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The QTL-allele system underlying two spectral reflectance physiological traits, NDVI
(normalized difference vegetation index) and CHL (chlorophyll index), related to plant
growth and yield was studied in the Chinese soybean germplasm population (CSGP),
which consisted of 341 wild accessions (WA), farmer landraces (LR), and released
cultivars (RC). Samples were evaluated in the Photosynthetic System II imaging
platform at Nanjing Agricultural University. The NDVI and CHL data were obtained from
hyperspectral reflectance images in a randomized incomplete block design experiment
with two replicates. The NDVI and CHL ranged from 0.05–0.18 and 1.20–4.78, had
averages of 0.11 and 3.57, and had heritabilities of 78.3% and 69.2%, respectively;
the values of NDVI and CHL were both significantly higher in LR and RC than in
WA. Using the RTM-GWAS (restricted two-stage multi-locus genome-wide association
study) method, 38 and 32 QTLs with 89 and 82 alleles and 2–4 and 2–6 alleles per locus
were identified for NDVI and CHL, respectively, which explained 48.36% and 51.35% of
the phenotypic variation for NDVI and CHL, respectively. The QTL-allele matrices were
established and separated into WA, LR, and RC submatrices. From WA to LR + RC, 4
alleles and 2 new loci emerged, and 1 allele was excluded for NDVI, whereas 6 alleles
emerged, and no alleles were excluded, in LR + RC for CHL. Recombination was the
major motivation of evolutionary differences. For NDVI and CHL, 39 and 32 candidate
genes were annotated and assigned to GO groups, respectively, indicating a complex
gene network. The NDVI and CHL were upstream traits that were relatively conservative
in their genetic changes compared with those of downstream agronomic traits. High-
throughput phenotyping integrated with RTM-GWAS provides an efficient procedure for
studying the population genetics of traits.

Keywords: annual wild soybean (G. soja Sieb. & Zucc.), cultivated soybean (G. max (L.) Merr.), chlorophyll index
(CHL), high-throughput phenotyping, normalized difference vegetation index (NDVI), QTL-allele matrix, restricted
two-stage multi-locus genome-wide association study (RTM-GWAS), spectral reflectance image

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 12 | Article 600444

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.600444
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.600444
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.600444&domain=pdf&date_stamp=2021-02-25
https://www.frontiersin.org/articles/10.3389/fgene.2021.600444/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-600444 February 23, 2021 Time: 12:38 # 2

Wang et al. QTL-allele System Underlying High-Throughput Traits

INTRODUCTION

With the rapid development of high-throughput genome
sequencing technology, high-quality genotype data can be
obtained quickly and cheaply, enabling the detection of
quantitative trait loci (QTL) at a high level of resolution through
genome-wide association studies (GWAS) (Shendure and Ji,
2008; Visscher et al., 2017). Previous QTL studies have primarily
focused on the collection of phenotype data (phenotyping)
for agronomic traits to achieve various breeding objectives. As
upstream biological traits often underlie breeding target traits,
there is much interest in identifying upstream traits for the
control of downstream agronomic traits. These upstream traits
generally consist of some physiological or biochemical traits
that are time-consuming and difficult to identify without the
appropriate tools. Both high-quality genotype and phenotype
data are required for accurate and powerful QTL detection.
Because of improvements in the reliability of current genotyping
technologies, obtaining high-quality phenotype data in QTL
studies has become a major challenge (Cobb et al., 2013).
Recently, spectral reflectance has been developed as a high-
throughput phenotyping technique (Rebetzke et al., 2019; Watt
et al., 2020). Remote-sensing images have been widely used to
measure crop traits, such as plant height, biomass, chlorophyll
content, disease susceptibility, drought stress sensitivity, nitrogen
content, and yield (Gitelson et al., 2003; Estrada et al., 2015;
Nigon et al., 2015, Holman et al., 2016; Jay et al., 2017, Salas
Fernandez et al., 2017; Pérez-Bueno et al., 2019). Specifically,
the approach is based on quantifying differences in canopy
spectral reflectance among varieties for the aforementioned traits
(Yang et al., 2017). The high-throughput phenotyping platform
usually consists of several sensors and automatic systems and
provides an efficient method for characterizing plant phenotypes
(Furbank and Tester, 2011).

Multispectral and hyperspectral reflectance images have been
widely used in high-throughput phenotyping platforms; the
spectral index has been found to be closely related to the
growth and development of crops (Duan et al., 2017). In
studies of hyperspectral remote-sensing technology, vegetation
indices are typically used to maximize the relationship between
certain reflectance wavelengths and plant function when the
effect of background noise is controlled (Huete et al., 2002;
Hatfield and Prueger, 2010). Most of the vegetation indices
are correlated with plant parameters, such as pigment status,
grain yield, NDVI (normalized difference vegetation index),
RVI (ration vegetation index), and GNDVI (green and near-
infrared difference vegetation index) (Wiegand et al., 1991;
Peñuelas et al., 1997; Lewis et al., 1998; Rutkoski et al., 2016).
NDVI is calculated based on the near-infrared spectrum and
red-light spectrum (Tucker, 1979), which has been extensively
used to evaluate crop growth and estimate nitrogen content,
nitrogen uptake, and nitrogen efficiency in crops (Erdle et al.,
2011; Samborski et al., 2015; Foster et al., 2017). Studies
of crop diseases have also shown that NDVI can be used
for crop disease assessment (Kumar et al., 2016). More
recently, studies have shown that NDVI is closely related to
crop yield (Hassan et al., 2019). Zhang et al. (2019) used

hyperspectral remote sensing to establish plot-yield prediction
models for field selection in large-scale soybean breeding
programs. Specifically, they found that NDVI and RVI were the
best combination of vegetation indices for plot-yield prediction
in their models.

Chlorophyll is the primary component involved in plant
photosynthesis and is closely related to biomass accumulation
and yield formation, making it critically important for crop
improvement. The rapid and non-destructive estimation of
chlorophyll content facilitates genetic studies of chlorophyll.
Chlorophyll content can be predicted using different wavelength
spectra; for example, there is a strong correlation between the
reflectance ratio of the near-infrared band to the 700-nm band
and chlorophyll content (Gitelson et al., 2003). The hyperspectral
sensor in the high-throughput phenotyping platform is often
used to estimate the chlorophyll index (CHL), and this index
has been widely used to evaluate chlorophyll content, crop biotic
stress, and abiotic stress (Estrada et al., 2015; Awlia et al., 2016;
Pérez-Bueno et al., 2019).

