
Research Article
Explainable Artificial Intelligence-Based IoT Device Malware
DetectionMechanism Using Image Visualization and Fine-Tuned
CNN-Based Transfer Learning Model

Hamad Naeem ,1 Bandar M. Alshammari ,2 and Farhan Ullah 3

1School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, Henan, China
2School of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
3School of Software, Northwestern Polytechnical University, Xian, 710072, Shaanxi, China

Correspondence should be addressed to Farhan Ullah; farhankhan.cs@yahoo.com

Received 17 April 2022; Revised 22 May 2022; Accepted 27 June 2022; Published 15 July 2022

Academic Editor: Qiangyi Li

Copyright © 2022HamadNaeem et al.+is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Automated malware detection is a prominent issue in the world of network security because of the rising number and complexity
of malware threats. It is time-consuming and resource intensive to manually analyze all malware files in an application using
traditional malware detection methods. Polymorphism and code obfuscation were created by malware authors to bypass the
standard signature-based detection methods used by antivirus vendors. Malware detection using deep learning (DL) approaches
has recently been implemented in an effort to address this problem.+is study compares the detection of IoTdevice malware using
three current state-of-the-art CNN models that have been pretrained. Large-scale learning performance using GNB, SVM, DT,
LR, K-NN, and ensemble classifiers with CNN models is also included in the results. In light of the findings, a pretrained
Inception-v3 CNN-based transfer learned model with fine-tuned strategy is proposed to identify IoTdevice malware by utilizing
color image malware display of android Dalvik Executable File (DEX). Inception-v3 retrieves the malware’s most important
features. After that, a global max-pooling layer is applied, and a SoftMax classifier is used to classify the features. Finally, gradient-
weighted class activation mapping (Grad-CAM) along the t-distributed stochastic neighbor embedding (t-SNE) is used to
understand the overall performance of the proposed method. +e proposed method achieved an accuracy of 98.5% and 91%,
respectively, in the binary and multiclass prediction of malware images from IoT devices, exceeding the comparison methods in
different evaluation parameters.

1. Introduction

Malware is an intrusive program that is designed to attack
computers and steal personal information without the user’s
permission. A computer system’s privacy can be infiltrated
by malware such as adware, spyware, rootkits, and Trojan
horses. In 2020, Kaspersky Lab discovered 5,683,694 sus-
picious android apks, which is 2,179,742 additional suspi-
cious apks than were discovered in 2019. +e data for the
years 2017 to 2020 are shown in Figure 1. As of May 2021,
android had monthly more than three billion active indi-
viduals, producing it the biggest and most popular operating
system. According to the Forrester study, Android accounts
for 74% of the smartphone market, while iOS accounts for

21%. According to IDC’s Global Quarterly Smartphone
Tracking Service, approximately 7.7% more smartphones
shipped in 2021 than in 2020. Another important reason why
Android is more vulnerable to malware than iOS is the
dispersion of Android devices over previous editions. In
2019, Google has announced that it would no longer provide
security patches for Android OS version 6.0 and former
versions. According to data statistics of Google, most An-
droid devices fall within this group. Twenty percent of
Android phones are running the most recent eleventh
version of Android OS, and Android’s older versions are the
main targets for cyberattacks. Digital banking is now more
popular than ever due to the COVID-19 pandemic, and a
sizable portion of those clients prefers mobile banking

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7671967, 17 pages
https://doi.org/10.1155/2022/7671967

mailto:farhankhan.cs@yahoo.com
https://orcid.org/0000-0003-1511-218X
https://orcid.org/0000-0002-8531-3342
https://orcid.org/0000-0002-1030-1275
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7671967

services. +e number of online banking Trojans is increased
from 69,777 in 2019 to 156,710 in 2020. +ese data clearly
show that attackers are interested in banking data, and
malware detection is critical. Malware detection and

prevention are critical for ensuring that clients are not at risk
of data breaches. +e most common malware analysis
strategies are static, dynamic, and hybrid [1]. When per-
forming a static analysis, users examine the files rather than

