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High-throughput molecular biology studies, such as microarray assays of gene expression,
two-hybrid experiments for detecting protein interactions, or ChIP-Seq experiments for
transcription factor binding, often result in an “interesting” set of genes – say, genes that
are co-expressed or bound by the same factor. One way of understanding the biological
meaning of such a set is to consider what processes or functions, as defined in an ontol-
ogy, are over-represented (enriched) or under-represented (depleted) among genes in the
set. Usually, the significance of enrichment or depletion scores is based on simple sta-
tistical models and on the membership of genes in different classifications. We consider
the more general problem of computing p-values for arbitrary integer additive statistics, or
weighted membership functions. Such membership functions can be used to represent, for
example, prior knowledge on the role of certain genes or classifications, differential impor-
tance of different classifications or genes to the experimenter, hierarchical relationships
between classifications, or different degrees of interestingness or evidence for specific
genes. We describe a generic dynamic programming algorithm that can compute exact
p-values for arbitrary integer additive statistics. We also describe several optimizations
for important special cases, which can provide orders-of-magnitude speed up in the com-
putations. We apply our methods to datasets describing oxidative phosphorylation and
parturition and compare p-values based on computations of several different statistics for
measuring enrichment. We find major differences between p-values resulting from these
statistics, and that some statistics recover “gold standard” annotations of the data better
than others. Our work establishes a theoretical and algorithmic basis for far richer notions of
enrichment or depletion of gene sets with respect to gene ontologies than has previously
been available.
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INTRODUCTION
High-throughput studies often generate large sets of “interesting”
genes that must be further researched from available annotation
resources. This research may encompass literature reviews and
querying various databases. This process leads to a multitude of
information to consider for each gene as well as inconsistent gene
descriptions from one resource to another. The application of a
statistic to a particular annotation resource can identify the statis-
tically significant classifications common to the set of interesting
genes (Man et al., 2000; Berriz et al., 2003; Castillo-Davis and
Hartl, 2003; Diaz-Uriarte and Dopazo, 2003; Doniger et al., 2003;
Draghici et al., 2003; Hosack et al., 2003; King et al., 2003; Al-
Shahrour et al., 2004; Zhang et al., 2004; Khatri and Draghici,
2005). In this paper we generalize previous work by allowing genes
to have weighted memberships in classifications.

Weighted membership functions offer far more expressive
power than traditional binary membership functions, as we

demonstrate below. They allow us to represent complicated
relationships within an ontology, distinguish good from weak
representatives of a classification, account for the strength of evi-
dence from a high-throughput study, or more generally account
for relationships between different data sets. Thus, the extension
of gene ontology (GO) analysis to weighted membership is an
important one.

The problem of determining statistical significance under
weighted membership is more complicated than under binary
membership. There is a computational “cost” to the generality
we gain. In this sense, it is reminiscent of the well-known knap-
sack problem. The knapsack problem is trivially solvable if all
items have unit weight. If items have arbitrary weights, it is NP-
complete, although a pseudopolynomial-time dynamic program
can usually solve realistic instances quite efficiently. In similar
fashion, we derive a pseudopolynomial-time dynamic program-
ming algorithm for computing exact p-values for the statistical
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significance of enrichment or depletion of classifications under
weighted membership. Moreover, we show that for several specific
weighted membership functions, the algorithm can be specialized
to gain greater computational efficiency. We apply these methods
to two test data sets, where we show that weighted member-
ship functions are better able to extract biologically meaningful
classifications than traditional binary analysis.

GENE ONTOLOGY
Our methods are not restricted to any particular ontology, but
because of its popularity, we focus on the well-known GO. GO
(The Gene Ontology Consortium, 2000) is a controlled, hierar-
chically organized vocabulary that aims to provide a consistent
description of genes to the biological community, along with rela-
tionships between these descriptions. GO includes three principal
classifications: molecular function, biological process, and cellular
component, as well as many more specific classifications. Mole-
cular functions are the biochemical roles of genes, for example,
GTPase activity. Biological processes involve one or more mole-
cular functions over multiple distinguished steps. An example of
this would be mitosis, where each interaction of proteins in the
progression of the cell cycle would be considered a step. Cellular
components are described as the localization of a protein in the
cell or its membership in a complex. An example would be the
proteins that are members of the ribosomal complex.

