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Abstract: The objective of the present study was to evaluate the effects of an antioxidant and anti-
inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during
the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows
received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic
acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were
taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy
metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion
tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to
parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2

–

than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at
5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses
on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation
performance in peripartal dairy cows.

Keywords: peripartum; oxidative stress; carnosic acid

1. Introduction

The transition from pregnancy to lactation is one of the most susceptible periods of a
dairy cow’s life. Approximately 75% of health disorders in adult cows, such as retained
placenta, mastitis, and metritis, typically occur within the first month after calving [1].
The high susceptibility to these diseases is mainly correlated with an impaired immune
response, resulting in drastic metabolic and endocrine changes during the transition period.
From a metabolic standpoint, dairy cows commonly experience an increase in energy
requirements during the transition period, primarily for fetal growth prepartum, followed
by milk synthesis postpartum [2,3]. Then, cows show a clear inflammatory response [4,5]
after calving, although changes in immune response often proceeded parturition [6–8].
Additionally, during the prepartum, cows commonly experience a decrease in dry matter
intake (DMI) [9]. Although immediately after parturition, there is a progressive increase in
feed intake, this is generally insufficient in parallel with the nutrient requirements in early
lactation. This results in a negative energy balance (NEB) condition, and consequently,
non-esterified fatty acids (NEFA) are mobilized from the adipose tissue [10,11].

During NEB, triacylglycerides (TAG) are hydrolyzed into glycerol and NEFA and
released into the bloodstream [12]. NEFA can be used as an energy source by different
tissues, such as the mammary gland for milk fat synthesis, or taken up by the liver [13].
In the liver, NEFA are either completely oxidized to generate energy, partially oxidized to
produce ketone bodies, or re-esterified into TAG. Then, TAG are either exported as very
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low-density lipoproteins (VLDL) or stored in the hepatocytes [13,14]. At periods of intense
lipid mobilization, as the transition period, NEFA entering the liver exceeds its capacity of
β-oxidation and VLDL secretion, which follows to a greater production of ketone bodies,
such as b-hydroxybutyrate (BHB), and the accumulation of TAG in the liver [14,15].

The increased plasma NEFA and BHB, aligned with augmented metabolic demand
characteristic of the transition period, is commonly accompanied by a surge in reactive oxy-
gen species (ROS) leading to oxidative stress [11,16]. Parallel to this, the pro-inflammatory
cytokines released by the immune system induce ROS production by both phagocytic and
non-phagocytic cells [11], which can further alter redox balance and lead to an oxidative
stress condition during early postpartum. Oxidative stress can be defined as the damage
occurring to cellular macromolecules as a consequence of serious and prolonged imbalance
between oxidants and antioxidants [17,18]. ROS are particularly reactive towards DNA,
proteins, and lipids, resulting in cellular alterations, including lipid peroxidation, cell
membrane damage, DNA mutation, impaired protein activity, and cell death [16,18,19]. In
immune cells, those alterations can result in diminished functional activities, such as reduc-
tion in neutrophils phagocytosis and killing capacity [2]. In addition, oxidative stress has
been correlated with increased inflammation through the activation of pro-inflammatory
signaling pathways [16] and with insulin resistance, which can further enhance the lipolytic
state of transition dairy cows [19]. Overall, oxidative stress as an underlying factor for dys-
functional immune response and enhanced inflammation underscores the importance of
this condition in the increased susceptibility of dairy cattle to health disorders, particularly
during the transition period [2,11,20].

Antioxidant compounds can be synthesized by the body and are also naturally present
in feedstuffs; however, for indoor animals fed low forage diets or especially during periods
of high antioxidant demands such as the peripartal period, dietary supplementation is
necessary to meet the increased requirements [21–23]. Vitamin E and selenium are the
most widely used antioxidants included in dairy cattle diets, especially in the form of
premixes added to the total mixed ration [11]. However, in the last few decades, there has
been an increased interest in studying alternative natural compounds with antioxidant and
anti-inflammatory properties as supplements for food-producing animals [24–26]. Besides
being a source of antioxidants in the final products for the human diet, those natural
compounds have the added benefit of being positively perceived by consumers [22,27].

Rosemary (Salvia rosmarinus), an herb from the Labiatae family, is known to have a
particularly high concentration of phenolic diterpenes with antioxidant and antimicrobial
properties [28]. Among those phenolic diterpenes, carnosic acid is the most abundant in
rosemary leaves [29], and it has one of the highest antioxidant activity [30,31]. Carnosic
acid presents a high reactivity toward ROS, and it acts as a scavenger that can eliminate
ROS [28]. Moreover, carnosic acid has been shown to play a role in the activation of the
PI3K/Akt/Nrf2 signaling pathway in human cells [32,33]. Nuclear factor erythroid-2
related factor 2 (Nrf2) is a transcription factor involved in the cellular response to oxidative
stress, inducing the expression of several protective enzymes, e.g., glutathione peroxidase
and superoxide dismutase [32]. Furthermore, carnosic acid has been shown to reduce
the expression levels of pro-inflammatory cytokines in human and mice cells [34,35] and
regulate fatty acid metabolism [36].

