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Abstract: The treatment of complex and multifactorial diseases constitutes a big challenge in day-
to-day clinical practice. As many parameters influence clinical phenotypes, accurate diagnosis and
prompt therapeutic management is often difficult. Significant research and investment focuses
on state-of-the-art genomic and metagenomic analyses in the burgeoning field of Precision (or
Personalized) Medicine with genome-wide-association-studies (GWAS) helping in this direction by
linking patient genotypes at specific polymorphic sites (single-nucleotide polymorphisms, SNPs) to
the specific phenotype. The generation of polygenic risk scores (PRSs) is a relatively novel statistical
method that associates the collective genotypes at many of a person’s SNPs to a trait or disease.
As GWAS sample sizes increase, PRSs may become a powerful tool for prevention, early diagnosis
and treatment. However, the complexity and multidimensionality of genetic and environmental
contributions to phenotypes continue to pose significant challenges for the clinical, broad-scale use
of PRSs. To improve the value of PRS measures, we propose a novel pipeline which might better
utilize GWAS results and improve the utility of PRS when applied to Alzheimer’s Disease (AD), as
a paradigm of multifactorial disease with existing large GWAS datasets that have not yet achieved
significant clinical impact. We propose a refined approach for the construction of AD PRS improved
by (1), taking into consideration the genetic loci where the SNPs are located, (2) evaluating the
post-translational impact of SNPs on coding and non-coding regions by focusing on overlap with
open chromatin data and SNPs that are expression quantitative trait loci (QTLs), and (3) scoring and
annotating the severity of the associated clinical phenotype into the PRS. Open chromatin and eQTL
data need to be carefully selected based on tissue/cell type of origin (e.g., brain, excitatory neurons).
Applying such filters to traditional PRS on GWAS studies of complex diseases like AD, can produce a
set of SNPs weighted according to our algorithm and a more useful PRS. Our proposed methodology
may pave the way for new applications of genomic machine and deep learning pipelines to GWAS
datasets in an effort to identify novel clinically useful genetic biomarkers for complex diseases
like AD.
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1. Introduction

Since the human genome was first sequenced, thousands of genetic variants have been
associated with biological functions and diseases [1]. Specifically, in regards to diseases,
systematic studies called genome-wide association studies (GWAS) have explored the
relationship between common sequence variation sites and disease predisposition [2].
The need for GWAS is substantial since most common conditions, such as cardiovascular
diseases and cancer, are not caused by a single mutation but are influenced by multiple
genetic and environmental factors [3]. GWAS allow the identification of multiple single
nucleotide polymorphisms that affect risk for complex diseases [3].

Advances in DNA sequencing and the advent of low-priced next-generation sequenc-
ing technologies allow many laboratories to apply GWAS to large populations and elucidate
the genetic risk factors of multiple diseases. This widespread use of GWAS led to accumula-
tion of immense amounts of data [4] that create various problems in the ability to store and
manage information [5]. Bridging the gap from association to actual biological function
and filtering GWAS data is not trivial. For example, many variants are co-inherited due to
linkage disequilibrium (LD), making it hard to specify which variant is responsible for an
association, or, many variants may affect other genes through gene regulation [3].

A common technique to assess disease risk in regards to specific alleles is through the
use of polygenic risk scores (PRS) [6]. Polygenic risk scores (PRS) were first introduced in
the study of complex disorders as a result of genome wide association studies, a tool that
was developed to demonstrate the validity of the results of an otherwise underpowered
study on schizophrenia, one of the first GWAS for this disease [7]. While that study,
which involved 3322 individuals with schizophrenia and 3587 controls, failed to identify
schizophrenia loci with robust statistical support, the authors were able to show the
substantial contribution of a “polygenic component” to schizophrenia risk, and that the
same component contributed to risk of bipolar disorder [7]. So, PRS offered for the first
time the opportunity to explore the consequences of genetic risk variants for one disease
on the phenotype, traits and comorbidities of other diseases. Similarly, we have shown that
schizophrenia PRS correlates with neurocognitive performance in young adulthood [8]. In
later studies, it has also been shown that a polygenic risk score for schizophrenia correlates
with comorbid psychosis in Alzheimer’s disease (AD) [9]. It is therefore clear that PRS can
be a valuable research tool across many disorders.