NDVI and CHL are both spectral reflectance physiological
traits related to plant growth and yield. To evaluate the
usefulness of these traits in breeding programs, knowledge of
their variability and genetic basis in germplasms is essential.
Previously, the measurement of these two physiological traits
was tedious and often not possible using traditional instruments.
Now, multispectral and hyperspectral images have greatly
facilitated the measurement of these traits. The greenhouse
high-throughput phenotyping platform (GHTPP) in the Plant
Phenomics Research Center (PPRC) at Nanjing Agricultural
University (NJAU) has been used by several studies. Phenotype
data from the high-throughput phenotyping platforms of
previous studies have primarily been used for the prediction of
agronomic traits, such as plant yield (Maimaitijiang et al., 2020).
However, there is a need for more studies to assess the genetic
basis of high-throughput spectral reflectance phenotypes.

The aims of this study were the following: (i) characterize
variation in two spectral reflectance physiological traits, NDVI
and CHL, in the Chinese soybean germplasm population (CSGP),
including wild accessions (WA), cultivated farmer landraces
(LR), and released modern cultivars (RC), using the facilities and
equipment of the GHTPP at the PPRC, NJAU, to compare wild
and cultivated soybeans; (ii) explore genetic variation in QTL-
alleles through association mapping using the novel RTM-GWAS
procedure and evolutionary changes from WA to LR and RC;
(iii) predict the genetic potentials of the germplasm population
through recombination among the accessions; and (iv) predict
the candidate genes as well as the gene constitutions of NDVI and
CHL in the CSGP based on information in SoyBase1.

MATERIALS AND METHODS

Plant Materials and Experimental Design
A total of 341 soybean accessions of the CSGP, including
76 WAs, 83 LRs, and 182 RCs, were sampled in this study.

1http://soybase.org
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A randomized incomplete block design experiment with two
replicates was conducted for high-throughput phenotyping.
Because of the space limitations of the high-throughput
phenotyping platform, the accessions were randomly divided
into two groups. Two replicates of the phenotyping experiment
were performed for the first group of 172 accessions on
September 9, 2019 and October 13, 2019, and for the second
group of 169 accessions on November 20, 2019 and May
1, 2020. For each test, approximately 4∼5 viable seeds were
selected from each accession and were planted in a plastic
pot (823 × H17 cm). The experimental soil was a 3:1
mixture of vermiculite and nutrient soil; one best soybean
seedling remained in each pot on the seventh day after
sowing. The temperature in the greenhouse was maintained
between 25–33◦C, and light was provided for 16 hours
(06:00 to 22:00).

High-Throughput Phenotyping
The greenhouse high-throughput phenotyping platform at
the PPRC, NJAU, was used for phenotyping. The platform
consisted of a planting area, irrigation area, and PSII
(Photosynthetic System II) imaging room. An automatic and
high-throughput transfer system was used to transfer plants from
the planting/growing area to the imaging room. The PSII imaging
room was equipped with a camera system (CropReporter,
Phenovation B.V., Netherlands, https://www.phenovation.com/)
with a CCD (charge-coupled device) camera, spectral LEDs
(light-emitting diodes) for actinic treatment, an illuminated
area of 70 cm × 70 cm, and a spectral range of 350–
1000 nm. The spectral reflectance images were captured at
six different wavelengths. From these images, the NDVI and
CHL of the plant canopy for individual pots were estimated.
According to CropReporter, the NDVI was calculated as
(RNIR − Rred)/(RNIR + Rred), and the CHL was calculated
as R−1

700 − R−1
NIR, where RNIR, Rred, and R700 are the spectral

reflectance in the near-infrared band, the visible red band, and
the 700-nm wavelength band, respectively.

The platform was also equipped with the automatic
experiment management software IS Agriware Logistics
(Version2018.06.99, Indigo Logistics, Netherlands) to control
system operation, CropReporter (Version 4.4.2, Phenovation
B.V., Netherlands) to control the camera system, and the image
analysis software Data Analysis (Version 5.4.8-64b, Phenovation
B.V, Netherlands) to process the data. The two traits were
unitless, as they represent relative values of reflectance. All of
the NDVI and CHL values were obtained directly from the
platform system.

The automatic phenotype measurements began on the
sixth day after sowing (DAS6). Each pot with a plant was
transferred from the planting area into the PSII imaging room
to measure NDVI and CHL. Each pot was then returned
to the planting/growing area. This phenotyping process was
automatically executed every 3 days, and a total of nine
measurements (DAS6, DAS9, DAS12, DAS15, DAS18, DAS21,
DAS24, DAS27, and DAS30, which means the 6th, 9th,. . .,
and 30th day counting from sowing, respectively) were taken
throughout the experimental period for each accession type.

SNP Genotyping and SNPLDB Assembly
The 341 soybean accessions were genotyped with RAD-seq
(restriction site-associated DNA sequencing) in previous studies
(He et al., 2017; Fu et al., 2020; Liu et al., 2020). A total of 145,558,
82,966, and 98,482 SNPs were recovered in these three studies,
respectively, and the intersection of SNP data from different
studies was taken and filtered with a minor allele frequency > 2%
(each allele is present in at least six individuals). A total of 44,931
SNPs were obtained and used in the present study.

The RTM-GWAS (restricted two-stage multi-locus genome-
wide association study) procedure (He et al., 2017) was used for
QTL-allele detection in this study. With RTM-GWAS, a total
of 11,716 multi-allelic SNPLDB markers were assembled based
on the 44,931 genome-wide SNPs. The number of alleles of the
SNPLDB markers ranged from 2 to 11 with an average of 3.1,
enabling the detection of QTLs with up to 11 alleles per locus.

Statistical Analysis
The experiment consisted of an incomplete block design. The plot
values were adjusted using the block means according to the equal
block mean assumption because the material set in each block was
randomly selected; therefore, the entire experiment was treated as
a completely randomized design with two replicates. The linear
model for the adjusted dataset was yi = µ + gi + εi, where yi is
the observed corrected phenotype of the i-th accession, µ is the
population mean, gi is the genotypic effect of the i-th accession,
and εi is the random error following a normal distribution with
a mean of zero and variance of σ2. The analysis of variance of
the corrected phenotype data was performed using the PROC
GLM in SAS/STAT 9.4 (SAS Institute, Cary, NC), and variance
components were estimated using PROC VARCOMP with the
REML method. The trait heritability estimate was calculated as
h2
= σ2

g/(σ
2
g + σ2/r), where σ2

g is the genetic variance, and r is
the number of replicates. This h2 is heritability in narrow sense
because σ2

g contains only additive and additive by additive genetic
variance in selfpollinated soybean germplasm population.