However, in ruminants, studies evaluating carnosic acid have been mainly correlated
with an increase in meat quality through reduction of lipid oxidation [37–39]. Surprisingly,
its potential use as a strategy to reduce the oxidative and metabolic stress of transition
dairy cows remains terra incognita. Based on the above, we hypothesized that providing
carnosic acid during early lactation might minimize the typical exposure to oxidative stress
and attenuate the typical inflammatory response during peripartum while allowing cows
to reach peak performance. The objective of the present study was to evaluate the effects of
a compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the
transition period of dairy cows.
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2. Materials and Methods
2.1. Experimental Design and Treatments

The Institutional Animal Care and Use Committee (IACUC) of the South Dakota
State University approved all the procedures for this study (protocol no. 2003-017A). The
experiment was conducted from September to December 2020 at the South Dakota State
University Dairy Research and Training Facility (Brookings, SD). Twenty late pregnant
multiparous Holstein dairy cows were used in a randomized complete block design from
−21 days prior to expected calving until 21 days in milk (DMI). Cows were blocked
according to expected calving day, parity, and previous lactation milk yield, then assigned
into one of two treatments. A total of 4 cows were removed from the experiment due to
calving outside the range of −7 to 7 d relative to the expected calving date (n = 2), displaced
abomasum (n = 1), and euthanasia due to low calcium/potassium at calving coupled with
a lack of response to treatment (n = 1) (Table 1).

Table 1. Frequency of occurrence of health problems in peripartum dairy cows receiving an intra-
venous infusion of carnosic acid (CA) or saline (Saline) from −21 relative to parturition through
21 DIM.

Treatment

Event CA Saline

Total animals 10 10
Subclinical ketosis 1 5 4

Clinical ketosis 2 0 2
Retained placenta 3 0 1

Displaced abomasum 0 1
Metritis 4 1 0

Pneumonia 1 0
Total excluded cows 5 2 2

1 Defined as cows having 1.4 to 2.9 mmol/L ketone concentration in blood, detected using a Precision Xtra
analyzer (Abbott Labs). Treatment administrated was oral propylene glycol and injection of vitamin B complex;
2 Defined as cows having > 2.9 mmol/L ketone concentration in blood, detected using a Precision Xtra analyzer
(Abbott Labs). Treatment administrated was oral propylene glycol and injection of vitamin B complex; 3 Defined
as fetal membranes retained > 24 h postpartum; 4 Foul-smelling, watery-consistency uterine discharge after
calving; 5 Cows excluded from the experiment due to calving outside the range of −7 to 7 d relative to the
expected calving date (CA, n = 1; Saline, n = 1), displaced abomasum (Saline, DIM = 18, n = 1), euthanasia due to
low calcium/potassium at calving coupled with a lack of response to treatment (CA, DIM = 0, n = 1).

From day 1 to 3 after calving, cows received either a daily intravenous infusion of
500 mL of sterile saline solution (NaCl 0.9%; Saline; n = 8) or an infusion with carnosic acid
at a rate of 0.3 mg/kg of BW (CA; n = 8). The complete dose of carnosic acid (Combi-Blocks,
San Diego, USA, cat. number QC-4383) based on BW was supplied on a total volume of
500 mL of sterile saline solution. Treatments were infused into the external jugular vein
before evening milking (17:00).

In rodents, pharmacokinetic studies have been performed using intravenous infusions
with CA at a rate of 10 or 20 mg/kg [40,41]. To the authors’ knowledge, a carnosic acid
pharmacokinetic study in ruminants has never been performed. Milk is the only body
fluid that has been used to detect carnosic acid in ruminants supplemented with distilled
rosemary leaves [42]. In this study Jordan, et al. [42], fed goats a basal diet supplemented
with 0, 10, and 20% of the diet with a pellet containing barley and distilled rosemary
leaves, and observed a carnosic acid concentration in milk ranging from 0.31 to 0.77 mg/kg.
Therefore, given the limitations on pharmacokinetic data on carnosic acid in ruminants
and the cost of procuring the CA couple with the large amount of CA needed to supply the
corresponding dose for an adult dairy cow, a 0.3 mg/kg BW dose was adopted as the most
feasible daily dosage from 1 to 3 d postpartum.
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2.2. Animal Management

Cows were enrolled in the experiment from early September 2020 to early January 2021.
Weather data from Mesonet at South Dakota State University (https://climate.sdstate.edu/)
was used to evaluate the daily ambient temperature during the experimental period. Cows
were fed using an individual gate system (American Calan, Northwood, NH, USA), and
intakes were recorded daily. Diets were formulated using the CNCPS model contained
within the Agricultural Modeling and Training Systems (AMTS) CattlePro diet-balancing
software (version 4.16.1, AMTS LLC, Lansing, NY, USA) to meet the requirements of the
average cow in the group (Table 2). Dry matter content of feed ingredients was determined
once a week throughout the experiment, and diets were adjusted accordingly to maintain
formulated DM ratios.

Table 2. Ingredient composition of diets during the close-up (−21 d to expected calving) and early
lactation periods (21 d relative to calving).