IoT Device Data Pre-Processing

Malware Attack Detection for IoT Devices

DEX 2 JAR
Conversion

DaIvik
Executable File

Inception V3 Pre-
Trained Model

Dalvik Executable
Byte Code Output

(Inception V3 Pre-
trained Model)

Class File

Transfer Learning

G
lobal M

ax Pooling Layers

Layers
Freezing

Model Training

Fine-Tuning

SGD Optimization

Re-train Rest Blocks of Inception V3
Pre-Trained Model

Freeze Top Two Blocks of Inception
V3 Pre-Trained Model

(249 Layers)

Model Training

Interpretable Model

Performance Distribution

Feature Validation

Ensenble Classification

GNB SVMKNN

DT RFLR

O
U

TPU
T

Softmax Classification

Extract Training
and Testing

Features

RMSprop
Optimization Dense Relu Activated

Layer(100 Neurons)

Dense Relu Activated
Layer (50 Neurons)

Dense Software
Activated Layer

Color Images

RGB Images

Decompilation
(JD-GUI)

Figure 1: Explainable IoT device malware classification framework.

2 Computational Intelligence and Neuroscience

running the code. Obfuscation methods and dynamic code
packing may have an impact on the operation of static
analysis. +is is because it monitors the program while it is
operating in a sandbox and gathers behavioral data from the
running applications. Dynamic analysis can better handle
code obfuscation. Nonetheless, the time of examination and
resource overhead are major drawbacks of this method.
Furthermore, executing an application in a sandbox to cover
all possible options may be impossible. Besides that, some
malware attacks that can recognize sandbox may not exhibit
malicious behavior during dynamic execution. Cross anal-
ysis utilizes combine functionalities of both abovementioned
analysis. Its main disadvantage is that it consumes a lot of
resources and takes a long time to analyze. +e Android
malware analysis data are used to identify Android malware,
which has been gathered [2,3].

Because of the rapid growth of malware variants and
advances in machine learning, machine learning-based
malware analysis has grown in popularity (ML). Machine
learning-based approaches have a higher detection rate and
can detect previously unknown malware [4]. However, these
methods are heavily reliant on feature engineering, which
necessitates a high level of expertise and is time extensive.
Deep learning (DL) approaches have recently supplanted
conventional techniques for detecting Android malware [5].
By learning feature representation, these approaches alle-
viate the need for human involvement in feature extraction,
screening, and representation. Image-based methods are
obtaining popularity these days [6].

+e most critical concerns in the fields of machine in-
telligence and malware analysis are as follows: classification
with the highest predictive performance is difficult to achieve
since malicious code variants are more similar. Detecting
obfuscated or encrypted malware samples using typical
malware detection methods such as static, dynamic, hybrid,
and image analyses is extremely difficult. In order to achieve
the solution of above problems, the proposed work introduces
a visualization-based detection strategy. +e ability to dis-
tinguish between various sections of the malware binary by
visualizing it as a colorful image is an advantage of malware
writers altering only a small section of the virus codes in order
to develop a new mutant. RGB malware images are created
from malicious executables and benign apps. Images-based
malware models do not need feature engineering, build
rapidly, and are resistant to code obfuscation; therefore, they
are ideal for malware detection. +en, there is the fact that
they are platform independent, which means they can be used
on any operating system, not just Android.

+is study has the following contributions:

(i) A transfer learning-based pretrained CNN model
with fine-tuning is proposed for IoTdevice malware
classification.

(ii) To improve neural network performance and de-
crease the need for a large amount of data training,
transfer learning is developed by adding RMSprop
optimization (root mean square), global max
pooling, and dense activated layers with a pretrained
CNN model.