The utility of GWAS results, including PRS estimations in clinical practice, has been
long debated and questioned. The skepticism has predominantly been a consequence of
the small fraction of risk explained both by individual genetic variants and by multiple
variants combined in a PRS. However, this appears to be changing. While the total risk
variance explained by a PRS is still not very high for any disease, focusing on the extremes
of distributions, PRS scores already have significant clinical utility. For example, in a study
on coronary artery disease (CAD), Inouye et al. developed a meta-analytic approach to
combine large-scale, genome-wide, and targeted genetic association data, and developed
a genomic risk score for CAD (metaGRS) with a hazard ratio (HR) for CAD of 1.71 (95%
confidence interval [CI]: 1.68 to 1.73) per SD of increase [10]. In this example, those in the
top 20% of the metaGRS distribution had a HR of 4.17 (95% CI: 3.97 to 4.38) compared to
those in the bottom 20%, an effect comparable to that of APOE in AD. MetaGRS was a better
predictor for incident CAD than any of six conventional risk factors (smoking, diabetes,
hypertension, body mass index, self-reported high cholesterol, and family history) [10].

The latest research in PRS calculations has also identified novel risk variants in multi-
factorial diseases, such as cancer and neurodegenerative diseases. For example, a number
of studies have demonstrated breast cancer PRSs as strong risk predictors and have been
shown to improve the accuracy of existing risk prediction models, thus implementing them
in clinical practice [11–13]. The added predictive value of PRS has also been shown by
Diana et al. in the case of psychosis risk prediction, where schizophrenia PRS improved risk
prediction in non-Europeans [14]. In a different study, Khera et al. developed and validated
genome-wide polygenic scores for five common diseases and were able to identify 8.0%,
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6.1%, 3.5%, 3.2% and 1.5% of the population that had a greater than threefold increased
risk for CAD, atrial fibrillation, type 2 diabetes, inflammatory bowel disease and breast
cancer, respectively, which is comparable or better than what one would identify if looking
for Mendelian causes of disease [15].

Polygenic risk scores are calculated by first using a reference GWAS to identify variants
associated with a disease or phenotype—along with a corresponding statistical confidence,
as well as the identity of alleles that increase risk and the odds ratios associated with these
risk alleles. Then, for any given individual in an independent dataset one can count the
number of risk alleles and weigh them by their effect sizes and log odds ratios to calculate a
PRS. This is done after selecting variants exceeding a chosen statistical confidence threshold
while commonly many such thresholds are tested to identify the one exhibiting optimal
performance. The power of polygenic risk scores depends on the validity of the reference
GWAS results which in turn is a function of sample size.

Fortunately, in recent years through collaborations and meta-analysis, GWAS keep
getting larger in sizes and their results are more and more reliable. In the case of AD, a
meta-analysis of 17,008 AD cases and 37,154 controls first identified 19 risk loci in addition
to the well-known APOE [16], and subsequent studies have increased these numbers [17].
Apolipoprotein E (APOE), a major cholesterol carrier that is involved in the regulation of
lipid transport, neuronal signaling, and amyloid-beta aggregation [18] and clearance has
long been established as a major risk factor for late onset Alzheimer’s disease (LOAD) [19].
The human APOE gene is located on chromosome 19 q13.2 and has three common allelic
variants, namely ε2, ε3, and ε4 [20]. The corresponding isoforms of the coding protein
differ in two positions that differentiate the resulting structure, and thus function, of the
lipoprotein [21]. Several studies have shown the isoform-specific APOE involvement in the
AD pathogenesis and onset of the disease, reporting that APOE ε4 allele shows increased
levels of amyloid aggregation, lower levels of amyloid clearance due to a non-optimal
lipidation state of APOE4 and affects the BBB permeability [22–24]. Besides APOE ε4
identification, GWAS studies have uncovered more than 20 genetic loci associated with
AD risk involved in mainly three pathways, the inflammatory response (CR1, MS4A,
CD33, TREM2), lipid metabolism (CLU, ABCA7, SORL1) and endocytosis (BIN1, CD2AP,
PICALM) [25,26].

While the sample sizes in the aforementioned studies were larger than what is cur-
rently available for AD, they provide proof of principle that as AD GWASs become larger
and more reliable, PRS is poised to become of high importance in clinical practice, especially
when combined with other risk factors [27]. It has already been shown in postmortem
diagnosed sporadic early-onset AD that the predictive ability of identifying cases and
controls is better when using PRS than the APOE locus alone, with a calculated accuracy of
72.9% and 65.2% respectively when using a standard PRS analysis algorithm, improving to
75.5% in identifying patients when using logistiv regression [28]. It has also been shown
that there is a shared genetic architecture between sporadic late onset AD (LOAD) and
familial early onset AD, with genetic factors identified for late onset AD also modulating
risk in early onset AD cohorts. [29].

