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ABSTRACT
The stomach bacterium Helicobacter pylori is one of the most prevalent pathogens
in humans, closely linked with serious diseases such as gastric cancer. The microbe
has been associated with its host for more than 100,000 years and escorted modern
humans out of Africa. H. pylori is predominantly transmitted within families and
dispersed globally, resulting in distinct phylogeographic patterns, which can be utilized
to investigate migrations and bioturbation events in human history. Latin America
was affected by several human migratory waves due to the Spanish colonisation that
drastically changed the genetic load and composition of the bacteria and its host. Genetic
evidence indicates that independent evolutionary lines of H. pylori have evolved in
mestizos from Colombia and other countries in the region during more than 500 years
since colonisation. The vacuolating cytotoxin VacA represents a major virulence factor
of the pathogen comprising two domains, p33 and p55, the latter of which is essential
for binding to the host epithelial cell. The evolution of the VacA toxin in Colombia
has been strongly biased due to the effects of Spanish colonization. However, the
variation patterns and microevolution of the p55 domain have not yet been described
for this population. In the present study, we determined the genetic polymorphisms
and deviations in the neutral model of molecular evolution in the p55 domain of
101 clinical H. pylori isolates collected in Bogotá, a city located in Andean mountains
characterized by its high gastric cancer risk and its dominant mestizo population. The
microevolutionary patterns of the p55 domainwere shaped by recombination, purifying
and episodic diversifying positive selection. Furthermore, amino acid positions 261 and
321 in the p55 domain of VacA show a high variability among mestizos clinical subsets,
suggesting that natural selection in H. pylorimay operate differentially in patients with
different gastric diseases.
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INTRODUCTION
H. pylori is a highly successful Gram-negative bacterium that colonizes the stomach of
about 50% of the human world population (Perez-Perez, Rothenbacher & Brenner, 2004;
Khalifa, Sharaf & Aziz, 2010). The infection is associated with superficial gastritis; however,
a subset of individuals can develop ulcers (Ernst & Gold, 2000) or two aggressive forms of
cancer, mucosa-associated lymphoid tissue (MALT) lymphoma or gastric adenocarcinoma
(Parsonnet et al., 1991; Parsonnet et al., 1994; Blaser, 1998; Posselt, Backert & Wessler, 2013).
Thus, H. pylori infection is recognized as the most important risk factor for gastric cancer
development (International Agency for Research on Cancer (IARC), 1994; Helicobacter and
Cancer Collaborative Group, 2001). In Colombia, gastric cancer is the fourth cause of deaths
by cancer (Ferlay et al., 2013) and the risk to develop this disease increases following the
altitudinal gradient (Torres et al., 2013). In this country, an inverse relation in gastric
cancer risk has been observed between inhabitants from the Andes with high risk and
those located at the coasts with low risk (Kodaman et al., 2014). Bogotá and its surrounding
towns, the places from where the clinical isolates of the present study were obtained, are
located in the Andean mountain and consequently have a high gastric cancer risk (Marion
& Murillo, 2004) and its population is conformed predominantly by mestizos (Ossa et al.,
2016; Adhikari et al., 2016).

H. pylori and humans have co-evolved for at least 100,000 years, and the bacteria have
mimicked the settlement pattern of its host (Linz et al., 2000). Seven major populations of
H. pylori have been discovered on our planet: hpEurope, hpNEAfrica, hpAfrica1, hpAfrica2,
hpAsia2, hpSahul and hpEastAsia (Yamaoka, 2009; Falush et al., 2003; Achtman, 2007;
Achtman et al., 1999; Moodley et al., 2009; Devi et al., 2007). About 12,000 to 15,000 years
ago, humans carrying the hpEastAsia H. pylori population migrated to the American
continent by crossing the Bering Strait, which developed towards a new hspAmerind
cluster (Kersulyte et al., 2010). However, the Spanish colonization era, starting in the 15th
century, changed the load of pathogens in the native human population of Latin America
(Bianchine & Russo, 1992). Thus, new strains of H. pylori were introduced to the continent
by European conquerors and also African slaves, which, through recombination, gene
conversion and natural selection, produced unique evolutionary lineages of the bacterium
in the mestizos of Colombia and other countries of Latin America (Gutiérrez-Escobar et al.,
2017; Thorell et al., 2017).