Phenotype Data Selection
There were nine measurements (DAS6, DAS9, DAS12, DAS15,
DAS18, DAS21, DAS24, DAS27, and DAS30) for each trait (NDVI
or CHL) each accession. The trait heritability value was used to
assess the goodness of the trait expression, and the measurement
with a highest heritability value was chosen to represent the
trait. Therefore, the variance components and heritability values
were estimated based on analysis of variance for all the nine
measurements, and the measurement with the highest trait
heritability value was used for genome-wide association study.

Restricted Two-Stage Multi-Locus
Genome-Wide Association Study
(RTM-GWAS)
The RTM-GWAS method was used for QTL-allele detection (He
et al., 2017). Briefly, RTM-GWAS first involved the construction
of multi-allelic SNPLDB (SNP linkage disequilibrium block)
markers by grouping multiple adjacent and tightly linked SNPs
through the LD-block partition. Second, the genetic similarity
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coefficient matrix based on SNPLDB markers was used to correct
for population structure bias by incorporating its eigenvectors
as model covariates. Finally, two-stage association analysis was
conducted to detect QTLs and their corresponding multiple
alleles based on a multi-locus multi-allele model. The linear
model of RTM-GWAS in matrix form is y = 1µ+Wa+ Xb+ e,
where y is the phenotype, µ is the population mean, W is
the eigenvector matrix representing the population structure,
X is the design matrix of locus genotype, a and b are vectors
of corresponding effects. At the first stage, X includes only a
single SNPLDB marker for pre-selection. At the second stage,
X includes multiple SNPLDB markers for multi-locus modeling.
In the present study, at the first stage under the single locus
model, 1,296 and 2,147 SNPLDBs were pre-selected from the
11,716 SNPLDBs for the second stage of stepwise regression
association analysis under the multi-locus model for NDVI and
CHL, respectively. As the RTM-GWAS was based on the multi-
locus model having built-in control for the experiment-wise
error rate, a normal significance level of 0.05 was used for QTL
detection in this study.

Prediction of the Genetic Potential of
NDVI and CHL in the CSGP
To predict the recombination potential of the population,
all possible single crosses among entire accessions, among
subpopulation accessions, and between subpopulation accessions
were simulated in silico (He et al., 2017). For each cross, 2,000
inbred lines were derived, and the phenotypes were predicted
for each line according to the QTL-allele matrix. Finally, the
recombination potential of each cross was assessed using the 99th
percentiles of the predicted phenotype data.

Annotation of Candidate Genes and GO
Analysis of NDVI and CHL
According to SoyBase(see footnote 1), the candidate genes for
NDVI and CHL were annotated from the identified QTLs.
Next, the annotated candidate genes were subjected to gene
ontology (GO) analysis using the Williams 82 genome version
1 (Wm82.a1.v1.1) as the reference genome. The candidate
genes were searched within the interval (with a 50-kb flanking
expansion) of the associated loci. In order to have a preliminary
validation of the annotated candidate genes, the RNA Seq-Atlas
project data set in SoyBase (see footnote 1) was downloaded and
analyzed to assess the expression level of the annotated genes
for NDVI and CHL.

RESULTS

Phenotypic Variation of NDVI and CHL in
the CSGP
Phenotype measurements for each accession were taken nine
times on different days during growth (DAS6, DAS9, DAS12,
and DAS30); the trait heritability at each measurement ranged
between 16.0–78.3% and 25.4–69.2% for NDVI and CHL,
respectively. The NDVI at DAS21 and CHL at DAS24

had the highest heritabilities and were thus examined in
subsequent analyses.

The frequency distribution showed that the NDVI ranged
from 0.05 to 0.18 with an average of 0.11 (Table 1). The entire
population was separated into WA, LR, and RC subpopulations;
the mean NDVI of the WA was relatively small (0.07) with values
ranging from 0.05–0.13. The mean NDVI of LR and RC was 0.11
and 0.12, respectively, with values ranging from 0.06–0.18 and
0.06–0.17, respectively. The CHL frequency distribution of the
entire population ranged from 1.20 to 4.78, with an average of
3.57. The CHL mean of WA was 3.08 and ranged from 1.20–4.49;
the CHL mean of LR and RC was 3.68 and 3.72, respectively, and
ranged from 2.73–4.78 and 2.67–4.50, respectively (Table 1).

Both NDVI and CHL, two physiological traits related to
photosynthesis and growth, significantly differed between wild
(0.07, 3.08) and cultivated (0.11–0.12, 3.68–3.72) soybeans,
suggesting that cultivated soybeans have experienced significant
improvements in photosynthesis- and growth-related traits
following their domestication (Table 1). Thus, these basic
shortcomings of wild soybean should not be neglected when wild
soybeans are used to improve cultivated soybeans.

The analysis of variance revealed significant differences among
accessions for both NDVI and CHL, indicating that there was
significant genetic variation for the two spectral reflectance traits
(Supplementary Table 1). The trait heritability was estimated to
be 78.3% for NDVI and 69.2% for CHL (Table 1). These findings
indicate that phenotypic variation (PV) was primarily driven by
genetic factors, and the underlying QTLs or genes could be traced
through further genetic analysis.

Identification of the QTL-allele System
Determining NDVI and CHL in the CSGP
According to the RTM-GWAS procedure involving the use of
1,296 and 2,147 multi-allelic SNPLDB markers preselected at the
first stage for the second stage multi-locus multi-allele association
analysis, a total of 38 and 32 SNPLDBs, each with 2–4 and 2–6
alleles were determined to be significantly associated with NDVI
and CHL, respectively (Table 2, Supplementary Tables 2, 4).

The 38 NDVI-associated loci explained 48.39% of the
phenotypic variation (PV), among which 17 large-contribution
loci (R2

≥ 1%) explained 34.77% of the PV and 21 small-
contribution loci (R2 < 1%) explained 13.62% of the PV
(Table 2). The phenotypic contribution of each associated locus
to PV ranged between 0.37–3.84%. These loci were distributed
on 15 chromosomes with 1 to 5 loci on each chromosome;
chromosome 1 had the most loci (Figures 1A–C). In NDVI, the
total genetic variation (heritability) was 78.3%, and the genetic
contribution of the detected 38 QTLs was 48.39%; consequently,
29.91% of the genetic variation was not detected, which can be
attributed to a collection of unmapped QTLs that needs to be
further explored under controlled conditions where experimental
error is minimized.

The CHL-associated loci had a similar pattern to those of
NDVI (Table 2). The PV explained by the CHL-associated loci
was 51.35%, among which 19 large-contribution loci explained
42.95% of the PV and 13 small-contribution loci explained

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 12 | Article 600444

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-600444 February 23, 2021 Time: 12:38 # 5

Wang et al. QTL-allele System Underlying High-Throughput Traits

TABLE 1 | Frequency distribution of NDVI and CHL in the Chinese soybean germplasm population.