The relationships between classifications define a directed
acyclic graph (DAG), in which vertices in the DAG correspond to
classifications and a directed edge from classification X to classifi-
cation Y means that Y is a direct specialization of X. Some authors
assume that there is no more general classification than the three
principal classifications. We assume a root vertex gene ontology,
with the principal classifications as children. Having defined a
root, we therefore discuss the GO DRAG (Directed Rooted Acyclic
Graph) in the rest of this paper. All vertices except the root have
at least one parent, and may have more. Hexose biosynthesis, for
example, has two parents, hexose metabolism and monosaccharide
biosynthesis (The Gene Ontology Consortium, 2000).

Genes may be mapped to one or more classifications. A map-
ping is the association of a gene to a classification. Cytochrome
c is one such example; it is mapped to the molecular function
classification electron transporter activity, the biological process
classifications oxidative phosphorylation and induction of cell death,
and cellular component classifications mitochondrial matrix and
mitochondrial inner membrane. As parent vertices are less specific
classifications than their child vertices, genes mapped to the child
vertices are understood to be also described by the parent vertices.
We say that gene X is a member of classification Y if X is directly
mapped to Y or if it is mapped to any classification that specializes
Y – that is, to any classification which is reachable in the DRAG
from Y.

While GO provides classifications that can be used to describe
the genes in an interesting set, it does not provide guidance on
which of the classifications are of interest to researchers for fur-
ther investigation. The number of classifications to consider can be
reduced by focusing on classifications that are enriched or depleted
as defined in a statistical framework (Draghici et al., 2003; Zeeberg
et al., 2003).

WEIGHTED MEMBERSHIP IN CLASSIFICATIONS
Suppose a gene g has been flagged as interesting based on a lab-
oratory experiment. For example, gene g may be differentially
expressed in a microarray experiment or may have a specific post-
transcriptional modification. Now consider a classification v. Does
g provide evidence, and if so, how much, for the involvement of
classification v in the condition under study? The simplest heuris-
tic would be to say that g provides evidence for v if and only if g is
a member of v (Draghici et al., 2003; Zeeberg et al., 2003). How-
ever, one may also consider weighted membership scores, which
might account for relationships between classifications, degrees of
differential expression, or other knowledge. For example, consider
the DRAG and gene mappings depicted in Figure 1. Gene g 2 is
mapped to classifications v7 and v8. If g 2 is flagged as interesting,
we do not know if it is because of the involvement of v7, v8, or
both. In any case, however, the flagging of g 2 indicates the involve-
ment of classification v4. So, we might interpret g 2 as providing
stronger evidence, or greater weight, for v4 than either of v7 and v8.
Then again, if g 5 is also flagged, and has much greater differential
expression than g 2, we might decide the strongest evidence is for
classification v6. Conversely, some genes in a classification many
never be differentially expressed, and that should not be taken as
evidence against the classification. For example, in signaling or
metabolic pathways, it is common for many proteins to be ubiq-
uitously expressed at a basal rate, whether the pathway is active or
not. One might want to give such genes small or even zero mem-
bership weight in that pathway – for the purpose of determining
which pathways are represented in the interesting set of genes – so
that when the genes that are regulated change their expression, the
activity in the pathway is more apparent. Thus, we wish to be able
to determine significance for more general notions of evidence, or
weighted membership functions.

Given a DRAG and a population set of genes G, we define a
weighted membership function Φ:G×V→Z+, where V is the
set of all classifications and Z+ is the set of non-negative integers.
Φ(g, v) is always zero if g is not a member of v, but otherwise
Φ(g, v) is unconstrained. The standard membership function is
an important special case, which we will denote by Φ1(g, v)= {1
if g ∈ v ; 0 if g /∈ v}. We will consider two other weighted mem-
bership functions, although many interesting choices are possible.
We define Φ2(g, v) as the number of paths in the ontology DRAG
from v to any vertex v ′ to which g is mapped. This is intended to
account for situations such as for g 2 in the example of the previ-
ous paragraph. In that example, Φ2(g 2, v7)=Φ2(g 2, v8)= 1, but
Φ2(g 2, v4)= 2, indicating that, all other things being equal, we
have greater confidence that g 2 is representative of classification
v4 than it is of either v7 or v8 under any particular circumstance.
For Φ3 we assume access to an integer-valued vector X, where X(g )
might represent, for example, a discretized measure of differential
expression from a high-throughput gene expression experiment.
We define Φ3(g, v)= {X(g ) if g ∈ v ; 0 if g /∈ v}.

Ultimately, we want to assess the enrichment or depletion
of a set of genes with respect to a classification. For this pur-
pose, any weighted membership function Φ can be generalized
to take as input a set of genes H and a classification, simply by
summing the scores of the individual genes. That is, Φ(H, v)=
Σg∈HΦ(g, v).
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FIGURE 1 | Schematic of GO. Abstract example of an ontology illustrating the
principles of the GO DRAG and the scoring functions Boxes labeled with Root

or n correspond to classifications Sets represent the genes directly mapped
to each classification. The broken line indicates the subgraph rooted at v − i.