(iii) To overcome the challenge of limited data avail-
ability for a new deep learning model, fine-tuning is
proposed by freezing a few blocks and retraining the
rest blocks of the pretrained CNN model with
stochastic gradient descent (SGD) optimization.

(iv) Gradient weighted class activation mapping (Grad-
CAM) is used to create cumulative heatmaps that
help the security analyst better understand the
classifier choice. Analysts can use the cumulative
heatmap to assess the model’s reliability in a visual
manner. Furthermore, t-distributed stochastic
neighbor embedding (t-SNE) is used to validate the
density of features retrieved from the proposed
transfer learning-based pretrained CNN model.

(v) To test the effectiveness of IoT device malware
classification, we learn large-scale data with GNB,
SVM, DT, LR, and K-NN classifiers, as well as
ensemble classifiers in combination with CNN
models. Besides this, the experimental outcomes of
the proposed transfer learning-based CNN pre-
trainedmodel are compared with other state-of-the-
art pretrained CNN models.

+is study is arranged as follows: Section 2 provides a
review of the literature, Section 3 explains the suggested
strategy, Section 4 presents results and discussions, Section 5
displays the performance validation of proposed method,
and Section 6 concludes the study.

2. Literature Review

Because of evolutions in CNNs, computer vision approaches
have recently received a lot of attention for a variety of secure
network programs, such as Android malware threat de-
tection [6]. Most of the published solutions on Android
device malware threat detection are described in the fol-
lowing section: Unver et al. [7] introduced an image visu-
alization method for extracting locally and globally
important malicious patterns from grayscale visuals in order
to learn neural network-based classification algorithms to
distinguish between legitimate and malicious Android apps.
Chen et al. [8] and Hossain et al. [9] used an XGBoost model
to classify Android malware images as either malicious or
benign. Ding et al. [10] produced MixDroid to detect An-
droid malware by combining multiple features and machine
learning models using a bagging approach. Gu et al. [11]
provide runnable adversarial cases for machine learning
models based on malware visualization. Numerous works
have been conducted on the detection of Android malware
by CNNs. CNNs are set up to perform exceptionally well in
image processing. Unpacked and packed malware can be
automatically categorized using features learned from
malware images. Researchers [10,12] and [13,14] used CNN-
based training models to classify malicious apps using the
bytecode of classes.dex file of Android application. When it
comes to extracting images from DEX files, reference [15]
used the same method, though they only used the data
segment. Reference [16] created grayscale graphics by
combining the data segment of DEX files with Android

Computational Intelligence and Neuroscience 3

Manifest.xml entries. Such inputs are converted into a
temporal convolutional network (TCN) in order to detect
mobile malware. Lachtar et al. [17] used CNNs to identify
malware on images obtained by space-filling curves from
instinctive instructions in the app. Sun et al. [18] used CNNs
to decompile an Android app, which was further trans-
formed into pictures. Color images of Android application
were used to train a ResNET for malware detection. In the
layout used by Zhang et al. [19], capsule layers replace
pooling layers in CNNs. In Chimera et al. [20], dense,
convolutional, and textural neural networks were used to
learn Android image patterns, for example, patterns of static
permissions and authorizations and patterns of dynamic
system calls. For cross-platform detection, Naeem et al. [21]
used malware binary image information derived from
combined CSGM characterization. Mercaldo et al. [22]
proposed an Android malware classification system based
on grayscale pictures taken from Android apps. Some
studies had superior accuracy rates than the present in-
troduced technique. Nevertheless, a straight contrast cannot
be helpful because the samples utilized in that research are
different. However, this may not function well with recent
days malware vulnerabilities and can be unscalable when
using feature engineering to choose hybrid features to attain
excellent performance. When compared to SIFT or other
feature extractors, the proposed technique provides the same
benefits. N-gram technique worked well, but there is a
significant computational cost associated with using it.
Detecting zero-day attacks is critical in malware detection,
and using CNN’s structural features will save time and
resources.