Trait Pop. Midpoint and frequency N Mean Range h2 (%)

NDVI 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 ≥0.16

Entire 22 34 35 26 34 27 53 48 26 22 14 341 0.11 0.05–0.18 78.3

WA 19 26 18 7 2 1 2 1 0 0 0 76 0.07a 0.05–0.13

LR 2 3 8 6 8 8 17 13 6 6 6 83 0.11b 0.06–0.18

RC 1 5 9 13 24 18 34 34 20 16 8 182 0.12b 0.06–0.17

CHL ≤2.50 2.70 2.90 3.10 3.30 3.50 3.70 3.90 4.10 4.30 ≥4.50

Entire 4 16 22 22 46 50 69 60 30 13 5 337 3.57 1.20–4.78 69.2

WA 4 13 19 11 13 6 5 1 0 1 1 74 3.08a 1.20–4.49

LR 0 1 2 4 13 16 20 13 6 5 3 83 3.68b 2.73–4.78

RC 0 2 1 7 20 28 44 46 24 7 1 180 3.72b 2.67–4.50

Pop.: Population. N: the number of accessions.
NDVI: normalized difference vegetation index, measured on the 21st day after sowing; CHL: chlorophyll index, measured on the 24th day after sowing. h2, trait heritability.
WA, wild accessions; LR, cultivated farmer landraces; RC, released modern cultivars.
a,bdifferent letters indicate significant differences between subpopulations based on t-tests at a significance level of 0.01.

8.40% of the PV; the number of large-contribution loci was
greater than the number of small-contribution loci. The PV of
each associated locus ranged from 0.38 to 5.38%. These loci
were distributed on 18 chromosomes with 1–6 loci on each
chromosome; chromosome 5 had the most loci (Figures 1D–F).
In CHL, the total genetic variation (trait heritability) was 69.2%,
and the genetic contribution of the detected 32 QTLs was 51.35%;
therefore, 27.85% of the genetic variation was not detected and
will require further study to elucidate.

For other agronomic traits, such as 100-seed weight, days to
flowering, and drought tolerance, the number of alleles per locus
detected have been reported to range from 2–10 (He et al., 2017),
2–10 (Fu et al., 2020), and 2–12 (Wang et al., 2020), respectively.
By comparison, the alleles per locus of NDVI and CHL in the
present study were only 2–4 and 2–6, respectively, and the per-
marker number of alleles was 2–11. The differences observed
in these two spectral reflectance physiological traits potentially
indicate that genetic differentiation at single loci is less likely for
these two traits compared with other agronomic traits.

QTL-allele Matrices of NDVI and CHL and
Their Evolution From WA to LR and RC
The RTM-GWAS method provides a powerfull approach for the
detection of genome-wide QTLs and their multiple allele effects.
In this study, the effects of the 2–4 alleles per locus for a total
of 89 alleles on 38 loci were obtained for NDVI. These QTL-
alleles of the 341 accessions can be organized into a 38 × 341
(locus × accession) matrix (Figure 1G), which represents a
compact form of the genetic structure of the population and
was designated as the QTL-allele matrix of NDVI. Similarly,
the effects of the 2–6 alleles per locus for a total of 82 alleles
on 32 loci and the 32 × 341 (locus × accession) matrix were
obtained for CHL (Figure 1I). The QTL-allele matrix detected
from the RTM-GWAS contained all of the genetic constitutions
of a trait in a population and can thus be used for the study
of population genetic differentiation. The cultivated soybean is
generally thought to have been domesticated from annual wild
soybean, with released cultivars developed from farmer landraces

(Liu et al., 2020). The QTL-allele matrix can be separated into
its component matrices to facilitate the tracing of evolutionary
genetic changes from WA to LR and RC. For NDVI, there were
85 alleles on 38 loci in WA; 82 wild alleles on 38 loci were passed
to LR, with the emergence of 2 new alleles on 2 loci and the
exclusion of 3 alleles on 3 loci for a total of 84 alleles on 38
loci (Table 3). From LR, 82 alleles on 38 loci were passed to
RC, with the emergence of 2 new alleles on 2 loci, the recovery
of 2 wild alleles on 2 loci, and the exclusion of 2 alleles on 2
loci for a total of 86 alleles on 38 loci. In LR + RC, 84 alleles
on 38 loci were inherited from WA, including the emergence
of 4 new alleles on 4 loci and the exclusion of 1 allele on 1
locus for a total of 88 alleles on 38 loci. Among the 4 newly
emerged alleles on 4 loci in the cultivated LR + RC, 2 new
loci with 2 new alleles emerged in LR + RC. In LR vs. WA, 1
of the 2 newly emerged alleles was in the newly formed QTL
qNdvi-01-5 in LR, which was not polymorphic in WA; in RC
vs. LR, 1 of the 2 emerged alleles was in the newly formed QTL
qNdvi-03-1 in RC and was not polymorphic in WA and LR
(Figures 2, 3; Table 3).

Similar results were obtained for CHL. There were 76 alleles on
32 loci in WA; 76 wild alleles on 32 loci were passed to LR, with
the emergence of 4 new alleles on 4 loci for a total of 80 alleles
on 32 loci; no alleles were excluded (Table 3). From LR, 80 alleles
on 32 loci were passed to RC, with the emergence of 2 new alleles
on 2 loci and the exclusion of 1 allele on 1 locus for a total of 81
alleles on 32 loci; no wild alleles were recovered. In LR + RC, 76
alleles on 32 loci were inherited from WA, with the emergence of
6 new alleles on 5 loci for a total of 82 alleles on 32 loci; no wild
alleles were excluded.

All of the emerged and excluded alleles and their associated
QTLs are listed in Table 4. For NDVI, there were 4 newly emerged
alleles on 4 loci (qNdvi-01-5, qNdvi-02-1, qNdvi-03-1, and qNdvi-
15-2); qNdvi-01-5 and qNdvi-03-1 were also newly formed in LR
and RC, respectively. One allele in qNdvi-05-4 was excluded in
LR, and 1 allele in qNdvi-05-3 was excluded in RC. For CHL,
there were 6 newly emerged alleles on 5 loci (qChl-06-2, qChl-08-
3, qChl-18-2, qChl-19-1, and qChl-20-1), and 1 allele on qChl-01-1
was excluded in RC. The allele frequencies of the newly emerged
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TABLE 2 | The detected QTLs associated with NDVI and CHL in the CSGP.