Diet

Component Close-up Lactation

Ingredient, % of DM
Corn silage 36.9 32.5
Alfalfa hay - 7.6

Alfalfa haylage - 12.1
Grass hay 24.6 -

Wheat straw 12.4 -
Soybean meal 11.5 5.7

Cottonseed - 6.7
Molasses - 5.0

Dry cow grain mix 1 14.6 -
Lactating cow grain mix 2 - 30.4

Chemical analysis
DM, % 46.7 47.6

NEL, Mcal/ kg DM 1.46 1.75
CP, % DM 15.1 19.6

NDF, % DM 43.7 31.8
ADF, % DM 27.4 17.7

Starch, % DM 15.9 28.2
DCAD, mEq/100 g −12.3 -

1 Dry cow grain mix contained (as % DM): distillers grain dry (24.8), soy hulls (21.4), biochlor (18.5), limestone
Ca (14.0), magnesium sulfate 7H2O (3.5), calcium phosphate 21% (3.5), reashure choline (2.8), calcium chloride
dihy (2.3), magnesium oxide 54% (2.3), calcium sulfate dihyd (1.5), chromium propionate 0.04% (1.0), DV nutritek
(0.9), JPW dairy vitamin premix 8298.V05 (0.9), salt white (0.7), vitamin E 20000 IU/lb (0.7), JPW dairy TM premix
8298.E04 (0.7), DTX binder (0.4), rumensin 90 g/lb (0.1); 2 Lactating cow grain mix contained (as % DM): corn
grain ground fine (66.1), soy best (14.8), distillers grain dry (7.4), limestone Ca (2.7), sodium bicarbonate (2.8),
energy booster 100 (2.2), salt white (1.16), urea (0.90), magnesium oxide 54% (0.55), calcium phosphate 21% (0.33),
JPW dairy vitamin premix 8298.V05 (0.29), JPW dairy TM premix 8298.E04 (0.29), DV nutritek (0.22), vitamin E
20000 IU/lb (0.11), DTX binder (0.11), rumensin 90 g/lb (0.02), biotin 1% (0.02).

During the dry period, cows were housed in bedded pack pens. Immediately after
calving, cows were reallocated in individual pens bedded with straw. On day 3, after
calving, cows were moved to a lactation free-stall barn. Cows were fed once daily (6:00)
and milked twice daily (6:30 and 18:00). Body weight was measured weekly for each cow in
the morning (9:00). Body condition score (BCS) (scale 1 = thin to 5 = obese) was assigned by
two individuals, and the average score was used for statistical analysis. All cows received
the same close-up diet (1.46 Mcal of NEL/kg and 15.1% CP; Table 2) and lactation basal
diet (1.75 Mcal of NEL/kg and 19.6% CP; Table 2), as a total mixed ration.

2.3. Blood Collection and Analyses

Blood was sampled from the coccygeal vein before morning feeding using a 20-gauge
vacutainer needle (Becton Dickinson, Franklin Lakes, NJ) at –7, 2, 5, 7, 14, and 21 d

https://climate.sdstate.edu/
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relative to parturition. Blood was collected into evacuated tubes (BD Vacutainer, Becton
Dickinson, Franklin Lakes, NJ) containing either serum clot activator or lithium heparin.
After collection, tubes that contained lithium heparin were placed on ice, and tubes with
serum clot activator were kept at 21 ◦C until centrifugation. Serum and plasma were
obtained by centrifugation at 1300× g for 15 min at 21 ◦C and 4 ◦C, respectively. The
aliquots were frozen at −80 ◦C until further analysis.

Blood samples were analyzed for biomarkers related to energy metabolism [i.e.,
glucose, β-hydroxybutyric acid (BHB), non-esterified fatty acids (NEFA)], muscle mass
catabolism (i.e., urea and creatinine), inflammation (i.e., ceruloplasmin and haptoglobin),
liver function [i.e., albumin, bilirubin, glutamic-oxaloacetic transaminase (GOT),
γ-glutamyltransferase (GGT), cholesterol, and paraoxonase (PON)], and oxidative stress
[i.e., myeloperoxidase (MPO), reactive oxygen metabolites (ROM), ferric reducing antiox-
idant power (FRAP), nitrates (NO3

−), nitrites (NO2
−), nitric oxide metabolites (NOx),

and oxygen radical absorbance capacity (ORAC)]. Furthermore, we calculated the ratios
between oxidants and antioxidant defenses, e.g., ROM/FRAP and ROM/ORAC. Those
ratios provide an integrated oxidant status index, which seems to better assess changes in
oxidative status during transition period [43,44].

Albumin, cholesterol, bilirubin, urea, creatinine, GOT, GGT, and glucose were an-
alyzed using the IL Test purchased from Instrumentation Laboratory Spa (Werfen Co.,
Milan, Italy) in the ILAB 600 clinical auto-analyzer (Instrumentation Laboratory, Lexing-
ton, MA, USA), following the procedures described previously [45–47]. Haptoglobin was
analyzed using the method described by Skinner, et al. [48], while ceruloplasmin was deter-
mined based on Sunderman and Nomoto [49], with modifications described by Jacometo,
et al. [50]. Antioxidant potential was assessed as ferric reducing antioxidant power (FRAP)
using a colorimetric method [51]. Paraoxonase, NOx, NO2

−
, and NO3

− were analyzed
according to methods described by Trevisi, et al. [52]. Myeloperoxidase was determined via
colorimetry based on the reaction of MPO contained in the plasma sample with hydrogen
peroxide, which forms H2O and O−; the O− dianisidine dihydrochloride, and electron
donor, reacts with the O−, releasing H2O and a colored compound [50,53]. Non-esterified
fatty acids and BHB were measured using kits from Wako (Chemicals GmbH, Neuss,
Germany) and Randox (Randox Laboratories Ltd., Crumlin, UK), respectively, following
the procedures described previously [45,53,54]. Finally, total antioxidants were assessed
through the oxygen radical absorbance capacity (ORAC) assay. This method estimates the
overtime antioxidant capacity to inhibit phycoerythrin hydroxyl radical damage [55].