P -VALUES FOR THE SIGNIFICANCE OF ENRICHMENT OR DEPLETION
We assume now that a laboratory experiment has flagged a set
of interesting genes H, and we want to know whether the set H
provides evidence for a classification v. We choose a weighted
membership function ΦA, and want to know whether ΦA(H, v) is
significantly greater than would be expected by chance. To define
this precisely, we must account for properties of the interesting set,
H. If H is large, for example, we generally expect higher classifi-
cation scores, and thus the threshold for significant enrichment
ought to be higher. More generally, we allow conditioning not
just on the size of H, but on the score of the set H under any
weighted membership function ΦB evaluated at the root classifi-
cation. Thus, let H ′ represent a random subset of G, which we take
to be uniformly distributed over all subsets of G satisfying ΦB(H ′,
r)=ΦB(H, r), where r is the root classification. In general, we
consider p-values for enrichment of classification v of the form:

Prob
(
ΦA

(
H ′, v

) ≥ ΦA (H , v) |ΦB
(
H ′, r

) = ΦB (H , r)
)

(1)

where ΦA and ΦB can be any two weighted membership functions
and r is the root classification. We use the shorthand notation
ΦA | ΦB to denote this p-value. (See Figure A1 in Appendix
for some worked examples based on Figure 1.) The p-value for
depletion simply has the inequality reversed.

In the special case that ΦA=ΦB=Φ1, the condition ΦB(H ′,
r)=ΦB(H, r) implies that H ′ is restricted to sets of the same size as
H and ΦA(H ′, v) is just the number of genes in H ′ that are mem-
bers of v. The p-value is then just the widely used membership
p-value, which can be computed via the hypergeometric equation
as (Draghici et al., 2003; Zeeberg et al., 2003):

c∑
n=Φ1(H ,v)

(
N
n

) (
M
m

)
(

M + N
c

) (2)

where N is the number of genes that are members of v, M is the
number of genes in G that are not members of v, c= |H|, and
m= c − n. We can also write this without reference to N, M, or c
using the substitutions N=Φ1(G, v), M=Φ1(G, r)−Φ1(G, v)
and c=Φ1(H, r). More generally, if ΦB=Φ1 but ΦA is not equal
to Φ1, then the p-value represents the chance of getting a score
ΦA(H ′, v)≥ΦA(H, v) if H ′ is uniformly random from all sets of
genes of the same size as H.

The simple formula for Φ1 | Φ1 is often introduced in the con-
text of ball-and-urn models. One imagines N red balls and M blue
balls mixed together in an urn, and then c balls are drawn from
the urn randomly but without replacement. This metaphor fails
for general ΦA | ΦB for two reasons. First, because membership is
weighted, the balls, corresponding to genes, do not have equal
significance. Second, because a gene g may have ΦA(g, v) > 0
and ΦA(g, v) �=ΦB(g, r) > 0, the balls may be not just strictly
red or blue but some combination of both. There is no sim-
ple formula for ΦA | ΦB in general, but in the next section we
describe dynamic programming algorithms for computing this
p-value.

Due to representation of GO as a DRAG and the mapping of
genes to GO, an exact method for measuring such p-values has
never been proposed. More precisely, the main challenges pre-
sented by the GO model are the lack of independent and unique
genes. As genes can be mapped to one or more classifications, they
are not unique. For example, in Figure 1, g 6 is mapped to both v2

and v5. Due to this feature of the model, genes can be reachable
in both a subgraph rooted at v and in its complement v̄ . Thus,
such genes are not independent as selecting them in v will also
require that they be selected in v̄ . For example, in Figure 1, g 1 is
reachable in both the subgraph rooted at v4 (mapped to v7) and
at its complement (mapped to v2).

Looking at Figure 2, one can better appreciate the difference
in an unweighted versus a weighted model. Unweighted values
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FIGURE 2 | Urn representation of Figure 1 diagram illustrating the

principles of independent versus interrelated models. Gray balls (genes)
are those found at or below v 4 and white balls (white) are those found in the

rest of the DRAG. (A) Gray and white balls (genes) in urn arc independent. (B)

Gray and while (genes) in urn are interrelated, the GO DRAG and the scoring
functions. The solid lines indicate that balls (genes) are related.

can be seen as the balls in urn A. As these balls are independent,
the possible observations can be easily modeled by the hyperge-
ometric. Under a weighted model, this is not possible due to the
interrelated nature of the balls. The balls in urn B are dependent
as they are attached by a string, hence the hypergeometric model
cannot be used to model observations of randomly picking balls
from urn B. Thus, the probability of observing two gray balls given
four balls were selected from urn B is 0.16.