QTL No. alleles −lgP R2 (%) QTL No. alleles −lgP R2 (%)

qNdvi-01-1 2 3.80 1.28 qChl-01-1 3 7.32 2.97

qNdvi-01-2 2 1.82 0.53 qChl-02-1 2 8.17 2.96

qNdvi-01-3 3 4.06 1.69 qChl-03-1 2 3.66 1.18

qNdvi-01-4 2 8.42 3.18 qChl-05-1 2 2.98 0.93

qNdvi-01-5 2 1.72 0.49 qChl-05-2 2 1.96 0.56

qNdvi-02-1 4 8.33 3.84 qChl-06-1 2 2.37 0.70

qNdvi-03-1 2 2.85 0.92 qChl-06-2 3 6.74 2.73

qNdvi-05-1 2 1.96 0.58 qChl-07-1 3 3.01 1.20

qNdvi-05-2 2 1.46 0.40 qChl-07-2 3 6.35 2.57

qNdvi-05-3 4 7.73 3.57 qChl-08-1 2 1.84 0.51

qNdvi-05-4 4 3.80 1.82 qChl-08-2 3 12.97 5.38

qNdvi-05-5 2 1.74 0.50 qChl-08-3 3 3.74 1.50

qNdvi-05-6 2 1.55 0.43 qChl-08-4 2 1.46 0.38

qNdvi-06-1 2 6.24 2.27 qChl-09-1 2 2.41 0.72

qNdvi-06-2 2 2.44 0.76 qChl-10-1 3 12.42 5.14

qNdvi-06-3 2 2.58 0.81 qChl-11-1 3 5.90 2.38

qNdvi-08-1 2 2.73 0.87 qChl-13-1 2 2.59 0.78

qNdvi-08-2 2 3.96 1.35 qChl-13-2 2 3.93 1.29

qNdvi-08-3 2 3.36 1.11 qChl-14-1 2 1.91 0.54

qNdvi-10-1 3 1.78 0.74 qChl-14-2 2 2.77 0.85

qNdvi-10-2 2 5.58 2.00 qChl-15-1 2 1.68 0.46

qNdvi-11-1 2 2.58 0.81 qChl-15-2 2 2.50 0.75

qNdvi-11-2 2 5.16 1.83 qChl-15-3 2 1.98 0.56

qNdvi-11-3 3 2.18 0.90 qChl-16-1 2 4.24 1.40

qNdvi-13-1 3 2.57 1.06 qChl-16-2 2 3.66 1.18

qNdvi-13-2 2 1.98 0.59 qChl-16-3 2 3.78 1.23

qNdvi-13-3 2 1.37 0.37 qChl-17-1 2 2.24 0.66

qNdvi-14-1 2 1.63 0.46 qChl-17-2 2 5.88 2.04

qNdvi-14-2 3 7.06 2.97 qChl-18-1 4 2.65 1.26

qNdvi-15-1 3 1.89 0.78 qChl-18-2 4 3.58 1.66

qNdvi-15-2 3 6.27 2.63 qChl-19-1 6 4.25 2.36

qNdvi-15-3 2 3.88 1.32 qChl-20-1 4 5.59 2.52

qNdvi-15-4 2 2.06 0.62 Total 82 32 51.35

qNdvi-16-1 2 1.93 0.57

qNdvi-17-1 2 2.63 0.83

qNdvi-18-1 2 4.76 1.67

qNdvi-19-1 2 3.53 1.18

qNdvi-19-2 2 2.17 0.66

Total 89 38 48.36

NDVI, normalized difference vegetation index, measured on the 21st day counting from sowing; CHL, chlorophyll index, measured on the 24th day counting from
sowing; CSGP, Chinese soybean germplasm population. h2, trait heritability. R2, genetic contribution of a QTL; A QTL is designated as qNdvi-01-1, where -01 represents
chromosome 1, and -1 represents its order on the chromosome; No. alleles: number of alleles in a SNPLDB; -lgP, P-value in the log10 scale of the association test in the
RTM-GWAS. The corresponding SNPLDB of a QTL and its position are shown in Supplementary Table 2.

alleles in LR + RC ranged between 3.40–13.58%, and the new
alleles were not dominant over older alleles.

Thus, genetic changes were limited during the evolution
from WA to LR and RC, as the three subpopulations shared
a large number of common alleles. Among the 89 wild alleles
of 38 NDVI-associated loci, 80 alleles were shared among the
three subpopulations and among the 76 wild alleles of 32 CHL-
associated loci, and 75 wild alleles were shared among the three
subpopulations (Figure 3). Here, the total change (emerged
plus excluded) in alleles (5 alleles (5.7%) on 5 loci (13.2%)

for NDVI and 6 alleles (7.3%) on 5 loci (15.6%) for CHL)
was much lower relative to the changes in alleles observed
for other agronomic traits. For example, there were a total
of 261 alleles on 75 loci in Chinese cultivated soybeans for
drought tolerance, and 46 alleles (17.6%) on 27 loci (36.0%)
were changed in RC relative to LR (Wang et al., 2020). In
addition, there were a total of 342 alleles on 81 loci in Northeast
China soybeans for earliness, and 143 alleles (41.8%) on 67 loci
(82.7%) were changed in the early group relative to the late group
(Fu et al., 2020).
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FIGURE 1 | Genetic analysis of NDVI and CHL phenotypic variation in the soybean population using the restricted two-stage multi-locus genome-wide association
study (RTM-GWAS) method. (A) Manhattan plot of the RTM-GWAS results for NDVI. (B) QQ plot of the RTM-GWAS results for NDVI. (C) The phenotypic
contribution of the detected 38 NDVI QTLs. The vertical and horizontal axes indicate the genetic contribution R2 (%) and the order of QTLs according to their genetic
contribution. (D) Manhattan plot of RTM-GWAS results for CHL. (E) QQ plot of the RTM-GWAS results for CHL. (F) The phenotypic contribution of the detected 32
CHL SNPLDBs. The vertical and horizontal axes indicate the genetic contribution R2 (%) and the order of QTLs according to their genetic contribution. (G) The NDVI
QTL–allele matrix. (H) The predicted NDVI of progenies in the optimal crosses among the 341 lines based on the linkage model. On the horizontal axis, the crosses
are arranged in increasing order of the predicted 50th percentile (P50) NDVI from left to right. The black dotted horizontal lines are the minimum and maximum values
in the entire population, which were 0.039 and 0.193, respectively. The vertical axis is the predicted NDVI value of the crosses. (I) The CHL QTL–allele matrix. (J) The
predicted CHL of the progenies in the optimal crosses among the 341 lines based on the linkage model. On the horizontal axis, the crosses are arranged in
increasing order of the predicted 50th percentile (P50) NDVI from the left to right. The black dotted horizontal lines are the minimum and maximum values in the
entire population, which were 2.26 and 4.95, respectively. The vertical axis is the predicted CHL value of the crosses.
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TABLE 3 | The QTL-alleles changes from WA to LR and RC.