One of the most studied virulence factors of H. pylori is the vacuolating cytotoxin VacA
(Leunk et al., 1988; Chung et al., 2010; Backert & Tegtmeyer, 2010; Jang et al., 2010). This
toxin is present in all H. pylori strains and does not have homologues in other bacterial
species (Cover & Blanke, 2005). VacA displays two main cellular localizations: on the
bacterial cell surface (Ilver et al., 2004) or as a secreted toxin of about 88 kDa (Cover &
Blaser, 1992). The secreted toxin is cleaved into two smaller products, called p33 and p55.
While p55 binds to the host cell and has been used to classify them1 orm2 allelic VacA types,
p33 and part of p55 are responsible for the intracellular vacuolating activity (Ye, Willhite &
Blanke, 1999; Torres, McClain & Cover, 2004; Ji et al., 2000). Previous phylogenetic analysis
using the full-length VacA sequence revealed three discrete phylogenetic clusters, one
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for non-Asian strains, other for exclusively Asiatic strains and the last conformed by a
worldwide mixture, the first two were assigned to the type m1; meanwhile the last to the
type m2 (Gangwer et al., 2010). In the same study, they also showed that the phylogeny of
the p55 domain resembles the phylogeography of full-length VacA and found that adaptive
evolution has driven its divergence patterns (Gangwer et al., 2010).

A recent study has also shown that the evolution of VacA in Latin America has been
strongly biased due to the effects of Spanish colonization (Gutiérrez-Escobar et al., 2017).
However, neither the phylogeny nor the way in which natural selection has operated on the
p55 domain has been described yet in H. pylori isolates from this region. In this context,
the aim of the present study was to describe the genetic diversity and microevolution of
the p55 domain in a large group of clinical H. pylori isolates obtained from mestizos in a
high gastric cancer risk zone from Colombia.

MATERIAL AND METHODS
The DNA and protein sequences corresponding to the p55 domain of VacA were obtained
from 101 genomes previously sequenced by our group from the H. pylori stock collection
at the Instituto Nacional de Cancerología in Bogotá (Gutiérrez-Escobar et al., 2017). The
stock collection was obtained from inhabitants of Bogota, Tunja and surrounding towns.
The study region is located in a high plateau (8,660 ft), also called the Bogota savanna,
and is part of the Altiplano Cundiboyacense at the Eastern Cordillera of the Andes. This
region is characterized by its high gastric cancer risk (International Agency for Research on
Cancer (IARC), 1994; Helicobacter and Cancer Collaborative Group, 2001). The sequences
were categorised in four groups according to the gastric disease state as follows: 31 cases of
gastritis (G), 17 cases of gastric adenocarcinoma (GA), 27 cases of atrophic gastritis (AG),
and 26 cases of intestinal metaplasia (IM). For the m region characterization, sequences
corresponding to m1, m2 and m1/m2 types were downloaded from Genbank. For m1:
Q48245; chimeras (ch): Q9 kJA6, Q6DLS8; and m2: Q48253 (Cover et al., 1994; Atherton
et al., 1999. The sequences were aligned using MUSCLE software (Edgar, 2004); and
displayed in ESPript http://espript.ibcp.fr (Robert & Gouet, 2014).

Population statistics, neutrality test and phylogenetic reconstruction
Basic population genetic estimators were calculated as number of haplotypes (H), haplotype
diversity (Hd), nucleotide diversity (Pi), and average number of nucleotide differences (k)
using DnaSP v5.10 software (Librado & Rozas, 2009). The deviation of neutral expectations
was calculated applying the Tajima test (Tajima, 1989) in MEGA v7 (Caspermeyer, 2016).
The 101 p55 VacA sequences from Colombian isolates were aligned using MUSCLE
(Edgar, 2004), then the evolutionary model and phylogeny were determined using MEGA
v7 (Caspermeyer, 2016) applying the NJ algorithm (Huelsenbeck & Ronquist, 2001) and
1,000 bootstrap repetitions for statistical robustness.