3. Proposed Approach

IoT device malware detection is divided into 2 phases: an
explanation of how to turn Android bytecode into RGB and
color images is given in Section 3.1 and the architecture of
our proposed approach is explained in Section 3.2. Figure 1
shows the proposed explainable IoT device malware clas-
sification framework. First, a transfer learning mechanism is
developed by combining global max pooling with dense
activated layers. Second, fine-tuning is proposed by freezing
a few blocks of the pretrained CNNmodel and retraining the
remaining blocks. +ird, Grad-CAM is used to produce
cumulative heatmaps that aid the security analyst in
interpreting the classifier selection. Finally, we learned large-
scale data with GNB, K-NN, SVM, DT, and LR classification
methods, as well as the ensemble classification method in
conjunction with CNN models, to assess efficacy on IoT
device malware classification.

3.1. Data Acquisition

3.1.1. R2-D2 IoT Device Dataset [23]. It includes RGB
pictures that were transformed from the DEX file collected
by unpacking over twomillion Android malware and benign
applications. Between January 2017 and August 2017, the
original back-end detection system of Leopard Mobile Inc.
acquired these apps. Trojans, Ad-Ware, Clickers, and SMS

Spyware were among the types of malwares detected in the
infected apps. In comparison to 8-bit grayscale images, the
Android color image dataset allows for the storage of more
crucial information about Android apps with 16777216
colors per image. Computer vision models can be trained
quicker and more efficiently by reducing images to 299× 299
pixels, which enables minibatch learning practicable. +e
images are between 10 and 50KB in size.

(1) RGB Image Representation. +e classes.dex file is ob-
tained by first decompressing the Android APK. +ere is
hexadecimal representation for both bytes and RGB colors
in this file. RGB color coding is used to convert hexadecimal
from the DEX files so that three-digit numbers are separated
from one another in left-to-right sequence. A decimal code
R, G, or B can be assigned to each of these integers in this
series. For instance, 646778 was split into 64, 67, and 78,
which were then transformed to R: 100, G: 103, and B: 120.
RGB images are taken as the input of CNNs to identify
malware on mobile platforms. Figure 2 shows the chunks of
malware images from the R2-D2 IoT device dataset.

3.1.2. MalNet IoT Device Dataset [24]. MalNet has provided
8633 IoTdevice malware samples of 19 families. +e sample
distribution of each training malware dataset family is as
follows: addisplay (1022), addisplay + + adware (59), adload
(67), adsware (530), adware + + adware (501), adware
+ + grayware + + virus (167), adware + + virus (55), back-
door (121), banker + + trojan (221), adwareare (46), clicker
(53), click (22), clicker + + trojan (573), clickfraud ++
riskware (74), exploit (1116), fakeangry (42), fakeapp (85),
fakeapp ++ trojan (51), and fakeinst + + trojan (143),
respectively.

(1) Color Image Representation. Semantic feature integration
is a time-consuming process. Semantics can be extremely
useful when it comes to analyzing bytecode. An ascii
character, an opcode, or a piece of an address might all be
represented by a single random byte. An additional layer of
semantic information is added to the raw bytecode by using
color to distinguish each byte according to its function. +e
encoding of semantic information into an image can be done
in a variety of ways, but there is no established standard for
doing so at this time.We are encoded the contextual features
by allocating each byte to a specific RGB color channel based
on its position in the DEX file structure: (i) header, (ii)
signifiers and class interpretations, and (iii) data and by
encoding the spatial meaning in binary form (Figure 3). +e
first step in creating a feature representation of Android
applications and labels is to extract the DEX (bytecode) from
each app. One dimensional array of eight-bit unsigned
numbers is then generated from the DEX file. Black pixels
and white pixels are represented by the values in a range of
0–255 in all of the entries. Each binary file goes through a
three-step procedure that includes converting from a one-
dimensional array to a two-dimensional feature extraction
format, encoding data into RGB channels, and scaling
images to the proper size.