From the perspective of pathogenesis, PRSs have provided a number of interesting
insights into AD. A correlation has been shown between AD PRS and early-life cognition
and hippocampal volumes [30], attenuated cerebrovascular function during young adult-
hood [31], as well as elevated plasma levels of inflammatory biomarkers in AD patients,
including complement proteins [32]. Further, a study of mild cognitive impairment (MCI)—
a putative AD dementia prodrome—in individuals ≥65 years old reported that a specific
PRS can identify individuals at higher risk of conversion to sporadic dementia.

The above highlights the potential utility of PRSs in Precision Medicine in AD which
has been systematically reviewed by Harrison et al. [33]. Logue et al. suggested that
PRS can identify MCI in adults who are in their 50s [34]. A study combining patterns
of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers has highlighted
the importance of combining information including genetics for prediction of MCI to
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AD progression [35], as has already been shown in cardiovascular disease [10]. The
combination of a carefully crafted PRS with age, gender and clinical features has great
potential in identifying groups of individuals with high risk for AD and pave the way to
targeted therapeutics for different groups. Finally, Banks et al. have proposed that PRS
can be useful for the design of clinical trials as a stratification factor to identify individuals
with underlying AD pathology, making it more efficient, less burdensome on participants,
and more cost effective [36].

We believe that the above observations strongly suggest that PRS will become an
important tool in studying and characterizing AD. Yet, there is still a significant amount of
work remaining for AD PRSs to be strongly included in clinical use for early prediction
of AD cases. It is important to keep improving on the power of PRS by increasing the
validity of GWAS results. One way to do this is by increasing GWAS sample sizes. Other
ways include incorporating other genomic information to select the most reliable genetic
associations as we discuss below. Smarter ways to build PRSs, such as constructing
pathway-specific PRS have already proven of value. By comparing pathway specific PRS,
Tesi et al. proposed that immune response and endocytosis pathways are specifically
associated with resilience against AD [37].

As we gain knowledge, PRS will become increasingly powerful (Supplementary
Materials Table S1). For example, DeMarco et al. demonstrated that the link between
polygenic hazard and neurocognitive variables depends on APOE-ε4 allele status [38]. This
suggests that clinical phenotypes are influenced by complex genetic interactions. Once
we are aware of these complexities, we will be able to increase further the value of PRSs
and eventually integrate them as important biomarkers in our efforts to achieve Precision
Medicine. As part of this review, we propose an innovative pipeline to produce a novel set
of SNPs that improve the PRS calculation and the explained variance through the following
analytical steps.

2. Approach to Calculating an Improved PRS

Towards the elucidation of the complex genetic associations for multifactorial diseases
such as AD, we propose the following pipeline for the likely improvement of PRSs as clini-
cally useful genetic biomarkers with enhanced predictive power. The proposed filtering
recalculation for improved PRS is based on the concept of an enhanced annotation and
weight application on the single-nucleotide polymorphisms (SNPs) identified in GWAS
studies based on their biological function, significance, and phenotypic effect. The pro-
posed methodology aims to overcome three different major drawbacks encountered thus
far in the statistical calculation of PRS: co-inheritance and gene-loci dependence, epige-
netic effects, and effect on phenotype severity. A major bias in PRS calculation, one that
affects discriminative ability, is the coinheritance of multiple risk variants, which results
in applying a statistical significance on variants that are not functionally involved in the
disease pathology. SNPs identified by GWAS located in protein coding regions have not
been differentiated in terms of potential epigenetic effects. Finally, PRS calculations have
not accounted for the effect of each variant on the phenotype beyond that calculated by
GWAS, in an effort to account for impact on disease severity.