Recombination and gene conversion analysis
The p55 vacA sequences were analyzed in overall average and per disease group. Gene
conversion was tested using the Betran’s method (Betran et al., 1997) and recombination
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using the Rm estimator or the minimum number of recombination events (Hudson &
Kaplan, 1985) implemented in the software DnaSP v5.10 (Librado & Rozas, 2009).

Type I functional divergence and positive selection analyses
I-TASSER was used to predict the structure of p55 VacA from Colombian samples (Yang et
al., 2015) using 2QV3 as template (Gangwer et al., 2007). The root mean square deviation
(RMSD), superimposition and surface protein analyses were performed using Chimera
v1.11.2 (Pettersen et al., 2004). DIVERGE v3 (Gu, 1999;Gu et al., 2013) was used to estimate
type I functional divergence, which detects functional changes in a protein based on site-
specific shifts of evolutionary rates (Gu, 1999; Gu et al., 2013). The software tests whether a
significant change in evolution rate has occurred, by calculating the coefficient of divergence
(θD). Positive and negative selection was evaluated as the proportions of synonymous
to non-synonymous substitution rates. The p55 VacA alignments were corrected for
recombination using the Single Break Point (SBP) algorithm and then, the Fixed Effects
Likelihood (FEL) and the Internal Fixed Effects Likelihood (IFEL)methods were performed
using the datamonkey server (Kosakovsky Pond & Frost, 2005). The episodic diversifying
selection was detected using the Mixed Effects Model for Episodic Diversifying Selection
(MEME) algorithm (Murrell et al., 2012) also implemented in datamonkey server. Only
sites SBP corrected with a p< 0.05 were considered significant.

Immune selection test and significant sequence variation between
groups
Initially, the full protein sequence of p55 VacA was used to identify regions with positive
scores for B cell epitopes using the server http://tools.iedb.org/bcell/ (Jespersen et al., 2017;
Larsen, Lund & Nielsen, 2006). Then, positive selected sites shared by the FEL, IFEL and
MEME tests were mapped against the significant epitope predicted regions. To identify
significant sequence variation between sequence groups a multiple sequence alignment was
performed using MUSCLE software (Edgar, 2004), then a chi-square test of independence
was performed on all non-conserved columns using a p< 0.05 as a threshold value. The
degrees of freedom were assigned according to the equation: number of observed residues
at each aligned position−1multiplied by the number of groups being calculated−1. Those
columns that significantly deviated from random were subject to a Person’s chi-square to
determine the pair observed groups skewing of the data; the calculations were performed
using the Meta-cast tool implemented in http://www.viprbrc.org (Pickett et al., 2013).

RESULTS
In our previous analysis of genetic differentiation of the vacA gene using 101 H. pylori
genome sequences of mestizos from a high gastric cancer region in the Andes of Colombia
and 34 reference genomes showed that the Colombian alleles are more similar to that
of HpEurope or HspWestAfrica, differentiating them from HspAsia and HspAmerind
strains (Gutiérrez-Escobar et al., 2017). This indicates that the Colombian population may
have a remarkable European-African component with regard to the VacA type, which
was not yet studied. In the present study, we performed a molecular evolution analysis

Gutiérrez-Escobar et al. (2019), PeerJ, DOI 10.7717/peerj.6634 4/20

https://peerj.com
http://tools.iedb.org/bcell/
http://www.viprbrc.org
http://dx.doi.org/10.7717/peerj.6634


of the p55 domain of VacA from the 101 H. pylori isolates (Table S1). For this purpose,
the p55 protein sequences were aligned against four reference sequences belonging to the
m1, m2 and chimera allele types. The alignment revealed that 84% of the sequences from
Colombian isolates belonged to the m1 type, whereas 15.2% belonged to the m2 type
(Fig. 1).