4 Computational Intelligence and Neuroscience

3.2. Architecture of Transfer Learning-Based Pretrained CNN
Model with Fine-Tuning. Figure 1 depicts the architecture
design of proposed the transfer learning-based pretrained
CNN model with fine-tuning. It is described in three parts
below in detail.

3.2.1. Transfer Learning-Based Pretrained CNN Model.
When a neural network trained on a single dataset and task
is transferred to a new issue with a different dataset and task,
it is known as transfer learning. +ere is an exciting phe-
nomenon shared by many deep neural networks trained on
natural images. On the initial layers, these networks acquire
general features that are not exclusive to a particular dataset
or goal but apply to many datasets and tasks in general.
Transfer learning might be a valuable technique to train an
extensive target network without overfitting when the target
dataset is considerably smaller. Our next step was to start
using Inception-v3 [25], which has been pretrained to
recognize objects in the ImageNet dataset. Malware image
bottleneck features obtained by employing the convolutional
layers of Inception-v3 served as input for training many
different classification algorithms.

In the form of field, application, and marginal occur-
rence, the transfer learning of proposed IoT device malware
classification framework is shown as follows: a field or
domain “T” can be denoted as a set of two rows by {y, P(Y)}.
Here, y is a feature space (i.e., Y� {y1, y2, y3,. . ..,yn}€ y), and

P(Y) represents marginal probability. Transfer learning
cannot be applied to the two areas ys,yt if they are too
dissimilar. As a result, neither the feature space (ys≠ yt) nor
the marginal occurrence distributions (P(ys)≠ P(yt)) will
overlap with one another.

T � y, P(Y)􏼈 􏼉􏼈 􏼉. (1)

An application or task “D” can also be shown as a set of
two rows by {X, f (.)}. Here, X is a label and f (.) is a function
for target prediction. Probabilistic expression of function f(.)
is presented as follows:

D � X, f(.)􏼈 􏼉􏼈 􏼉,

f bi(􏼁 � P
ai

bi

􏼠 􏼡􏼨 􏼩,

(2)

where ai € A, bi € B and i € 1, 2, 3,, N{ }.
+erefore, the task D can be expressed as follows:

D � X, P
A

B
􏼒 􏼓􏼚 􏼛􏼚 􏼛. (3)

Consequently, if two tasks DS and Dt are not the same,
then they either have dissimilar label spaces or have dis-
similar probability distributions.

Figure 4 depicts the architecture of pretrained Inception-
v3 model in schematic form. A convolution model based on
Inception-v3 is used to sequentially combine the basic

Figure 2: R2-D2 IoT device dataset.

Figure 3: MalNet IoT device dataset.

Computational Intelligence and Neuroscience 5

convolution block with the upgraded inception modules and
the task-specific classifiers. Convolutional operations with
1× 1 and 3× 3 kernels are used to learn low-level feature
mappings. Multiple scale feature representations are con-
catenated to feed into auxiliary classifiers with varied con-
volution kernels in the inceptionmodule, which is utilized to
achieve better performance convergence. Image classifica-
tion in conventional CNNs uses convolution, max-pooling,
and two or more fully connected layers.

Nevertheless, most parameters are found in the fully
connected layers, whichmight limit themodel’s generalizability
and lead to overfitting. As a result, we added a global max-
pooling (GMP) layer to reduce the prior layer’s dimensions.
Besides shrinking in size, GMP may also function as a regu-
larizer by preventing some overfitting for the overall network
structure.We added two fully connected layers with 100 and 50
lengths before our 19 or 2 states classifier. In our transfer
learning model, these two fully connected layers are proceeded
by a last fully connected layer with SoftMax function.