2.4. Milk and Feed Samples

Total mixed ration samples were collected weekly and frozen at −20 ◦C after DM
analysis until further nutrient profile analysis. Monthly composites were analyzed for
contents of DM, CP, NDF, and ADF and NEL was calculated using wet chemistry methods
at a commercial laboratory (Dairy One; Ithaca, NY, USA).

Consecutive morning and evening milk samples were collected once weekly until
21 DMI. Composite milk samples were performed in proportion to milk yield at each
milking, preserved (Broad Spectrum Microtabs II, Advanced Instruments, Norwood, MA,
USA), and analyzed for fat, protein, lactose, solids, milk urea nitrogen (MUN), and somatic
cell count (SCC) (Dairy One; Ithaca, NY, USA). Energy corrected milk (ECM) was calculated
based on milk yield and milk sample analysis as follows: ECM = (12.82 × fat yield (kg)) +
(7.13 × protein yield (kg)) + (0.323 × milk yield (kg)) [56].

Energy balance (EB) for each cow was calculated based on equations described pre-
viously [21]. The net energy intake (NEI) was determined based on daily DMI multi-
plied by NEL density of the diet, and net energy of maintenance (NEM) was calculated
as BW0.75 × 0.080. Requirements of net energy of lactation (NEL) were calculated as
NEL = (0.0929 × fat % + 0.0547 × protein % + 0.0395 × lactose %) × milk yield. The net
energy requirement for pregnancy (NEP) was calculated as NEP = ((0.00318 × day of
gestation − 0.0352) × (calf birth weight/45))/0.218. The equation used to calculate prepar-
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tal EB (EBPRE; Mcal/d) was EBPRE = NEI − (NEM + NEP) and EBPRE (as % of requirements)
= (NEI/(NEM + NEP)) × 100. Finally, to calculate postpartal EB (EBPOST), the equation
used was EBPOST (Mcal/d) = NEI − (NEM + NEL) and EBPOST (as % of requirements) =
(NEI/(NEM + NEL)) × 100.

2.5. Statistical Analysis

The effects of carnosic acid blood biomarkers were evaluated separately at 2 d relative
to parturition (during infusions) and from 5 to 21 d postpartum as residual effects. Per-
formance data and residual effects were evaluated repeated measures using the MIXED
procedure of SAS 9.4 (SAS Institute Cary NC, USA). The statistical model contained the
effects of treatment, time (day or week), and their interactions as fixed effects, while the
cow within treatment was considered as a random effect. Single time-point data were
analyzed following the same model, without the time statement. Blood biomarkers were
log-scale transformed if needed to comply with normal distribution of residuals.

Residual data on blood biomarkers from 5 to 21 d postpartum was unequally spaced;
therefore, the SP(POW) covariance structure was used for this analysis. For the equally
spaced measures, the covariance structure was chosen between first-order autoregressive
and heterogeneous first-order autoregressive based on goodness of fit (smaller Akaike
information criteria). Covariates, including previous 305 d milk yield, prepartum DMI, am-
bient temperature, and blood metabolites at –7 d relative to calving, were maintained in the
model when p ≤ 0.20. Observations were considered outliers when Cook’s distance >0.50
and consequently excluded from the analysis. The CORR procedure of SAS was used
to test the Pearson correlation coefficient (r) between milk performance and prepartum
DMI, BW prepartum, and change in energy balance. The occurrence of health problems
was analyzed using the FREQ procedure of SAS and interpreted based on Fisher’s exact
test probabilities. However, none of the health issues observed in this experiment were
affected (p ≥ 0.26) by treatment (Table 1). Statistical significance was declared at p ≤ 0.05
and tendencies at p ≤ 0.10.

3. Results
3.1. Peripartal DMI, BW, and BCS

Main effects and interactions for prepartum and postpartum BW, BCS, DMI, DMI as
% of BW, and EB are presented in Table 3. Results show a Trt × T interaction (p ≤ 0.05)
for prepartum DMI as % of BW and EB. However, no differences (p > 0.10) were observed
between treatments at any given time point, and the interaction seems to be driven by
changes in DMI as % of BW and EB from wk −2 to −1 observed for CA cows.

Moreover, CA cows had lower (p = 0.03) postpartum DMI as % of BW, while a trend
(p = 0.06) for greater BW prepartum was observed compared to saline cows. In contrast,
treatment effects (p > 0.10) were observed in postpartum BW. Body condition score and
DMI were similar (p > 0.10) between treatment groups throughout the experimental period.
Although EB was similar (p > 0.10) between treatments, further analysis showed that CA
cows had a greater (p = 0.04) (EB change = EBprepartum − EBpostpartum) than saline cows
around parturition (−19.8 vs. −13.8 ± 1.9 Mcal/d).

3.2. Milk Production and Composition

The main effects and interactions for postpartum production variables and milk
composition are presented in Table 4. A trend (p ≤ 0.10) for greater milk yield (Figure 1),
ECM, and milk efficiency as milk/DMI was observed in CA cows in comparison with
saline cows. The CA cows produced 4.5 kg/d and 6.3 kg/d more milk and ECM than
saline cows, respectively. Similarly to milk yield, a trend (p = 0.10) was observed for a
greater milk protein yield in CA cows when compared to the saline group. Milk yield was
negatively correlated with energy balance change around parturition (r = −0.63, p = 0.01)
(EB change = EBprepartum − EBpostpartum). In contrast, milk yield and BW prepartum were
not correlated in either CA cows (r = −0.24; p = 0.56) or saline (r = 0.27; p = 0.52) (Figure S1).
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Table 3. Differences between treatments groups during prepartum and main residual effects of
intravenous infusion of carnosic acid (CA) or saline solution (Saline) on BW, BCS, DMI, DMI as % of
BW, and energy balance.