The vacA gene fragment that encodes for the p55 domain in Colombian clinical isolates
showed 431 segregating sites and 95 haplotypes with a haplotype diversity of 0.999. The
nucleotide diversity (π) was 0.0741 and the average number of nucleotide differences
(k) was 99.523. The Tajima’s D test was 0.669, indicating that rare alleles are at low
frequency in the population. The phylogenetic tree of p55 VacA showed three major clades
corresponding to the m1, m2 and chimera types. Although the phylogenetic tree has very
short branches indicating a very recent evolutionary history, seven independent lines were
identified for the m1 sequences, one for chimeras and one for m2 sequences, suggesting
that diversifying selection has influenced the evolution of this domain in the high gastric
risk zone in Colombia (Fig. 2). Recombination and gene conversion played an important
role in the evolution of p55 vacA gene sequences. The Betran method showed 24 gene
conversion tracts for the entire sample. However, when the sequences were analyzed per
disease group, all shared genetic tracts. The Hudson R estimator showed 98 minimal
recombination events varying from the AG population with 69 events until the GA with
32 (Table 1).

As next we aimed to investigate p55 at the amino acid level. For this purpose, the p55
protein model of the Colombian sequence 1077GA was obtained by using the published
crystal structure (PDB code 2QV3) as a template, which showed a high structural similarity
(Gangwer et al., 2007). The N- and C-termini of the p55 VacA model showed the typical
β-strands and α-helices previously identified in the 2QV3 crystal (Gangwer et al., 2007).
Likewise, the RMSD predicted for the above p55 VacAmodel was 0.198 Å for alpha carbon,
and 0.61 Å for the backbone. About 83% of the amino acid residues were surface-exposed
and 17% were classified as buried inside the protein (Figs. 3A/ 3B).

The clades previously identified in the phylogenetic tree were used to detect functional
divergence events amongst the p55 VacA sequences. Although, the pairwise comparisons
between the clades 1 and 2 showed that the sites at amino acids P454 and L342 have
a θD>0.5, this result was not significant (p> 0.07). The dataset was corrected for
recombination using the Single Break Point (SBP) algorithm and then positive and
negative selection analyses were performed. The analysis showed that according to the FEL
test, 3.7% residues evolved under positive selection and 22.2% by purifying selection, and
the IFEL test indicated that 3.7% evolved by positive selection and 17.3% under purifying
selection (Table 2 and Table S2 to clarify the numbering system). Likewise, 8.7% of p55
VacA residues showed episodic diversifying selection according to the MEME test (Table 3
and Table S2).

To identify if immune selection also played a role in the evolution of p55 VacA, an
epitope prediction test was performed. According to this prediction, the 48.3% of p55
VacA has the potential to be recognized by humoral immunity (Fig. 4A). All the positive
and episodic diversifying selected sites detected using the FEL, IFEL and MEME tests
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Figure 1 Protein sequence alignment of p55 VacA fromH. pylori of Colombianmestizos. The strain
names are given to the left. The middle section of VacA (shaded with light blue) differentiates the m1
and m2 types, respectively. The m1 sequence types, characterized by its lack of the middle section (top
sequences), were the most prevalent in the studied population in comparison to the m2 sequence type,
which has a clear middle section (bottom sequences). Amino acids marked with red correspond to strictly
conserved residues between all aligned sequences. Black dots mark the chosen reference VacA sequences
for m1, m2 and chimera (ch) alleles (Atherton et al., 1999; Cover et al., 1994). The alignment was per-
formed using Muscle software and displayed in ESPript server.

Full-size DOI: 10.7717/peerj.6634/fig-1
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Figure 2 Phylogenetic tree of p55 VacA fromH. pylori of Colombianmestizos. The tree was inferred
using the Neighbor-Joining method (Saitou & Nei, 1987). (A) The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The
topology robustness was calculated using the averages of 2,000 replicates (continued on next page. . . )

Full-size DOI: 10.7717/peerj.6634/fig-2
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Figure 2 (. . .continued)
from the bootstrap test (Felsenstein, 1985). Only significant consensus tree branches are shown. The evolu-
tionary model that best fitted the alignment was the JTT+G+F+I (Jones, Taylor & Thornton, 1992) show-
ing a BIC (Bayesian Information Criterion)= 15,807, lnL=−6,341,5. The rate variation among sites was
modeled with a gamma distribution= 2. The analysis involved 101 amino acid sequences. All positions
containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA7 (Ku-
mar, Stecher & Tamura, 2016). (B) The phylogenetic tree without distances showing discrete clades (ar-
rows) accounting for the diversification of the domain in the studied samples.