3.2.2. Model Two Stage Training and Fine-Tuning.
Models that have been previously trained on a large dataset,
such as ImageNet, are called pretrained models. Transfer
learning for image classification is based on the idea that if a
model is trained on a big and diverse dataset, then it will
serve as a general model for the visual world. Because the
basic features of an image are extracted by the top layers of a
pretrained model, fine-tuning the weights of upper layers is
unnecessary.+e weights of the lowest layers need to be fine-
tuned in order to train them on a particular IoT device
malware dataset. Hence, two-stage training was conducted
for fine-tuning of proposed transfer learned model.

+e first step trained the top layers of our transfer
learned model, including the layers added on top of the
Inception-v3 base model and the 19 states classifier. Before
going on to the second stage, this step was used to correctly
train the randomly initialized weights on these top layers to a
sufficient level of performance and stability. In addition, the
Inception-v3 base model layers were frozen because these

weights had previously been well-trained on the ImageNet
dataset. To begin the fine-tuning process, we used trained
weights instead of a combination of pretrained and random
weights in this first stage. +e optimizer chosen for our first
stage training was RMSprop:

RMS[Δθ]t⟵
�����������

E Δθ2􏽨 􏽩
t

+ ∪′
􏽱

. (4)

+e second training phase begins when the top layer
weights have been adequately trained. Some layers from our
basemodel were unfrozen, and their pretrained weights were
trainable throughout the fine-tuning stage. We found that
fine-tuning the top two inception blocks (freezing layers up
to the 249th layer) increased our model’s overall accuracy.
We kept the weights at the bottom layers of the Inception-v3
model frozen in both phases. +ese lower convolutional
blocks extracted fundamental aspects of images such as
shapes, edges, contours, and textures, which were also es-
sential for malware classification challenges. SGD was
chosen as the optimizer for our second stage of fine-tuning
training; we discovered that because it is not an adaptive
algorithm like adam or RMSprop, it allows for slower
convergence. In other words, SGD is ideal for fine-tuning
since it delivers minor updates to weights that have previ-
ously been trained. Some crucial properties of image cate-
gorization may be lost if weights are changed sufficiently by
an adaptive learning system. +e SGD optimization is
expressed by the following equation:

θ � θ − η∇θJ θ; x
(i)

; y
(i)

􏼐 􏼑. (5)

3.2.3. Classification

(1) SoftMax. A single value is produced for each node in the
output layer of the SoftMax activation function. It receives a
vector z of K real numbers and transforms it into a prob-
ability distribution with K probabilities proportional to the
exponentials of the input values. SoftMax function σ is
expressed by the following formula:

Basic Blocks

Convolution

AvgPool

MaxPool

Concat

Dropout

Fully connected

Softmax

Inception Blocks

Auxiliary Classifiers

Figure 4: Inception-v3 architecture.

6 Computational Intelligence and Neuroscience

σ(z)i �
ezi

􏽐
k
j�1 ezi

, (6)

where i� 1., K and z� (z1,,,,,,,,,zk) € K.

(2) Naive Bayes (NB). It is used to solve classification tasks.
+ere are numerous circumstances, in which the Naive
Bayes algorithm performs excellently since it is simple to
grasp. +efollowing equation states that the classifier is
constructed using the Bayes theorem:

P(y | X) �
P(X | y)P(y)

P(X)
. (7)

In the equation, y is the class variable, while X is the
characteristic or attribute. X is referred as x1, x2, . . ., xn. +e
Naive Bayes classifier assumes that attributes are unrelated
as shown in the following equation:

P(y | X) �
P x1 | y(􏼁P x2 | y(􏼁 . . . P(y)

P x1(􏼁P x2(􏼁 . . . P xn(􏼁
. (8)

+e following equation shows how a normal distribution
is used to obtain the conditional probability in Gaussian
Naive Bayes:

P x1 | y(􏼁 �
1/σy

���
2π

√
􏼐 􏼑e

− xi− μy(􏼁
2

2σ2y
. (9)