Treatment p-Value

Parameter CA Saline SEM 1 Trt Time Trt × T 2

Prepartum
Body weight, kg 873.3 801.6 25.0 0.06 0.01 0.34

Body condition score 3.70 3.75 0.08 0.65 0.74 0.24
Dry matter intake, kg/d 15.3 13.2 0.92 0.12 <0.01 0.41
Dry matter intake, % BW 1.73 1.69 0.13 0.82 <0.01 0.04
Energy balance, Mcal/d 6.10 4.49 1.56 0.47 <0.01 0.05

Postpartum
Body weight, kg 735.5 739.9 7.64 0.71 <0.01 0.19

Body condition score 3.55 3.54 0.04 0.88 <0.01 0.13
BW change 3, % −13.0 −11.6 0.92 0.33 <0.01 0.22
BCS change 3, % −4.8 −5.2 1.06 0.77 <0.01 0.26

Dry matter intake, kg/d 18.6 20.2 0.72 0.15 <0.01 0.70
Dry matter intake, % BW 2.48 2.85 0.11 0.03 <0.01 0.33
Energy balance, Mcal/d −13.51 −9.53 1.82 0.14 0.02 0.19

1 Largest standard error of the mean is shown; 2 Interaction of treatment and time (day or week) relative to
calving; 3 Percent change from the average of 3 weeks prepartum.

Table 4. Main residual effects of intravenous infusion of carnosic acid (CA) or saline solution (Saline)
on milk production and composition parameters during 21 d in milk.

Treatment p-Value

Parameter CA Saline SEM 1 Trt Time Trt × T 2

Milk yield, kg/d 41.8 37.3 1.76 0.10 <0.01 0.35
Energy corrected milk 3, kg/d 51.3 45.0 2.35 0.08 <0.01 0.95
Milk efficiency, Milk/DMI 4 2.37 2.04 0.12 0.06 0.02 0.56
Milk efficiency, ECM/DMI 2.75 2.47 0.17 0.25 0.03 0.11

Milk Composition
Fat, % 5.07 5.26 0.23 0.56 <0.01 0.78

Fat yield, kg/d 2.11 1.89 0.12 0.19 0.13 0.82
Protein, % 3.52 3.53 0.14 0.96 <0.01 0.60

Protein yield, kg/d 1.45 1.27 0.07 0.10 0.18 0.93
Lactose, % 4.69 4.74 0.05 0.49 <0.01 0.56
Solids, % 14.35 14.62 0.25 0.47 <0.01 0.70

Milk urea nitrogen, mg/dL 12.71 12.19 0.92 0.70 0.73 0.88
Log-transformed SCC 5 4.93 5.11 0.14 0.40 0.08 0.79

1 Largest standard error of the mean is shown; 2 Interaction of treatment and time (day or week) relative to
calving; 3 Energy corrected milk (ECM), calculated as (12.82 × fat yield (kg)) + (7.13 × protein yield (kg)) + (0.323
× milk yield (kg)); 4 DMI: dry matter intake; 5 SCC: somatic cell count.
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Figure 1. Milk yield (A) and energy corrected milk (B) for peripartal dairy cows infused from 1 to 3 d postpartum with
500 mL of sterile saline solution (Saline) or carnosic acid (CA) at a rate of 0.3 mg/kg BW supplied in a total volume of
500 mL of sterile saline solution. Values are means, and the standard errors are represented by vertical bars.

3.3. Blood Biomarkers

Immunometabolic effects of carnosic acid were evaluated at 2 d relative to calving
and are present in Table 5. The CA cows had lower (p ≤ 0.05) concentrations of hap-
toglobin, paraoxonase, FRAP, and NO2

− than saline cows, while a trend (p = 0.07) for lower
myeloperoxidase was observed in CA cows than saline cows.

Residual effects of treatments on blood biomarkers are shown in Table 6. There was
a Trt × T interaction (p ≤ 0.05) for haptoglobin, where CA cows had lower (p = 0.03)
haptoglobin than saline cows at 5 d relative to parturition (Figure 2). A trend (p = 0.10) for
lower NO3

− in CA cows than saline was observed from 5 to 21 d relative to parturition
(Table 6).

Table 5. Effects of intravenous infusion of carnosic acid (CA) or saline solution (Saline) on
blood biomarkers related to energy metabolism, inflammation, liver function, muscle body mass,
metabolism, and oxidative stress in dairy cows at 2 d relative to parturition.

Treatment p-Value

Parameter CA Saline SEM 1 Trt

Energy metabolites
Glucose, mmol/L 4.10 4.03 0.11 0.68

BHB, mmol/L 0.83 0.82 0.12 0.98
NEFA, mmol/L 0.83 0.65 0.13 0.35
Inflammation

Ceruloplasmin, µmol/L 2.30 2.41 0.07 0.38
Haptoglobin 2, g/L 0.67 1.06 0.16 <0.01

Liver function
Albumin, g/L 33.46 33.97 0.49 0.48

Cholesterol, mmol/L 1.74 1.84 0.09 0.42
Paraoxonase, U/mL 58.03 67.38 2.61 0.03
Bilirubin 2, µmol/L 5.17 5.21 0.42 0.99

AST, U/L 119.9 105.3 8.20 0.23
GGT 2, U/L 17.39 16.34 0.09 0.48

Muscle mass catabolism
Urea, mmol/L 5.39 5.28 0.27 0.80

Creatinine, µmol/L 94.25 88.27 2.97 0.21
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Table 5. Cont.