Table 1 Recombination and gene conversion events in the VacA p55 domain sequence obtained from
Colombianmestizos.

Recombination events Gene conversion

n Rm Tracts

Average 101 98 G vs. AG 7
AG 25 69 G vs. IM 1
G 32 64 G vs. GA 4
IM 26 59 AG vs. IM 3
GA 17 32 AG vs. GA 3

IM vs. GA 6

Notes.
Average: the total number of recombination events in the 101 sequences.
Rm, minimum recombination events; G, Gastritis; AG, atrophic gastritis; IM, intestinal metaplasia; GA, gastric adenocar-
cinoma.

Figure 3 Structure model of p55 VacA fromH. pylori of Colombianmestizos. The I-TASSER server
(Yang et al., 2015) was used to predict the structure of p55 domain using the protein sequence named as
1,077 from the Colombian samples as query and the crystal structure 2QV3 as template (Gangwer et al.,
2007). The root mean square deviation (RMSD), superimposition and surface protein analyses were per-
formed using Chimera v1.11.2 (Pettersen et al., 2004). The conformation of α helixes and the β sheets be-
tween the template and the model was strongly similar as displayed. (A) Lateral view; (B) Bottom view.

Full-size DOI: 10.7717/peerj.6634/fig-3
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Table 2 Positive selection test of VacA p55 sequences.a

Amino acid
position

dS dN dN/dS dN-dS p-value

N11 0 2,043 Infinite 2,135 0,015
Y21 0 4,172 Infinite 4,361 0,002
H33 0 3,374 Infinite 3,527 0,004
V39 0 2,787 Infinite 2,913 0,001
E180 0 3,081 Infinite 3,221 0,003
K206 0 2,307 Infinite 2,411 0,015
A241 0 1,811 Infinite 1,893 0,024
E246 0 1,013 Infinite 1,059 0,031
V261* 0 1,108 Infinite 1,158 0,025
L291 0 1,643 Infinite 1,718 0,006
R321* 0 3,523 Infinite 3,683 0,028
E338 0 3,881 Infinite 4,057 0,020
H399 6,8E–15 3,922 5,798E+14 4,100 0,020
G423 4,1E–01 3,204 7,726 2,916 0,017
I424 0 1,496 Infinite 1,564 0,039
Y437 1,0E–06 1,058 1,058,420 1,106 0,032
P443 1,6E–15 3,849 2,416E+15 4,024 0,001

Notes.
aFEL tests for positive selection of VacA p55 sequences. Shown sites were detected also using the IFEL test. The dS are synony-
mous sites and dN are non-synonymous sites; the dN/dS is the Omega value; and dN-dS is the normalized test. Stars indicate
amino acids under positive selection that were also found to be significantly different between disease groups.

were mapped against the p55 VacA structure. About 58.8% of the positive selected sites
according to the FEL and IFEL test and the 35% of the episodic diversified selected sites
according to MEME test were located in the regions predicted to be recognized by the host
humoral immunity. This result implies that immune selection may have contributed to
shaping the evolutionary pattern of this protein domain in strains from Colombia (Figs.
4B/4C). Besides, the amino acid residues R321 and V261 (see Table S2), both recognized
by FEL and IFEL test under positive selection, showed significant variation between all
possible pairwise combinations of the p55 VacA groups when the Pearson chi-squared test
was performed (Table 4).

DISCUSSION
Gene diversification and duplication are important sources of biological innovation during
evolution (Zhang, 2003). For example, duplicated genes evolve in two pathways; they either
become functional novelties or become functionless (Lynch & Conery, 2000). It has been
shown that gene duplication and frameshift mutations have an important role in vacA
evolution, not only in Helicobacter pylori but also in other species of this genus (Ito et al.,
1998; Foegeding et al., 2016). Likewise, secreted VacA recognizes several host cell receptors;
for example, the proteins LRP1 (Yahiro et al., 2012), RPTP (Yahiro et al., 2003; Yahiro et
al., 2004) and EGFR (Seto et al., 1998; Tegtmeyer et al., 2009) as well as sphingomyelin (Utt,
Danielsson & Wadstrom, 2001; Gupta et al., 2008), glycosphingolipids (Gupta, Wilson &
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Table 3 Episodic diversifying positive selection test of VacA p55 sequences.a