WA LR vs. WA RC vs. LR LR + RC vs. WA

Locus Allele Locus Allele Locus Allele Locus Allele

NDVI

Total 38 85 38 84 38 86 38 88

Inherited 38 82 38 82 38 84

Emerged 2 2 2 2 4 4

Recovery – – 2 2 – –

Excluded 3 3 2 2 1 1

Changed 4 5 5 6 5 5

CHL

Total 32 76 32 80 32 81 32 82

Inherited 32 76 32 80 32 76

Emerged 4 4 2 2 5 6

Recovery – – – – – –

Excluded – – 1 1 – –

Changed 4 4 3 3 5 6

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. LR vs. WA means the number of changed alleles or changed loci of LR compared
with WA. Inherited: the inherited allele/locus between populations. Emerged: the emerged allele/locus between populations. Excluded: the excluded allele/locus between
populations. Changed: the changed allele/locus between populations (the emerged plus excluded alleles). Recovery: the alleles that were excluded from WA to LR but
were recovered in RC. In LR vs. WA of NDVI, 1 of the 2 emerged alleles was in the newly formed QTL qNdvi-01-5 in LR, which was not polymorphic in WA, while in RC
vs. LR of NDVI, 1 of the 2 emerged alleles was in the newly formed. QTL qNdvi-03-1 in RC, which was not polymorphic in WA and LR.

FIGURE 2 | Venn diagram of QTL-allele changes among populations. (A)
Venn diagram of the NDVI allele distribution in populations. (B) Venn diagram
of the CHL allele distribution in populations. WA, wild accessions; LR,
cultivated farmer landraces; RC, released modern cultivars.

In summary, these two spectral reflectance physiological traits
(NDVI and CHL) were genetically conservative. Inheritance
played a major role in determining the genetic motivation, For
NDVI, 4 alleles on 4 loci emerged; for CHL, 6 alleles on 5 loci
emerged. Two new loci emerged for NDVI, but none emerged for
CHL. For NDVI, only 1 allele on 1 locus was excluded, whereas
no alleles were excluded for CHL. The transition from WA to
LR and from LR to RC took approximately 5,000 and 100 years,
respectively; despite this long history, large genetic changes have
not occurred, especially during the transition from WA to LR.
This genetic stability indicates that the two physiological traits
NDVI and CHL are highly conservative compared with other
agronomic traits. However, the same number of genetic changes
occurred during the transition from WA to LR (5,000 years)

and the transition from LR to RC (100 years), indicating that
the enhanced artificial breeding in the transition from LR to RC
accelerated the rate of genetic change.

Prediction of the Recombination
Potential of NDVI and CHL in the CSGP
To assess the recombination potential for NDVI and CHL in
the CSGP, a total of 57,970 possible single crosses among the
341 accessions were simulated based on the QTL-allele matrix;
possible crosses between the accessions for each subpopulation
were also simulated. The 99th percentile of 2,000 progenies of
each cross was used to represent the recombination potential
(Table 5). For NDVI, the recombination potential within the
WA, LR, and RC was not large (0.15 vs. 0.13 of the extreme
phenotype, 0.20 vs. 0.18 of the extreme phenotype, and 0.20 vs.
0.17 of the extreme phenotype, respectively), but the predicted
value was larger in LR and RC (the superior subpopulations)
than in WA. Among the three between-subpopulation crosses,
the highest recombination potential was observed for LR × RC
(0.21 vs. 0.19 in WA × LR and WA × RC); for the crosses at the
entire population level, the NDVI was 0.21, which was the same
as that observed for LR× RC (Table 5, Figure 1H).

For CHL, the recombination potentials within WA, LR, and
RC were also not large (4.93 vs. 4.49 of the extreme phenotype,
5.31 vs. 4.78 of the extreme phenotype, and 5.06 vs. 4.50 of the
extreme phenotype, respectively), but the predicted value was
larger in LR and RC (the superior populations) than in WA.
Among the three between-subpopulation crosses, the highest
recombination potential was observed for WA× LR (5.41 vs. 5.38
and 5.21 in WA× RC and LR× RC, respectively); for the crosses
at the entire population level, the CHL was 5.41, which was the
same as that observed for WA × LR (Table 5, Figure 1J). Thus,
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FIGURE 3 | QTL-allele changes among populations. (A) NDVI QTL-allele
changes among populations. (B) CHL QTL-allele changes among
populations. a1 –a6 are the alleles of each QTL, arranged in descending order
according to their allele effect values. The cells marked with white (positive
effect) and gray (negative effect) are all alleles in WA. The cells with lowercase
letters l and r are alleles excluded in LR and RC (vs. WA), respectively. The
uppercase letters L and R in cells are alleles that emerged in LR and RC (vs.
WA), respectively. In addition, the QTL qNdvi-01-5 emerged in LR and was
not polymorphic in WA. The QTL qNdvi-03-1 emerged in RC and was not
polymorphic in WA and LR.

crosses with the WA had a greater recombination potential for
CHL, which was opposite to the pattern observed for NDVI.

Annotation of Candidate Genes and GO
Analysis of NDVI and CHL in the CSGP
From the detected QTLs, a total of 39 candidate genes were
annotated on 20 NDVI-associated loci, and 32 candidate genes
on 22 CHL-associated loci (Supplementary Table 3). Only 9
candidate genes were annotated on 7 large-contribution loci of
NDVI, but most (21 out of 32) of the CHL-related candidate
genes were annotated on 13 large-contribution loci of CHL. Gene
ontology (GO) analysis revealed that these candidate genes for
both NDVI and CHL can be classified into three categories:
biological process, molecular function, and cellular component
(Table 6, Supplementary Figure 1). In biological process, NDVI
involved 14 of 15 function groups, and CHL involved 11 of

15 function groups with five group differences. In molecular
function, NDVI and CHL both involved 4 of 5 groups with two
group differences. In cellular component, both NDVI and CHL
involved all of the 5 function groups (Table 5, Supplementary
Figure 1). The candidate gene systems of NDVI and CHL
both involved a similar set of genes, although their frequency
distributions differed. The two genetic systems consisted of a
series of genes involved in a complex gene network.

The validation of these candidate genes are left for further
studies, however, a preliminary verification was carried out using
the transcriptome data set of RNA Seq-Atlas project in SoyBase
(see footnote 1). The gene expression results (Supplementary
Figure 2) showed that 31 out of the 39 annotated genes
for NDVI were expressed in 14 soybean tissues, among
which Glyma05g23230 and Glyma14g06630 showed especially
high expression level. For CHL, there were 28 out of 32
annotated genes were expressed in 14 soybean tissues, and
Glyma08g10960 showed high expression level in young leaf
and pod shell, indicating these identified candidate genes are
possibly functional.