Treatment p-Value

Parameter CA Saline SEM 1 Trt

Oxidative stress
FRAP 2, µmol/L 140.1 163.1 0.06 0.02

Myeloperoxidase, U/L 485.3 519.6 12.8 0.07
ROM, mg H2O2/100mL 15.88 16.73 0.52 0.28

NO2
–, µmol/L 2.63 4.58 0.35 <0.01

NO3
–, µmol/L 21.85 19.62 1.13 0.19

NOx, µmol/L 23.9 23.65 0.87 0.84
ORAC, µg/mL 12.50 13.06 0.34 0.25

ROM/FRAP 0.11 0.10 0.01 0.44
ROM/ORAC 1.25 1.32 0.06 0.40

1 Largest standard error of the mean is shown; 2 Data were log-transformed before statistics. The standard errors
of the means associated with log-transformed data are in log scale.

Table 6. Residuals effects of intravenous infusion of carnosic acid (CA) or saline solution (Saline) on
blood biomarkers related to energy metabolism, inflammation, liver function, muscle body mass,
metabolism, and oxidative stress in dairy cows from 5 to 21 d relative to calving.

Treatment p-Value

Parameter CA Saline SEM 1 Trt Time Trt × T 3

Energy metabolites
Glucose, mmol/L 3.87 4.02 0.08 0.20 0.03 0.88

BHB, mmol/L 1.06 0.99 0.21 0.83 0.73 0.90
NEFA, mmol/L 0.63 0.63 0.09 0.99 <0.01 0.88
Inflammation

Ceruloplasmin, µmol/L 2.88 2.99 0.12 0.55 0.28 0.90
Haptoglobin 2, g/L 0.44 0.44 0.17 0.99 0.14 0.04

Liver function
Albumin, g/L 35.51 34.71 0.33 0.11 0.03 0.53

Cholesterol, mmol/L 2.92 3.11 0.13 0.31 <0.01 0.37
Paraoxonase, U/mL 83.08 92.07 5.33 0.25 0.10 0.79
Bilirubin 2, µmol/L 3.46 3.66 0.20 0.78 <0.01 0.79

AST, U/L 149.2 122.9 13.43 0.19 0.21 0.34
GGT 2, U/L 23.92 20.25 0.16 0.32 0.06 0.40

Muscle mass catabolism
Urea, mmol/L 5.01 5.06 0.23 0.87 0.37 0.51

Creatinine, µmol/L 84.83 82.35 1.42 0.25 <0.01 0.71
Oxidative stress
FRAP 2 ,µmol/L 128.0 132.5 0.09 0.71 <0.01 0.12

Myeloperoxidase, U/L 447.4 436.1 19.9 0.70 0.01 0.95
ROM, mg H2O2/100mL 17.61 18.40 0.69 0.44 0.10 0.35

NO2
–, µmol/L 5.78 5.90 0.42 0.85 <0.01 0.92

NO3
–, µmol/L 21.71 23.07 0.58 0.10 0.01 0.91

NOx, µmol/L 28.25 28.21 0.72 0.97 <0.01 0.96
ORAC, µg/mL 12.56 12.23 0.58 0.70 0.95 0.97

ROM/FRAP 0.14 0.15 0.01 0.86 <0.01 0.69
ROM/ORAC 1.48 1.56 0.09 0.53 0.74 0.56

1 Largest standard error of the mean is shown; 2 Data were log-transformed before statistics. The standard errors
of the means associated with log-transformed data are in log scale; 3 Interaction of treatment and days relative
to calving.
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Figure 2. Residual effects of carnosic acid (CA) or saline intravenous infusions on blood biomarkers
from 5 to 21 d relative to parturition for haptoglobin. Mean separations between treatments at a
given time point were evaluated at a treatment × time interaction (p ≤ 0.10), and differences (*) were
declared at p ≤ 0.05. Values are means and the standard errors are represented by vertical bars.

4. Discussion
4.1. Performance Parameters

Antioxidants are frequently part of dairy cows’ diets and play a key role in minimizing
harmful consequences of excessive production of reactive oxygen and nitrogen species,
thereby improving their health status and reducing disease incidence [11,57]. Several
studies have recently evaluated the effects of plant-based bioactive compounds with
antioxidants properties as alternatives to conventionally available forms. In terms of
animal productivity, performance responses when supplementing alternative plant-based
antioxidants are not consistent among studies, most likely due to different properties of
compounds, doses, animal species, among others [26,58]. For example, Oh, et al. [59]
observed that oxidative stress markers were not affected when supplementing lactating
dairy cows with Capsicum oleoresin. However, the authors observed increased ECM and
neutrophil activity. In contrast, Mezzetti, et al. [60] reported positive effects in terms of
liver function and redox balance when transition dairy cows were supplemented with Aloe
arborescens; however, milk production was unaffected by treatment.