Below we propose steps to recalculate PRS for AD based on the application of appro-
priate weights on variants, in an effort to overcome the drawbacks mentioned, above is
described:

Gene loci filtering: In a GWAS analysis all SNPs that make the threshold on a Manhattan
plot are considered important. However, it is possible that some come in batches as they
are inherited together. If that is the case then not all of them equally affect the phenotype.
So, it is possible that some SNPs score high on PRS without being the causative SNP, but
only because they are co-inherited with other causative SNPs. Even though controlling for
linkage disequilibrium (LD) is implemented in the PRS calculation, we propose a function-
based enhancement to address this bias by taking gene loci filtering into consideration.
In conventional PRS calculation, SNPs are thinned by either clumping, which prioritizes
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among many SNPs in LD in a region based on their p-value, or pruning, which retaining
among SNPs in LD those with the largest minor allele frequency (MAF), with the goal to
account for LD while capturing the most associated SNPs in a locus [39]. In this approach,
we propose an additional refinement following the PRS calculation, a post-LD filtering,
where we can further weight each SNP through their chromosomal location in the proximity
of AD genes. Genes that have been identified in vitro to contribute to the etiology of a
certain disease are assigned a specific ‘bonus’ sore, whilst ensuring that genes that belong
to multiple haplotypes do not influence the PRS score calculation.

Epigenetic Impact filtering: In a GWAS Manhattan plot the x-axis is the full genome (all
autosomal chromosomes). We propose that all SNPs that might be included in an AD PRS
be checked on whether are located in or near known genes and in particular in coding
regions of annotated genes that code for known proteins or enzymes related to AD, using
semantic searches to weight more on genes that are linked to the AD phenotype based on
post-translational protein modifications. Specifically, SNPs that belong to coding genes
will be investigated on the impact they have on the aminoacid sequence they produce.
Using post-translational modification prediction algorithms, it will be possible to score
higher those SNPs that could have a significant epigenetic change on a gene product. For
example, a SNP that brings in or removes an amino acid residue that gets phosphorylated
would have a higher weight. Loss or gain of phosphorylation could account for the
phenotype so that taking this into consideration when calculating PRS will improve the
weighting approach. SNPs can also have an epigenetic impact depending on their location
and it is evident that risk variants are enriched in regions with regulatory elements [40].
Coding and non-coding variants are highly associated with chromatin structure and histone
modifications, with coding SNPs enriched at nucleosomes and associated with repressive
histone modifications [41,42]. Still, non-coding risk variants identified in GWAS studies
can have a diverse functional role such as regulatory elements [43]. In our approach, will
also propose for an additional weight based on the effect of non-coding variants on gene
expression, by focusing on overlap on open chromatin data and on SNPs that are eQTLs,
implementing a variety of computational tools that have been developed to annotate as
well as predict such impact [44]. Through this inclusion, specific variants in putative
regulatory regions and expression quantitative trait loci associated with the disease will
be of higher importance based also on specific tissue expression (brain tissue and nervous
system cells).

Phenotype severity effect: In many cases and diseases, multiple GWAS studies are avail-
able. We propose that a binary classification of severe vs. less severe clinical manifestation
for each GWAS be taken into consideration. For example, in AD the unique SNPs that
belong to the late onset GWAS study are less potent in causing AD than those in the
full AD GWAS dataset that are supposed to be uniquely linked to more severe disease
manifestations. Under this logic, genes can be clustered in three groups: those that belong
to both datasets (severe and less severe) in regard to their phenotypic influence; those that
are unique to the severe phenotype; and those unique to the less severe phenotype. The
weights of these SNPs are adjusted accordingly with the main focus on giving extra weight
and significance to those SNPs that cause the most severe phenotype.

Summary of proposed approach (Figure 1): We propose to use filtering methods to remove
the aforementioned drawbacks that affect the overall calculation of PRS. The first step
takes into consideration the inheritance network/relationship between SNPs in areas in the
proximity of AD genes, as there might be SNPs that come together with driver/important
SNPs because they are linked or inherited together, while not affecting the phenotype. The
second step weights more highly SNPs in coding genes because of changes they bring to
the polypeptide chain could have post-translational modification impact and an additional
weighting system that will control for chromatin accessibility and histone modification.
The third step weights more highly SNPs that are associated with more severe forms of the
phenotype, when derived from different GWAS studies, as illustrated above with AD.
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Laying the Foundation for Applying the above Approach to Estimate PRS in AD