DISCUSSION

Efficiency of High-Throughput
Phenotyping Integrated With RTM-GWAS
in Identifying NDVI and CHL QTL-allele
Systems
This study presented a genetic analysis of two spectral reflectance
traits, NDVI and CHL, using a high-throughput phenotyping
platform. Both NDVI and CHL showed significant genetic
variation in CSGP, indicating that the spectral reflectance
phenotyping data can not only be used for predicting agronomic
traits but also for dissecting their underlying genetic basis. In this
study, 89 alleles on 38 loci for NDVI and 82 alleles on 32 loci
for CHL were detected, and the RTM-GWAS method was used
to characterize their allele effects. High-throughput phenotyping
integrated with RTM-GWAS was an efficient method for
identifying the QTL-allele systems for NDVI and CHL. However,
only 48.36% and 51.35% of the PV for NDVI and CHL were
explained by the detected loci, which is low compared with other
agronomic traits, such as 100-seed weight (139 QTLs explained
98.2% of the PV with a heritability of 98.9%, He et al., 2017).
Although the large-contribution QTLs have been identified,
many small-contribution QTLs consisting of unmapped minor
QTLs have yet to be identified according to the RTM-GWAS.
This observation might stem from experimental error given that
the heritability values were only 78.3% and 69.2% for NDVI
and CHL, respectively. Such error might have decreased the
sensitivity of our analysis to detect QTLs, leaving 29.91% and
27.85% of the genetic variation (presumably unmapped minor
QTLs) undetected. In the present study, an incomplete block
design was conducted to separate all accessions into two sets for
two respective tests to circumvent the space limitations associated
with the high-throughput phenotyping platform. Although we
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TABLE 4 | Emerged and excluded alleles conferring NDVI and CHL from WA to LR and then to RC.

QTL R2 (%) Allele Effect Frequency (%)

Entire WA LR RC LR + RC

qNdvi-01-5 0.49 a1 −0.0049 96.48 100.00 98.78 93.99 95.47

a2 0.0049 3.52 0.00 1.22 6.01 4.53

qNdvi-02-1 3.84 a1 −0.0138 24.34 90.79 14.63 1.09 5.28

a2 0.0000 54.84 7.89 76.83 64.48 68.30

a3 0.0051 5.28 1.32 0.00 9.29 6.42

a4 0.0087 15.54 0.00 8.54 25.14 20.00

qNdvi-03-1 0.92 a1 −0.0068 4.11 0.00 0.00 7.65 5.28

a2 0.0068 95.89 100.00 100.00 92.35 94.72

qNdvi-05-3 3.57 a1 −0.0208 2.05 5.26 3.66 0.00 1.13

a2 −0.0002 28.74 44.74 29.27 21.86 24.15

a3 0.0056 63.64 26.32 67.07 77.60 74.34

a4 0.0154 5.57 23.68 0.00 0.55 0.38

qNdvi-05-4 1.82 a1 −0.0081 2.64 11.84 0.00 0.00 0.00

a2 −0.0016 15.54 19.74 26.83 8.74 14.34

a3 0.0003 76.83 47.37 71.95 91.26 85.28

a4 0.0093 4.99 21.05 1.22 0.00 0.38

qNdvi-15-2 2.63 a1 −0.0063 7.33 0.00 0.00 13.66 9.43

a2 0.0029 78.30 90.79 75.61 74.32 74.72

a3 0.0034 14.37 9.21 24.39 12.02 15.85

qChl-01-1 2.97 a1 −0.2100 22.29 9.21 21.95 27.87 26.04

a2 −0.0740 73.31 75.00 74.39 72.13 72.83

a3 0.2840 4.40 15.79 3.66 0.00 1.13

qChl-06-2 2.73 a1 −0.0927 15.25 57.89 87.80 74.86 78.87

a2 −0.0070 74.19 42.11 8.54 7.10 7.55

a3 0.0997 10.56 0.00 3.66 18.03 13.58

qChl-08-3 1.5 a1 −0.2560 2.64 0.00 3.66 3.28 3.40

a2 0.0771 39.59 98.68 45.12 12.57 22.64

a3 0.1789 57.77 1.32 51.22 84.15 73.96

qChl-18-2 1.66 a1 −0.1740 6.45 0.00 6.10 9.29 8.30

a2 −0.0214 58.36 39.47 54.88 67.76 63.77

a3 0.0585 22.58 35.53 30.49 13.66 18.87

a4 0.1369 12.61 25.00 8.54 9.29 9.06

qChl-19-1 2.36 a1 −0.1815 7.62 25.00 4.88 1.64 2.64

a2 −0.0625 10.56 36.84 1.22 3.83 3.02

a3 −0.0619 29.62 1.32 31.71 40.44 37.74

a4 0.0009 41.64 13.16 58.54 45.90 49.81

a5 0.0899 7.33 23.68 3.66 2.19 2.64

a6 0.2152 3.23 0.00 0.00 6.01 4.15

qChl-20-1 2.52 a1 −0.1325 72.73 92.11 81.71 60.66 67.17

a2 0.0005 14.37 7.89 13.41 17.49 16.23

a3 0.0358 2.93 0.00 0.00 5.46 3.77

a4 0.0963 9.97 0.00 4.88 16.39 12.83

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. Boldface QTLs are newly emerged QTLs. Heavy shaded alleles are emerged ones,
while light-shaded alleles are excluded ones; the number of changed alleles is consistent with that shown in Figure 2.

employed a method to make the environment uniform between
the different tests, much room for improvement remains.

In the present study, the PV explained by individual QTL
ranged between 0.37-3.84% for NDVI, and 0.38-5.38% for CHL.
There were 17 and 19 large-contribution (R2 ≥ 1%) and 21 and
13 small-contribution (R2 < 1%) QTLs for NDVI and CHL,
respectively. The PV in RTM-GWAS is relatively lower than that

in single-locus model such as the mixed linear model method (Yu
et al., 2006). In single-locus model, association test is performed
for each locus individually, and the estimated contribution of a
locus may be inflated obviously due to the correlations among
neighboring loci (He et al., 2017). But in RTM-GWAS, multiple
QTLs are jointly fitted in a multi-locus model and the estimated
PV for each QTL is unbiased and the total PV is controlled within
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TABLE 5 | The predicted optimal crosses for NDVI and CHL in the different material groups.