In the present study, we observed an effect of carnosic acid infusions to improve
milk yield, ECM, and milk protein yield. Moreover, there was no difference in DMI
between treatment groups, which resulted in greater milk efficiency in terms of milk
yield/DMI. Although the effects of carnosic acid in dairy cows remain to be elucidated,
dietary supplementation of rosemary plant (Salvia rosmarinus) to dairy goats and sheep
has been evaluated in terms of performance but with inconsistent results. For instance,
studies had reported an increase in milk yield when small ruminants were fed a diet
supplemented with dried rosemary plant or extract [61–63], but this effect was not observed
by others [42]. These benefits of dietary rosemary on lactation performance have been
mainly associated with modifications in the ruminal environment by the interaction of
compounds in rosemary (e.g., carnosic acid) with rumen microbiota. These studies suggest
that the phenolic compounds found in rosemary leaves could inhibit protein degradation
in the rumen, affect fatty acid metabolism during ruminal biohydrogenation, and enhance
nutrient digestibility and ruminal fermentation [61,63].Therefore, a direct comparison
between the effects of dietary rosemary plant or extract and intravenous infusion of carnosic
acid is challenging. However, if further research confirms this effect, it will indicate that
rosemary or rosemary compounds may influence milk yield in ruminants.

The lower DMI as % of BW aligned with greater EB change from pre- to postpartum
observed in CA cows, suggesting a greater lipid mobilization. Even though the difference
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in EB postpartum did not reach statistical significance (Table 3). In the light of these results,
we theorize that carnosic acid may influence liver lipid metabolism in transition dairy cows.
In fact, carnosic acid has been shown to reduce hepatic lipid accumulation in mice models
through down-regulation of de novo lipogenesis and up-regulation of fatty acid oxidation
signals at the mRNA and protein level, including PPARA [36] and MAPK [64]. In transition
dairy cows, increased fatty acid catabolism in the liver would induce the transmission of
signals towards the brain satiety center, reducing feed intake, as explained by the hepatic
oxidation theory [65]. Moreover, in this scenario, gluconeogenesis may be enhanced due to
the higher availability of its precursors, e.g., pyruvate and oxalacetate. This theory could
explain the lower DMI as % BW and the increase in milk production in CA cows. In fact,
biomarkers for energy and liver function suggest that CA cows were able to cope with
increased milk production without increased liver damage and risk of health disorders
such as ketosis, as evidenced by BHB concentrations. However, we emphasize that the
effects on hepatic metabolism here proposed are largely speculatory, and further studies
are necessary to determine the specific mechanisms of how hepatocytes respond to carnosic
acid under a peripartal condition in dairy cows.

4.2. Inflammation and Liver Function

Haptoglobin is a positive acute phase protein (APP) synthesized mainly by hepa-
tocytes during an inflammatory process [66,67]. Higher haptoglobin concentrations are
related to increased levels of pro-inflammatory cytokines, such as tumor necrosis factor al-
pha (TNF-α), IL-1, and IL-6 [53]. In dairy cows, haptoglobin levels are commonly increased
during peripartum, with peak concentrations around the first week of lactation [53]. There-
fore, this protein is a highly sensitive indicator of immune system activation and, as such,
is a reliable biomarker of stress [4,66]. Additionally, haptoglobin is a major hemoglobin
binding protein, limiting the oxidative tissue damage mediated by hemoglobin. The in-
duction of haptoglobin typically associated with enhanced oxidative stress seems to be a
mechanism to prevent excessive damage caused by free radicals [68].

In the present study, we observed a treatment effect on haptoglobin concentrations
during the days of infusion (2 d) until 5 d relative to parturition (Table 5 and Figure 2,
respectively). Several studies have observed the anti-inflammatory effects of carnosic
acid [35,69,70]. This phenolic diterpene has been shown to significantly decreased the
protein expression levels of various pro-inflammatory cytokines in serum and tissues, e.g.,
TNF-α, IL-1β, and IL-6 [34], through the suppression of the jun-N-terminal kinase (JNK),
nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3)
pathways [35,71]. Concentrations of haptoglobin in the days following calving observed in
our study suggest a lower inflammatory status in CA cows, which agrees with previous
studies using different animal models [26].

Haptoglobin and PON are APP produced mainly by the liver. However, while hap-
toglobin is a positive APP, PON is characterized as a negative APP, meaning its hepatic
synthesis is impaired during inflammation [4,53]. In the plasma, PON is transported in as-
sociation with high-density lipoproteins, and it exerts an important antioxidant function by
hydrolyzing lipid hydroperoxides generated during oxidative stress [72,73]. Moreover, the
decreased PON activity following parturition observed, especially in high producing dairy
cows, is associated with intense lipomobilization and fat deposition in the hepatocytes,
related to liver damage or dysfunction [73].

In the present study, lower concentrations of PON were observed for CA cows than
saline cows at 2 d relative to parturition (58 vs 67 U/mL). However, there was no difference
between treatments from 5 to 21 d (83.1 vs 92.1 ± 5.3 U/mL). The reduction of PON activity
at 2 d could be an indication of increased inflammation, intense lipomobilization, reduced
levels of blood HDL, oxidative stress, or a combination of those [53]. However, literature
suggests that, regardless of treatment, PON activity observed throughout our study was
higher than those associated with impaired liver function or adverse health conditions after
parturition [53,66]. For example, Bionaz, et al. [53] evaluated the relationship between PON
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activity during the first month of lactation with health problems, inflammatory conditions,
and liver function. Cows classified as lower quartile (43.8 ± 12.7 U/mL) based on PON
activity presented lower milk yield, higher blood ROM, and greater occurrence of serious
infections when compared with cows in the upper quartile (92.0 ± 19.8 U/mL). Moreover,
our results regarding the other biomarkers for liver function support the idea that carnosic
acid infusion from 1 to 3 d relative to parturition did not negatively affect the liver of the
experimental animals.