While our described approach remains theoretical until actual analyses are performed
and benchmarked, to better describe the approach we will describe steps we have taken
towards this direction. We have developed a dataset that integrates all Alzheimer’s
Disease (AD) related genes, proteins and SNP associations reported in the literature. A
general-purpose pipeline has been designed that combines list of genes associated with
AD, available either in gene or protein databases. First, the complete list of 854 AD related
genes was downloaded from the NCBI gene database using the keywords “Alzheimer’s
Disease” [45]. We filtered this list of genes with respect to species and retained only
entries regarding Homo Sapiens. Due to significant redundancy in terms of included
attributes, we applied filtering to isolate only the attributes of interest: Gene ID, Symbol,
Aliases, Map location, Chromosome. Second, to enhance the gene dataset, a list of 6965 AD
related proteins was downloaded from the NCBI protein database under the same keyword
“Alzheimer’s Disease” [46]. The accession numbers were retained and an SQL script was
developed to automatically scan the UniProt database and extrapolate the corresponding
gene name (Gene ID) using the online converter of UniProt [47]. The consequent attributes
for each entry were appended to the protein dataset and entries were also filtered by species
and duplicates were removed. Third, both lists were imported into MySQL databases with
the corresponding attributes, originating from the AD related gene dataset and the AD
related protein dataset. Comparing the two datasets, if a gene corresponding to a specific
protein was already included in the gene dataset, it was annotated with the corresponding
protein by including one additional attribute. If the specific gene (coming from the list of
proteins) was not included, a relevant entry was appended in the file, thus enhancing the
original list of genes related to Alzheimer’s Disease.

An enhanced non-redundant dataset was thus developed, including all AD related
genes originating either from the protein dataset or from the gene dataset. The dataset
consists of 630 entries with the following attributes: Gene ID, Symbol, Map_location, Chromo-
some, Origin. The field Origin was annotated with three distinct values: (a) common, which
annotates all genes that existed both at the gene dataset and the protein dataset (in total
54 common genes), (b) GenesAD, which annotates all genes that were included only in the
original gene dataset (in total 496 genes), and (c) ProteinsAD, which annotates all genes that
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were included only in the protein dataset (in total 80 genes). The full list of AD genes is in
Supplementary Materials Table S2.

To complete the annotation of the dataset, the set of AD related GWAS studies was
downloaded from the GWAS Catalog [48]. The SNPs identified with an association to AD
were compared to the in-house gene dataset and an additional attribute was appended in
terms of their corresponding genes. 144 unique entries with the corresponding genes of the
GWAS catalog were identified and included in the in-house dataset. Out of these, 42 genes
originating from the AD related protein dataset was also appended with the amino acid
change involved. The latter datasets can be found in Supplementary Materials Tables S3
and S4, respectively.

The GWAS dataset used contains two distinct traits for Alzheimer’s Disease: late-onset
Alzheimer’s disease (EFO_1001870) and Alzheimer’s disease (EFO_0000249). The main
concept is that late-onset Alzheimer’s disease SNPs are associated with a less severe clinical
form of AD. SNPs from both studies were mapped on the 1241 AD related genes that we
identified using the data collection pipeline. This resulted in three groups of SNPs based
on their overlap in the two GWAS datasets. One group includes SNPs that are identified in
both the Alzheimer’s disease (EFO_0000249) dataset and the late-onset Alzheimer’s disease
(EFO_1001870) dataset and are given neither bonus nor penalty. One group that includes
SNPs that are unique to the Alzheimer’s Disease (EFO_0000249) GWAS study only and
consecutively were given a bonus score (as they belong to the severe clinical manifestation
group). And one group that includes those SNPs that are unique in the late-onset AD
(EFO_1001870), which were accordingly given a score penalty as they are linked with a
milder manifestation of AD.

We are optimistic that our planned future analyses will confirm that our approach can
significantly enhance the performance of PRSs and subsequently their utility in the clinic.

3. Conclusions

While very significant progress has been made, and work on other diseases suggests
the PRS analysis is likely to become an important tool for precision medicine, the current
state of PRS in AD is not yet where it would need to be for this purpose. Although numerous
studies have been conducted, AD PRSs’ predictive power are not satisfactory for clinical
use. The overall calculation of PRSs is highly dependent on the sample sizes of GWAS
studies and the genetic architecture of the disease, where more dense genotyping and
larger number of SNPs enhance their predictive power but on the other hand increase noise
in effect size estimates. The variety of computational methods used for PRS construction
and validation, inclusion of additional variables to adjust for risk prediction, linkage
disequilibrium, as well as diversity of the population samples genotyped in different
GWAS studies, although useful for achieving improved genetic risk associations, comprise
a drawback in the replicability of predictions and a standardized PRS construction to
be applied for clinical use. Given the need for early prediction and the diversity of AD
clinical manifestation and genetic background, we propose the improvement of a PRS
calculation refined by additional weighting based on an extensive annotation of SNPs and
their biological function that will reformulate their effect on the disease.