Trait Population Extreme phenotype phenotype No. crosses Predicted phenotype

Mean Max

NDVI WA 0.05–0.13 2,851 0.10 0.15

LR 0.06–0.18 3,322 0.14 0.20

RC 0.06–0.17 16,427 0.14 0.20

WA × LR – 6,234 0.13 0.19

WA × RC – 13,834 0.14 0.19

LR × RC – 14,926 0.14 0.21

Entire 0.05–0.18 57,594 0.14 0.21

CHL WA 1.20–4.49 2,702 3.66 4.93

LR 2.63–4.78 3,322 4.18 5.31

RC 2.67–4.50 16,111 4.20 5.06

WA × LR – 6,070 3.97 5.41

WA × RC – 13,322 4.01 5.38

LR × RC – 14,762 4.21 5.21

Entire 1.20–4.78 56,289 4.11 5.41

WA, wild accession; LR, cultivated farmer landraces; RC, released modern cultivars. The extreme phenotype is the observed minimum and maximum phenotype in the
population. The predicted phenotype is the 99th percentile of a cross in the group of crosses.

TABLE 6 | The number of candidate genes enriched in different GO annotations
for NDVI and CHL.

GO category GO group NDVI CHL

Biological process Biological regulation 11 10

Cellular component biogenesis 13 3

Cellular process 20 18

Developmental process 12 4

Localization 4 3

Metabolic process 18 19

Multicellular organismal process 11 4

Multi-organism process 7 –

Response to stimulus – 10

Regulation of biological process 11 –

Reproduction 9 –

Response to stimulus 14 –

Others 5 4

Molecular function Binding 20 15

Catalytic activity 12 9

Structural molecule activity 3 –

Transcription regulator activity – 3

Others 2 2

Cellular component Cell 34 6

Membrane 8 21

Organelle 27 7

Protein-containing complex 5 3

Others 5 3

Total candidate genes 39 32

heritability value, therefore, the individual QTL in RTM-GWAS
may look smaller than those from single locus model procedure.

The fact of many QTLs each with a smaller PV is a
characteristic of a quantitative trait controlled by a large number
of QTLs. Or as we understand, the total PV of a quantitative

trait in fact is a projection of a large number of genes/QTLs
with different but interrelated biological functions onto the trait
plane in a specific population. The statistically estimated genetic
effect or PV of a QTL is relative to and largely depends on the
genetic background of the population. A same QTL may exhibit
varying effects in different populations with different genetic
background. For example, the PV of a QTL in a simple genetic
background such as near-isogenic lines is much greater than that
in a germplasm population. Therefore, the small-contribution
QTL in a study may exhibit large effects in other populations
with simple genetic background. In fact, the purpose of the RTM-
GWAS method is to achieve a relatively thorough detection of
whole-genome QTLs and their multiple alleles or the QTL-allele
system rather than a few individual large PV QTLs. Thus for
the genetic improvement of quantitative traits in plant breeding,
background control and foreground control are both important.
It is likely that breakthroughs can be achieved through increase
of positive alleles and decrease of negative alleles among multiple
loci, rather than through recombination between/among a few
loci like in the qualitative trait situation.

Genetic Conservativeness of NDVI and
CHL, Their Improvement Potential and
Implications to Breeding for Seed-Yield
of Soybeans
Both phenotypic and genotypic analysis showed that the
two spectral reflectance traits were genetically conservative in
comparison to the agronomic traits, such as seed yield, 100 seed
weight, days to flowering (He et al., 2017; Zhang et al., 2019;
Fu et al., 2020). Because in the present results, (i) no significant
phenotypic improvements were observed in RC, and trait values
were low in LR and RC; (ii) there was a limited number of alleles
per locus; (iii) there was a large number of shared wild alleles
among WA, LR, and RC, few new alleles, and little exclusion
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of wild alleles; and (iv) the recombination potential was low.
In other words, the two spectral reflectance traits, NDVI and
CHL, were more conservative than other agronomic traits in
their genetic changes. We suspect that these spectral reflectance
traits are upstream traits, whereas the other agronomic traits are
downstream traits, the upstream traits may be more conservative
than the downstream traits due to more factors may influence the
downstream traits. For example, NDVI and CHL are traits related
to the biological process of photosynthesis or organic synthesis
while the agronomic traits such as seed yield may relate to the
biological processes of transportation and storage of organics in
addition to organic synthesis. The fact that breeding generally
acts on downstream traits more readily compared to upstream
traits may explain why the latter was more conservative and with
less phenotypic improvements. Thus, additional effort is needed
to improve upstream traits, such as NDVI and CHL, which are
involved in light interception, light function and therefore, in
photosynthesis and organics production.

However, some potential for improvement in NDVI and CHL
was observed from WA to LR + RC, although the improvement
was small (Table 1). The genetic mechanism underlying the
observed evolutionary improvements might be recombination
among loci-alleles given that all of the wild alleles passed to
LR + RC except one negative wild allele excluded; furthermore,
new alleles did not make up a large proportion of the alleles, given
that few new alleles emerged (Tables 3, 4). This point is supported
by the optimal cross prediction that the recombination among
the loci/accessions might result in transgressive progenies, i.e.,
approximately 13–16% of genetic progress for NDVI and CHL
might be achieved through hybridization in the CSGP (Table 5).

The previous studies on high-throughput phenotypes in crops
usually focused on predicting yield-related agronomic traits, such
as plant height, biomass and seed yield (Holman et al., 2016;
Salas Fernandez et al., 2017, Maimaitijiang et al., 2020). For
example, our previous results showed that NDVI was selected
as the best vegetation indices in the establishment of plot-yield
prediction models in breeding programs of soybeans (Zhang
et al., 2019). Here in the present study, genetic dissection of
the two high-throughput physiological traits, NDVI and CHL,
was performed based on the high-throughput phenotyping
technique. As NDVI and CHL are upstream traits and agronomic
traits are breeding-acted target traits, identifying the genetic
system of upstream traits may help to understand the genetic
mechanism of downstream targets and also may provide
additional control of downstream targets. For example, it was
reported that NDVI was also a proxy for drought-adaptive
traits in durum wheat, and high-throughput data collection of
NDVI with capable precision can facilitate the genetic dissection

of drought-adaptive traits (Condorelli et al., 2018). Thus, in
breeding programs, breeders can combine the selection for
upstream traits using high-throughput phenotyping data and the
selection for downstream traits using agronomic data to have
both selected and improved, which might benefit the enhanced
selection of the downstream traits. This explains the reason that
we suggested in yield breeding programs to combine the selection
before harvest using NDVI prediction models established from
hyperspectral reflectance data and the selection of harvested
yield to achieve an enhanced selection for genotypic yield
(Zhang et al., 2019).
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