Our primary technical contribution is to describe how to deter-
mine p-vales given a model where one cannot assume gene weights
to be independent or unique. Precise computation of the p-values
allows greater confidence in biological assertions made based on
the statistical modeling.

MATERIALS AND METHODS
Exact computation of the p-value (Eq. 1) is NP-complete, for
example, by reduction from the 0 to 1 knapsack problem.
Like the 0–1 knapsack problem, however, it can be solved in
pseudopolynomial-time by a dynamic programming method. We
first describe a generic dynamic programming method for com-
puting the p-value, and then describe several improvements and
special cases that can significantly speed the computation.

NAÏVE DYNAMIC PROGRAMMING APPROACH
We construct a two-dimensional table T, where T (a, b) repre-
sents the number of subsets H ′ of G for which ΦA(H ′, v)= a and
ΦB(H ′, r)= b. The main loop is over genes g in G. The update
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rule for the table (see line five below), T (a+ΦA(g, v), b+ΦB(g,
r))←T (a, b)+T (a+ΦA(g, v), b+ΦB(g, r)), is based on the
observation that any subset H ′ satisfying the constraints ΦA(H ′,
v)= a and ΦB(H ′, r)= b either includes the gene g or does not
include g. Values for a range from 0 to Amax=ΦA(G, v), and values
for b range from 0 to Bmax=ΦB(G, r). Line 8 of the code below
accounts for a set H ′ made up of only the gene g. To simplify the
presentation of the code, we have allowed it to access T outside of
these ranges; such values should always be taken to be zero.

(1) Initialize: T (a, b)← 0 for all a, b
(2) For each g ∈G
(3) For a= 0 to Amax

(4) For b= 0 to Bmax

(5) T (a+ΦA(g, v), b+ΦB(g, r))←T (a, b)+
T (a+ΦA(g, v), b+ΦB(g, r))

(6) End
(7) End
(8) T (ΦA(g, v),ΦB(g, r))←T (ΦA(g, v),ΦB(g, r))+ 1
(9) End

The desired p-value, ΦA | ΦB, is the computed as:

∑ΦA(G,v)
a=ΦA(H ,v) T (a, ΦB(H , r))∑ΦA(G,v)

a=0 T (a, ΦB(H , r))
(3)

The time complexity of this algorithm, measured by the num-
ber of table updates, is O(|G | Amax Bmax). The table entries
can easily become larger than integer or long integer precision,
and so it is necessary to use arbitrary precision arithmetic. Nev-
ertheless, this computation is feasible for typical problems in
which |G| may be of the order 103 or 104 and Amax and Bmax

may be of the order 103–105. This gives the p-value for enrich-
ment of only a single classification. If p-values for multiple,
even all, of the classifications are sought, the time complexity
is multiplied by the number of classifications being tested. For
particular choices of ΦA and ΦB, more efficient dynamic pro-
grams can be developed. This is the subject of the following
subsections.

IMPROVEMENTS TO THE NAÏVE DYNAMIC PROGRAM
Several changes to the naïve dynamic program can drastically
increase its computational and storage efficiencies. First, one only
needs the first ΦB(H, r) columns of the table T, as it is the last
column that is used in the computation of the p-value. Although a
simple observation, this can be a dramatic improvement if ΦB(H,
r) is small. For example, if ΦB=Φ1 and considering that typically
|H |= |G|, one could expect to save at least an order of magnitude
computation and storage.

Second, many genes g may have the same weights, ΦA(g, v)
and ΦB(g, r). We define the weight count Wi,j to be the number of
genes g with ΦA(g, v)= i and ΦB(g, r)= j. These groups of genes
can be treated simultaneously – if k of these genes are included in
a subset H ′, then the contribution to ΦA(H ′, v) and ΦB(H ′, r) is
the same regardless of precisely which k are chosen. If we add an

innermost loop over k to our dynamic program, the main update
rule above (step 5) can thus be restated as:

T
(
a + i∗k, b + j∗k

)← T (a, b)∗
(

Wi,j

k

)
+T

(
a + i∗k, b + j∗k

)
(4)