Amino acid
position

α β Pr[β=β−] β+ Pr[β=β+] p-value

423* 0,388 0,000 0,946 105,075 0,054 9,06E–09
480 0,000 0,000 0,963 243,320 0,037 1,05E–07
399 0,000 0,000 0,932 68,495 0,068 2,90E–07
481 0,000 0,000 0,960 96,483 0,040 9,33E–07
437* 0,000 0,000 0,982 155,811 0,018 1,35E–06
101 0,000 0,000 0,992 1,407,450 0,008 6,68E–06
388* 0,000 0,000 0,931 159,701 0,069 1,17E–05
443* 0,000 0,000 0,842 21,711 0,158 2,19E–05
478 0,000 0,000 0,908 119,998 0,092 3,31E–05
479 0,174 0,174 0,968 92,166 0,032 4,03E–05
449 0,000 0,000 0,975 68,471 0,025 6,29E–05
476 0,435 0,000 0,981 241,668 0,019 1,30E–04
89 0,000 0,000 0,974 50,406 0,026 2,70E–04
100 0,000 0,000 0,983 427,917 0,017 2,83E–04
268 0,000 0,000 0,961 27,107 0,039 4,71E–04
74 0,000 0,000 0,980 144,071 0,020 7,58E–04
21* 0,000 0,000 0,840 40,252 0,160 1,25E–03
246* 0,000 0,000 0,962 20,210 0,038 2,03E–03
39* 0,000 0,000 0,688 9,174 0,312 2,20E–03
274 0,000 0,000 0,977 22,648 0,023 3,00E–03

Notes.
aMEME tests for episodic diversifying selection of VacA p55 sequences. Stars indicate amino acid positions that were identified
under positive selection by the FEL and IFEL tests as shown in Table 2. The α are synonymous substitutions and β are non-
synonymous substitutions.

Blanke, 2010), heparan sulphate (Roche et al., 2007) and phospholipids (Molinari et al.,
1998), indicating that functional novelty may have occurred during evolution.

The genetic structure of p55 VacA from Colombian isolates indicates that some alleles
evolves under positive selection according to Tajima’s D (D= 0.669), and the high number
of haplotypes suggests a low frequency of rare alleles. It is important to stress that the
observed nucleotide diversity is low, indicating that a population contraction could
have taken place in this region from Colombia, but advantageous variants of p55 VacA
were maintained through balancing selection. Several studies have suggested that Latin
American mestizos have an admixture of ancestries from Europe and Africa (Falush et
al., 2003; Thorell et al., 2016). After colonization by the European conquerors, H. pylori
may evolved alongside its mestizo host producing independent evolutionary lines as
shown by multilocus sequence typing (MLST), phylogenomic and AlpA adhesin analyses
using genomes sequences of the same isolates from which we obtained the p55 sequences
(Gutiérrez-Escobar et al., 2017; Gutiérrez-Escobar et al., 2018). This could explain a possible
population contraction and the dominant purifying selection detected by analysis of the
p55 VacA domain.
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Figure 4 Relation between natural selection and immune recognition operating on p55 VacA fromH.
pylori of Colombianmestizos. (A) In yellow the regions predicted to be recognized by humoral immu-
nity using the server http://tools.iedb.org/bcell/ (Jespersen et al., 2017). (B) Positive selected amino acid
positions shared by the FEL, IFEL were mapped and shown in red. (C) Episodic diversified amino acid po-
sitions are indicated in green. Superimposition suggests a possible role of immune selection on the mi-
croevolution of variants for the p55 in this region of Colombian strains. Only sites with a p < 0.05 were
shown.