4.3. Oxidative Stress

Around the 2 d relative to parturition, we also observed a treatment effect on plasma
MPO, in which CA cows had lower concentrations than saline cows. MPO is a lysosomal
peroxidase enzyme mainly stored in the azurophilic granules of neutrophils and to a lesser
degree in primary lysosomes of monocytes [74,75]. Upon immune cell activation, the
enzyme is released extracellularly and into phagosomal compartments. In the presence
of H2O2 and a halide (chloride, bromide, or thiocyanate), MPO catalyzes the formation
of reactive oxygen intermediates, including hypochlorous (HOCl) [74,76]. MPO is an
important component of the host innate immune system against invading microorganisms.
Thus it has been used as an inflammation biomarker [75].

Reactive oxygen species produced by MPO have been implicated as mediators of
the host oxidative tissue damage and cellular dysfunction [74,75]. Results found in our
study are in agreement with previous authors, which observed an effect of carnosic acid
to decrease the activity of MPO in mice immune cells during acute lung injury [77] and
acute colitis [78]. According to those studies, carnosic acid may attenuate oxidative stress
by suppressing the production of pro-inflammatory cytokines, immune cells activation,
and migration. Lower levels of MPO aligned with haptoglobin results, suggesting lower
inflammatory condition in CA cows than saline cows around the infusion days.

In contrast with our initial hypothesis, blood ROM was not affected by treatment.
Those results are in contrast with previous in vitro studies that observed a lower accumula-
tion of ROS when different cell lines were treated with carnosic acid [79–81]. de Oliveira,
et al. [33] found lower ROS concentrations when neuroblastoma cells were treated with
carnosic acid during induced neurotoxicity. However, the authors observed no differences
when cells were not challenged. Overall, literature suggests that the effect of carnosic acid
on the production of reactive oxygen compounds might be dose-dependent, and cellular
conditions may have an important role in its effectiveness. Alternatively, the lack of effect
on ROM due to CA infusion could be attributed to CA attenuating ROS production at
a phagocytic cell level, but not sufficient to affect ROS being produced during the high
metabolic state at the onset of lactation. Moreover, the limitation of in vivo experiments,
especially in ruminants, makes it particularly challenging to correlate our findings with a
specific biological mechanism.

The high complexity of the oxidant defense system and dynamics between prooxi-
dants and antioxidants among different tissues makes it challenging to quantify and infer
the whole-organism overall redox balance accurately. The individual quantification of
specific antioxidants does not provide a complete picture of the antioxidant capacity in
a given sample since multiple mechanisms act synergically to counterbalance oxidative
stress [11,51]. In this context, different analytic methods, i.e., FRAP and ORAC, were de-
veloped to estimate antioxidant activity of a certain sample. An increase in FRAP plasma
values indicates a greater need for neutralizing ROM production, while higher ORAC
denotes greater protection produced by antioxidants in plasma [46].

The CA cows had a lower FRAP at 2 d relative to parturition when compared to saline
cows. However, no differences were observed for ORAC, ROM/FRAP, or ROM/ORAC.
Different studies with rats have shown that plasma concentrations of carnosic acid decline
rapidly after intravenous infusions, while gastrointestinal absorption results in longer
plasma retention [40,41]. In the present study, blood samples were collected around 12 h
after intravenous infusions, which might help explain why results of plasma antioxidant
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activity and oxidative status were mostly unaffected by carnosic treatment. Furthermore,
studies with carnosic acid in ruminant species are scarce, and the effects of its supplemen-
tation on plasma FRAP or ORAC are currently unknown. Jordan, et al. [38] evaluated the
level of transfer of two typified rosemary extracts (carnosic acid and carnosol) in lamb
tissues after dietary supplementation. Carnosic acid, especially at 1:1 ratio with carnosol,
increased muscle and liver FRAP, although plasma FRAP was not evaluated in that study.

Carnosic acid treatment reduced levels of NO2
− around the period of infusions (2 d

postpartum). Moreover, a residual effect of treatment was observed in terms of NO3
− from

5 to 21 d relative to parturition. Nitrite (NO2
−) and nitrate (NO3

−) are stable products of
nitric oxide (NO), and the measurement of these oxidation products is used to estimate NO
production in biological fluids [46,82]. Nitric oxide is an important free radical synthesized
by immune and endothelial cells; it is involved in many biological functions, including
intracellular communication, vasodilatation, and inflammation [83–85]. At physiological
levels, its toxicity is generally limited [84]. However, at high concentrations, NO is rapidly
oxidized to reactive nitrogen oxide species (RNOS), e.g., nitrogen dioxide (NO2) and
dinitrogen trioxide (N2O3), which in turn induce cell toxicity through modification of
enzymes, signaling proteins, and transcription factors [86]. Different studies have observed
decreased levels of NO in the presence of carnosic acid, which was associated with lower
levels of the inducible NO synthase enzyme (iNOS) [70,87]. Overall, our results indicate
that carnosic acid may have decreased NO synthesis, suggesting lower inflammation and a
lower risk of oxidative damage.

5. Conclusions

The findings of this study revealed that carnosic acid promoted positive responses
on inflammation and oxidative stress biomarkers of around the period of infusions. In
addition, carnosic acid contributed to an increase in lactation performance, although the
mechanisms responsible for this response remain unclear. Pharmacokinetics studies are
necessary to further understand how carnosic acid is metabolized in ruminants and how
fast this occurs in order to estimate optimal dosage and carnosic acid supplementation
through its plant-based source, rosemary. Overall, the results presented here describe the
potential benefits of providing antioxidants such as carnosic acid during the peripartal
period of dairy cows.
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