A third optimization is possible in the case that ΦA(g, v)= 0 for
many genes g. We can split the dynamic program into two tables,
T 1 and T 2. T 1(a, b) is the number of subsets H ′ of genes with
ΦA(H ′, v)= a and ΦB(H ′, r)= b, where H ′ is restricted to con-
tain only genes for which ΦA(g, v) > 0. T 2 is a one-dimensional
table in which T 2(b) is the number of subsets H ′ of genes with
ΦB(H ′, r)= b, where H ′ is restricted to contain only genes for
which ΦA(g, v)= 0. From these two tables, the original T (a, b)
can be reconstructed as T (a, b)=Σb

′ T 1(a, b′)∗T 2(b− b′).
These improvements can be used independently or combined

for the greatest effect, and may even be further improved in some
particular cases. In the next subsection we discuss three par-
ticular p-values we use in our experiments in relation to these
improvements to the dynamic program.

DYNAMIC PROGRAMS FOR Φ2 | Φ1, Φ2 | Φ2 AND Φ3 | Φ3

There are many possible choices for Φ, and many combinations,
resulting in different p-values for measuring the statistical signifi-
cance of enrichment or depletion of GO classifications. Recall that
in Section “P-Values for the Significance of Enrichment or Deple-
tion” we defined several possible choices of Φ (see also Table 1
for a notational reminder): Φ1 is the standard binary membership
function, Φ2(g, v) measured the number of paths in the DRAG
from v to any classification v ′ to which g is mapped, and Φ3(g,
v) is equal to some global “score” (e.g., differential expression)
assigned to g if g is mapped to v, and otherwise is equal to zero.
Here, we derived specialized, more efficient dynamic programs for
computing p-values involving these three choices of Φ. The first

Table 1 | Summary of notation used in this paper.

r Root of the ontology

v Vertex (classification) in the ontology

V Set of all vertices

v̄ The complement of v

g Gene

G Set of all genes

H Set of interesting genes (Subset of G)

H ′ Random subset of G

Φ(g, v ) Weighted membership of gene g in classification v (any non-

negative integer)

Φ1(g, v ) Counts the membership in the DRAG from v to any classification

v ′ to which g is mapped

Φ2(g, v ) Measures the number of paths in the DRAG from v to any

classification v ′ to which g is mapped

Φ3(g, v ) Is equal to some global “score” (e.g., differentiation expression)

assigned to g if g is mapped to v

Φ(H, v ) Sum of weighted memberships in classification v over all genes

g in set H
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is Φ2 | Φ1. Conditioning on Φ1 is perhaps most natural when H
is determined experimentally (say by a microarray study), because
the size of H often depends on some arbitrary significance cut-off
or other practical considerations. Secondly, we consider Φ2 | Φ2,

which may be more natural when genes of interest are not deter-
mined experimentally but based on some other property – for
example, sharing a particular transmembrane domain. Finally we
consider Φ3 | Φ3, which reflects an intuitively compelling situation
where one wishes to make use of expression level measurements,
which are common to many genomics studies. We describe the
implementations of these cases below.

We use all three optimizations described in Section “Improve-
ments to the Naïve Dynamic Program” to compute Φ2 | Φ1. In the
two-table decomposition, the second table does not actually need
to be computed, as T 2(b) is just M choose b, where M is the num-
ber of genes that are not members of classification v. The weight
counts Wi,j are zero for j �=1, so we can drop the j subscript and
refer simply to Wi. Let I be the maximum value of i for which Wi

is positive. The pseudocode for computing table T 1 is as follows.

(1) Initialize T 1(a, b)= 0 for all a, b
(2) For i= 1 to I
(3) For b= 1 to |H |
(4) For a= 1 to Amax

(5) For k = 1 to Wi

(6) T (a + k∗i, b + k)← T (a, b)∗
(

Wi

k

)
+

T (a + k∗i, b + k)

(7) End
(8) End
(9) End

(10) For k = 1 to Wi

(11) T (k∗i, k)← T (k∗i, k)+
(

Wi

k

)

(12) End
(13) End

To compute Φ2 | Φ1, the summation Σb
′T 1(a, b′)∗(M choose

(b− b′)) can be substituted for T (a, b) in Eq. 3. However, the
denominator is simply (|G| choose |H |) in this case, so we can
simply compute Φ2 | Φ1=ΣaΣb

′T 1(a, b′)∗(M choose (b− b′)),
where the a in the sum goes from Φ2(H, v) to Amax, and divide by
(|G| choose |H |).

