: 1. By fitting the underlying structural
connections to an analytical model in a better way 2. By capturing
wider network connectivity differences especially along longer
tracts.

CONCLUSION

To conclude, we have shown that by analyzing PDDs using
directional statistics, more insight is gained about fiber
tracts regarding differences between populations. While
other connectivity-based analysis methods may disregard the
differences between longer fibers, TPDS becomes more robust
as fiber tract length increases. In areas with low FA values, the
distribution of PDDs among the fiber tracts can differentiate
connectivity-based dysfunctions better, due to the power of
directional statistics. The directional statistics analysis suggested
here can also be applied by augmenting the existing methods,
namely TBSS and VBA. Such an addition to the existing methods
is valuable because it opens up the possibility to use parametric
fitting along with directional statistics. The proposed method
could be extended considering second and third directions of
the diffusion tensor. In a future study, this can be modeled
separately, fitting different distribution models for each direction
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and analyzing the statistical changes of each direction in
disease conditions.

When we implemented TPDS in two subject populations,
one healthy and the other with MDD, we found several WM
tract differences that are not reported in other methods such
as NBS and TBSS. It is imperative to use TPDS on other
subject populations and with more subjects to justify its strength
in comparison with other methods that perform WM tract-
based group analysis.
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