Full-size DOI: 10.7717/peerj.6634/fig-4
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Table 4 Significant protein sequence variation between VacA p55 from Colombia.a

Amino acid positions Chi-square p-value DF Residue Diversity

R261 14,406 0,002 3 G (31 I)
AG (22 I, 5 V)
IM (26 I)
GA (17 I)

L321 17,699 0,039 9 G (6 K, 19 Q, 6 R)
AG (9 K, 12 Q, 6 R)
IM (8 K, 13 Q, 5 R)
GA (11 K, 5 Q, 1 Y)

Notes.
aThe given amino acid positions in column 1 are according to reference VacA p55 sequence (Gangwer et al., 2007). Colom-
bia sequences were clustered according to the gastric pathology from which they were obtained as follows: G, Gastritis (31 se-
quences), AG, atrophic gastritis (27 sequences), IM, intestinal metaplasia (26 sequences), GA: gastric adenocarcinoma (17 se-
quences). A chi-square test of independence was performed on all non-conserved columns from the protein alignment using a
p < 0.05 as a threshold value. The degrees of freedom were assigned according to the equation: number of observed residues at
each aligned position−1 multiplied by the number of groups being calculated−1. Those columns that significantly deviated
from random were subject to a Person’s chi-square to determine the pair observed groups skewing of the data (Pickett et al.,
2013). DF corresponds to degrees of freedom.

The phylogenetic tree of p55 VacA showed three principal clades –one for the m1 type
and the others for the m2 and chimeras in Colombian mestizos, respectively, suggesting
a possible functional divergence event. The phylogenetic tree showed very short terminal
branches, which indicates that mutations were accumulated over a short period of time
and that a bottleneck process took place in the region, where only few organisms survived
a strong selective pressure that reduced the population. When the branch distances were
ignored, the phylogenetic tree showedmultiple points of functional diversification between
the p55 VacA variants. This diversification could represent functional adaptation to host
cell receptors (Gangwer et al., 2010) and/or immune selective pressure (Ghose et al., 2007).

A previous study showed that the divergence between vacA alleles is due to positively
selected surface-exposed sites in the p55 cell binding domain (Gangwer et al., 2010). In
this study, the different algorithms also detect positive selected sites in the surface of the
protein, but the major contribution to the microevolutionary patterns observed for p55
VacA was made by the strong purifying selection. The positive selected sites detected were
defined principally as episodic diversifying residues supporting the observed branching
scheme of the phylogenetic tree.

Another important force that shaped themicroevolution of p55VacAwas recombination
and gene conversion. Helicobacter pylori can take-up exogenous DNA from the
environment (Nedenskov-Sørensen, Bukholm & Bøvre, 1990) and recombine it with
an extremely high frequency (Go et al., 1996; Suerbaum et al., 1998). The number of
recombination events detected in Colombian p55 VacA suggests that the strains exchanged
DNA following a free recombination pattern. This indicates that, in addition to the low
nucleotide diversity, the population exhibits a high level of genetic homogeneity. Perhaps,
after the initial Spanish colonization, a small initial population of new H. pylori subtypes
exchanged genetic information by recombination and gene conversion, producing a highly
homogeneous strain pool in this country. It has been shown that recombination is more
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efficient between related strains than unrelated ones (Israel, Lou & Blaser, 2000; Pinto et al.,
2005).

The entire positive selected sites and most of the purifying selected ones were located at
positions with a high likelihood to be recognized by the host immune system. We propose
that immune selection has triggered the diversification of Colombian p55 VacA, but at the
same time those diversified alleles have exacerbated the host immune response contributing
to the high prevalence of gastric diseases and gastric cancer observed in this geographic
area as analysed by the Red Queen model of evolution (Strotz et al., 2018). One of the most
important results presented here is the detection of a plausible relation between natural
selection and the gastric disease state. Two specific amino acid positions, R261 and L321
according to the reference p55 VacA (Gangwer et al., 2007), both under positive episodic
diversifying selection in the Colombian samples revealed significant sequence variations
between different disease state groups, which opens new opportunities for the development
of early diagnosis strategies specifically addresses to this region from Colombia.

CONCLUSIONS
Taken together, Latin-America represents an ‘‘evolutionary laboratory’’ for H. pylori, and
it is possible that a new variant of virulence factors such as VacA has been evolving rapidly
in this subcontinent. This rapid evolutionary process has been described for example on
the AlpA adhesin in the same region (Gutiérrez-Escobar et al., 2018). We assume that 500
years of colonization provided sufficient time to produce new allelic variants for p55 VacA
not only in Colombia, and possibly also in other countries of the region. Further studies
should investigate this in more detail in H. pylori isolates across Latin America.
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