For Φ2 | Φ2 we need to compute tables T 1 and T 2 explic-
itly. The straightforward computation of T 1 would be wasteful
because for any subset of genes H′ we have Φ2(H ′, r)≥Φ2(H ′,
v). Thus, all entries of T 1 below the main diagonal would be zero.
Instead, we slightly redefine T 1 so that the columns correspond to
Φ2(H ′, r)−Φ2(H ′, v) instead of just Φ2(H ′, r). For simplicity,
we omit the weight count optimization, so that the pseudocode
for computing T 1 is then:

(1) Initialize T 1(a, b)← 0 for all a, b
(2) For each gene g with Φ2(g, v) > 0
(3) For b= 0 to Φ2(G, r)−Φ2(G, v)
(4) For a= 1 to Φ2(G, v)

(5) T 1(a+Φ2(g, v), b+ (Φ2(g, r)−Φ2(g, v)))←
T 1(a, b)+
T 1(a+Φ2(g, v), b+ (Φ2(g, r)−Φ2(g, v)))

(6) End
(7) End
(8) T 1(Φ2(g, v),Φ2(g, r)−Φ2(g, v))←

T 1(Φ2(g, v),Φ2(g, r)−Φ2(g, v))+ 1
(9) End

The computation of T 2 is straightforward. T 2(b) is the num-
ber of ways of making Φ2(H ′, r) using only genes g, for which
Φ2(g, v)= 0. We use the weight count trick to speed to compu-
tation, defining J to be the maximum j for which W 0,j > 0. The
pseudocode for creating the table is as follows:

(1) Initialize T 2(b)← 0 for all b
(2) For j= 1 to J
(3) For b= 1 to Φ2(G, r)
(4) For k = 1 to Wj

(5) T 2(b + j∗k)← T 2(b)∗
(

Wj

k

)
+ T 2(b + j∗k)

(6) End
(7) End
(8) For k= 1 to Wj

(9) T 2(j∗k)← T 2(j∗k)+
(

Wj

k

)

(10) End
(11) End

The p-value Φ2 | Φ2 can be computed using Eq. 3 with the
substitution T (a, b)=Σb

′T 1(a, b′ − a)∗T 2(b− b′). The p-value
Φ3 | Φ3 can be computed similarly.

DATA SOURCES
To test our approaches, we used the OXPHOS-CR (oxidative
phosphorylation co-regulated) dataset (53 genes) from (Subra-
manian et al., 2005). The dataset can be characterized as containing
OXPHOS genes that are tightly co-regulated across many tis-
sues. Three other datasets were derived from this dataset, each
assigned 100, 300, and 500 additional random genes to mimic
noisy datasets.

We also applied the four methods of determining significance
described above (Φ1 | Φ1, Φ2 | Φ1, Φ3 | Φ3, and Φ2 | Φ2) to a
publicly available dataset concerning changes in gene expression
in the rat uterus at different stages of parturition (Girotti and
Zingg, 2003). The Girotti study used rat Genome U34A GeneChips
(Affymetrix) to measure five time-points in rat pregnancy: day 0,
day 20, at term but not in labor, at term and in labor, and post-
partum. The Girotti study presents a literature search for genes
showing differential expression in at least one time-point com-
parison. Filtering criteria applied in the study resulted in 4137
genes (Girotti erroneously reported the number as 4138) forming
the population set of genes, of which 431 interesting genes (non-
redundant genes that were differentially expressed between day 0
and any other time-point) were annotated using various annota-
tion resources (SwissProt, ExPASy, and other databases) into 17
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user-defined classifications. In our study, the GO DRAG was lim-
ited to vertices to which the 4137 genes (the set G) are mapped. The
431 genes were used to define the interesting set H. The GO defin-
itions were supplied by GO for the U34A GeneChip (Affymetrix;
(The Gene Ontology Consortium, 2000). For Φ3, X(g )= 2 for
average fold change over the first two time-points, 1 for less than
average fold change (less than X − 2 SD), and 3 for higher than
average fold change (greater than X+ 2 SD).

RESULTS AND DISCUSSION
In order to evaluate the quantitative performance of the meth-
ods, we ran them on the OXPHOS-CR dataset and took the 35
classifications that were annotated to this dataset to be a “golden
standard.” In practice, a set of interesting genes will not only be
composed of purely interesting genes but also noise (false posi-
tives). We therefore ran our methods on the “noisy” datasets that
were derived from the golden standard by the addition of random
genes (+100 genes,+300 genes,+500 genes).