Using a data mining and data fusion pipeline we propose to establish a consensus PRS
of AD risk based on the inheritance pattern of SNPs, the post-translational impact of SNPs
(where applicable) and the associated phenotypic trait (AD = severe; late AD = less severe).
We argue that this novel PRS will more efficiently represent the pathogenic impact of
multiple gene variants on AD phenotypes—and on other multifactorial diseases. The
first step of our proposed filtering is most crucial for noise reduction as it excludes co-
inherited variants that do not affect the phenotype under study while reducing dataset
size. The steps of post-translational modification filtering and phenotype severity impact
introduce additional features that should be included in the PRS calculation but require for
appropriate weight assignment. To assess the effects of variants in coding regions on post-
translational modification we determined whether AD GWAS variants correspond to genes
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included in the AD-related protein dataset. We annotated variants as “AD-related” when
the change they introduced was missense resulting in an aminoacid change. Aminoacid
changes are more likely to be functional as they can affect the structure and/or function of
the protein, whether in terms of physical or biochemical properties. Also, if an aminoacid
change occurs at a post-translational modification site it could have a profound effect on
signaling. Thus, accounting for such information will aid assignment of an appropriate
PRS weight.

The effect of gene variants on phenotype severity feature can be approached in multi-
ple ways, depending on the disease studied. In the case of AD, we divided the dataset into
two groups: the late-onset versus early-onset AD, as annotated in the GWAS catalog, and
applied a simple bonus and penalty scoring system to clearly discriminate this phenotypic
effect. In other diseases, especially where data are available to classify phenotypic severity
into more than two groups, the scoring system might be more complex. Once these features
are determined the proposed risk score can be calculated. This approach will overall
filter out miscalculated SNPs that were highly associated with severe disease risk due
to noise effect sizes, co-inheritance and gene-loci dependence and allow for a new set of
SNPs to surpass the given threshold based on their actual effect on gene expression, post
translational modifications, and phenotypic severity.

Given the complexity of AD and the multidimensionality of the underlying genetics
future efforts will be focused on establishment of an advanced mathematical function to
correlate the genetic profile of each patient to the phenotype and severity of the disease. The
methodology we propose is expected to filter out false-positive SNPs in conventional GWAS
analyses and lead to a more precise and reliable SNP subset with actual potential to be used
as an AD biomarker. Incorporating clinical data in the PRS construction methodology can
enhance the predictive ability of a PRS score with a clinical benefit. So far, the construction
of a purely statistical, GWAS-based PRS has shown limited applicability. The optimization
of a risk model should include empirical data and additional machine learning methods
in a personalized manner, that will include variables not only based on the molecular
mechanisms and genetic architecture of the underlying disease, but also interpret the effect
of population origin, comorbidities, clinical data on the disease phenotype, and a medical
profiling of the groups under study, under the scope of the probable epigenetic effects
for each patient. Acknowledging the current limitations of a personalized PRS score, the
proposed approach can refine the risk model based on the clinical manifestation of AD. The
validation of our model can be achieved by additional GWAS studies in large cohorts that
will include a more precise description on the phenotypic severity, as well as future clinical
outcomes for each person, expanding the input data for our simulations with additional
features and empowering the predictive outcome of machine learning simulations.

In conclusion, we propose that this hybrid filtering and scoring pipeline can be
applied in more GWAS studies and diseases and act as a mathematical algorithm capable
of grouping patients in phenotypic groups, therefore serving as an in-silico clinically useful
biomarker of disease risk and lay the groundwork for an optimized PRS construction
method. Refining the proposed pipeline will require artificial intelligence methods, such as
deep learning, applied to GWAS datasets, and enhanced phenotyping, perhaps through
medical records, to calibrate weights of each variant on the PRS calculation. The combined
approaches of machine learning, enhanced with clinical data, and PRS can further improve
the predictive capability of an improved risk score for multifactorial diseases.
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of genes identified in AD GWAS catalog and the in-house database; Table S4: List of the 42 genes
originating from the AD related protein dataset.
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