The results, shown in Table 2, show that the Φ2 | Φ2 method was
able to maintain the ranking of golden standard classifications bet-
ter than the Φ1 | Φ1 (traditional hypergeometric) or the Φ2 | Φ1

methods when applied to the noisy datasets. Figure 3 provides the
ROC plot of the rankings of the classifications for the “noisy”
datasets resulting from the application of all three methods.
Looking at the added 500 random genes dataset (Figure 3A), it
is clear that the Φ2 | Φ2 method provides the best ranking of the
classifications. Looking again at Table 2, one can see that the meth-
ods differ with respect to specificity and sensitivity (with statistical
significance threshold set at p≤ 0.05). Overall, the Φ2 | Φ1 and
Φ1 | Φ1 had good specificity but poor sensitivity. In contrast the
Φ2 | Φ2 had much better sensitivity than the other two methods
but variable specificity. Likewise, Φ2 | Φ2 consistently had a better
AUC than the other two methods.

In order to further evaluate the performance of the methods,
we used the Girotti and Zingg (2003) study, which identified sev-
eral user-defined classifications without the use of any statistical

framework. In Table 3, we look at the analogous GO classifications
and compare p-values from the four methods described above.
Many of these classifications are significantly enriched at p≤ 0.05
according to at least one of the methods, or are weakly signifi-
cant. With regard to the biological relevance of the classifications,
defense response, cell motility, extracellular matrix, and cytoskeleton
maintained low p-values across all methods. This is consistent
with the parturition process, as it is involves immune suppres-
sion and cell remodeling. There are, however, some surprising
disagreements between the methods. For example, p-values for
protein modification range over four orders-of-magnitude, going
from 4.2× 10−5 (Φ2 | Φ2) to 0.923 (Φ3 | Φ3). (See Figure A2 in
Appendix for scatter plots of different pairs of p-values across
all classifications.) It was surprising that p-values could differ so
greatly between the methods. Table 4 shows how many classifi-
cations are identified as significantly enriched by each method
individually (main diagonal) and by each pair of methods (off
diagonal) using the p-value threshold of p < 0.05.

Table 2 | Comparison of methods with added noise.

Φ2 | Φ1 Φ2 | Φ2 Φ1 | Φ1

100 “NOISY” GENES ADDED

AUC 0.6969 0.7367 0.7107

Sensitivity 0.4857 0.8857 0.3142

Specificity 0.9488 0.3352 0.9261

300 “NOISY” GENES ADDED

AUC 0.7179 0.8002 0.7867

Sensitivity 0.4571 0.8000 0.4571

Specificity 0.9240 0.5379 0.9438

500 “NOISY” GENES ADDED

AUC 0.7241 0.8124 0.7754

Sensitivity 0.4000 0.7714 0.4571

Specificity 0.9401 0.7356 0.9476

FIGURE 3 | Maintenance of rank. The methods were compared based on
their ability to maintain the rank of the “golden standard” classifications. (A)

ROC plot of the rankings of the classifications from the added 500 random

genes dataset. (B) ROC plot of the rankings of the classifications from the
added 300 random genes dataset. (C) ROC plot of the rankings of the
classifications from the added 100 random genes dataset.
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A conspicuously different value for cytoskeleton, between
Φ2 | Φ2 and Φ1 | Φ1, can be observed in Table 3. While we have
discussed above (see Introduction) the theoretical difference in
how significance is computed under Φ2 | Φ2 and Φ1 | Φ1, it may
serve as an informative exercise to look at some of the numbers
that give rise to the difference in p-value for cytoskeleton under
these two settings. Under the setting of Φ1, 4 significant genes
are mapped to cytoskeleton out of a total possible 25. Under the
setting of Φ2, 10 significant paths are mapped to cytoskeleton out
of a possible 49. That is, while there are only 4 of 25 cytoskeleton
genes in the interesting set, they are multifunctional – account-
ing for a total of 10 paths to mappings (an average 2.5 per gene),
versus an average of slightly less than 2 paths to mappings for
cytoskeleton genes over all. Thus, while these paths may describe
different precise functions, they collectively implicate the over-
all cytoskeleton classification. Following up on the relevance of
the cytoskeleton classification with respect to this experimental
setting, it becomes clear that interesting genes mapped to it repre-
sent a biological reality worthy of distinguishing this category as
significant. One of these genes is TPM1, which is an Actin bind-
ing protein and provides stability to Actin filaments. Accordingly,
Actin is also present. Actin is a component of the cytoskeleton,
which provides mechanical support to the cell. Actin also works
with Myosin during muscle contraction in a calcium dependent
interaction mechanism. Myosin is also one of the interesting genes.
Myosin is a contractile protein whose function depends on the
hydrolysis of ATP. Together, the presence of these genes reflects
the physical demand placed on cytoskeleton with respect to the
contraction and remodeling of the uterus, which occur during
pregnancy (Slater et al., 2002; Wang and Hirsch, 2003; Salomonis
et al., 2005).

Table 3 | Comparison of methods on the Girotti and Zingg (2003) data.

Gene ontology φ1 | φ1 φ2 | φ1 φ3 | φ3 φ2 | φ2

Ribosome 0.093 0.078 0.956 5.91×10−5

Protein modification 0.842 0.653 0.268 4.21×10−5

Defense response 0.209 0.068 0.009 3.02×10−4

Lipid transport 0.423 0.423 0.601 0.285

Lipid metabolism 0.233 0.106 0.616 1.88×10−5

Intracellular protein transport 0.545 0.548 0.504 0.096

Hormone 0.308 0.113 0.248 0.552

Cell differentiation 0.281 0.281 0.423 0.791

Extracellular matrix 0.002 0.003 0.977 0.176

Cytoskeleton 0.259 0.125 0.432 0.017

Cell motility 0.022 0.024 0.128 0.003

Table 4 | Agreement of significance calls.

Method Φ1 | Φ1 Φ2 | Φ1 Φ3 | Φ3 Φ2 | Φ2

Φ1 | Φ1 23 21 10 12

Φ2 | Φ1 36 14 21

Φ3 | Φ3 56 24

Φ2 | Φ2 107

Computing p-values for all 397 classifications by Φ2 | Φ1,
Φ2 | Φ2, and Φ3 | Φ3 takes, on average, approximately 2 h. This is
longer than for Φ1 | Φ1 and other statistics in the literature (Kha-
tri and Draghici, 2005). However, it is still much more rapid than
annotation by hand (Girotti took weeks to construct her anno-
tation), and is readily justified by the time and expense that goes
into collecting the data. Indeed, although microarray data analysis
is typically “fast,” other modern types of analysis (e.g., analy-
sis of high-throughput sequencing data) typically takes hours or
even days, depending on their complexity. Using repeated weights
(Wi,j), which allowed us to treat genes with equal scores simulta-
neously, is an important factor in the speed of the algorithm. For
determining the value for a=Φ2(H ′, r), from table T, |W |= 54,
T had 5581 entries, and required 8,172,874 operations. With 4137
genes and Amax as large as 22771, the naïve dynamic program
would have required a table with approximately 500 million entries
(22771∗22771), and would have required approximately 2 trillion
updates (4137∗22771∗22771).

One may wonder whether exact computation of the p-values
is necessary as described here. While it is intuitive that approxi-
mations will differ from exact p-values, it is not readily apparent
that such approximations are inutile. For this reason, we used the
hypergeometric equation to approximate Φ2 | Φ2 and found that
values do indeed differ significantly. When compared, the two were
found to be only weakly correlated (R2= 0.2610). This is a con-
cern not only for ontological analysis, but for broader, integrative
analyses as well. Increasingly, the experimental design of high-
throughput experimentation has grown to include probabilistic
frameworks in which knowing the exact probabilities or p-values is
important. An example would be Bayesian modeling (Segal et al.,
2001). In large Bayesian networks, multiple classifications may
be used as factors for the inference. Small errors in p-values can
propagate when being used as conditioning values. Thus, exact
computation of p-values is important not just for determining
significance, but also for the sake of larger integrative studies.

Our dynamic programming approaches, for Φ2 | Φ2 in particu-
lar, can easily be generalized to compute p-values for other scoring
functions. For example, one might define the score of a gene X
with respect to a classification Y by the number of classifications
reachable from Y to which X is mapped. Of course, interesting
genes could also be selected based on features that have no direct
connection to expression or ontology structure, such as presence
of an amino-acid motif or of a common upstream motif. Our
methods are also applicable to other annotation resources available
to the bioinformatics community. For example, databases such as
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and
Goto, 2000) or Munich Information Center for Protein Sequences
(MIPS; Mewes et al., 2000), have organized annotations to which
statistics can be applied in a similar manner as described here.

While the methods presented here compute individual
p-values exactly, one must consider the use of such statistics in
context. Naïve application of these methods to a large num-
ber of candidate classifications creates a multiple hypothesis
testing problem and risks the identification of related classi-
fications. These problems can be addressed by adjusting the
p-value threshold and by sampling-based methods (Zhong et al.,
2004).
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APPENDIX

FIGURE A1 | Explicit examples of weighted membership functions and p-value computations.
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FIGURE A2 | Method comparisons (A–F) pair-wise p-value comparisons between methods, these scatter pots show the degree of agreement between

methods. R2 values are provided as a summary of the agreement.
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