(3) Support Vector Machine (SVM). It uses supervised
learning through the regression method. Classification is
achieved by determining the hyperplane that most delineates
the various groupings. It locates the hyperplane by in-
creasing the space between the two points. +e kernel trick
technique transforms a nonseparable job into a separable
solution by using the kernel function to turn a low-di-
mensional input vector into a higher-dimensional one. It is
most advantageous when dealing with nonlinear discrete
tasks. We used sigmoid as the kernel function:

1
n

􏽘

n

i�1
max 0, 1 − yi w

T
xi − b􏼐 􏼑􏼐 􏼑⎡⎣ ⎤⎦ + w

2
. (10)

(4) Decision Tree (DT). It is a tree-structured data flow di-
agram, in which each leaf node represents the outcome, a
branch represents a decision rule, and an interior node
denotes a function or attribute. A decision tree has a root at
the very top whenmaking a choice. It tends to segment based
on an attribute’s value. Segmenting the tree iteratively is
referred to as iterative segmentation. As a result, decision
trees are easy to understand and learn. Tree-based decision-
making evaluates division based on node purity and loss
functions:

Entropy � − 􏽘
K

i�1
pi ∗ log2pi. (11)

+e entropy value is a number that varies from 0 to 1.

(5) Logistic Regression (LR). It assesses binary outcomes
(y� 0 or 1) with high accuracy. Logistic regression is pre-
ferred over linear regression for predicting categorical
outcomes (binomial/multinomial values of y). Hence, lo-
gistic regression is better at predicting continuous outputs.
Equation (12) shows the mathematical representation of the
logistic function:

fx �
1

1 + e
− x. (12)

(6) Random Forest (RF). It [26] is an estimator that includes
several distinct decision tree classifiers into its model to
increase its forecasting supremacy and impact overfitting.
Decision trees are typically taught using the “bagging” ap-
proach, which results in a “forest” of trees. +e bagging
technique is based on the belief that combining many
learning models will yield superior results.

(7) K-Nearest Neighbour (K-NN). It is a simple method based
on the local minimum of the target function, which is used to
learn an unknown process with desired precision and ac-
curacy. In addition, the approach determines a parameter’s
range and distance from an unknown input. +e algorithm
uses the “information gain” concept to determine which data
points are most likely to forecast an unknown value.

(8) Ensemble Classifier. It [27] is a robust model constructed
by carefully combining base classification methods. +e
ensemble model’s mix of methodologies can solve classifi-
cation and regression difficulties that any individual model
cannot handle. It is possible to outperform single models via
ensemble learning.+e proposed study includes a soft voting
ensemble approach. GNB, SVM, DT, LR, KNN, and RF were
developed using training data for the basic models. We then
utilized test data to evaluate the performance of our models,
with each model predicting a different outcome. +e en-
semble learning approach combines the estimations pro-
vided by various techniques to come at the final classification
results. Figure 5 depicts the proposed ensemble learning.

4. Results and Discussion

Besides our transfer learning-based pretrained fine-tuned
CNN model, three other state-of-the art CNN pretrained
models for IoTdevice virus classification will be used in this
study’s experimentation. +ese three pretrained CNN
models were ResNET50, MobileNETV2, and DenseNET201.
Pretrained models in the Keras Applications were run for 50
epochs on the malware dataset with a batch size of 32. +ese
models’ accuracies in detecting malware on IoT devices and
losses are listed in Table 1 for datasets 1 and 2 (as depicted).
Experiments were conducted using an NVIDIA GeForce
GTX 2060 6GB GPU and 16GB of main memory.

4.1. Performance Metrics. A confusion matrix was used to
evaluate the various models that were considered and
compared. Classifier predictions are summarized in an error

Computational Intelligence and Neuroscience 7

matrix, namely, a confusion matrix. False-positive (FP),
false-negative (FN), and true-positive (TP) values are all
provided by the confusion matrix. A malicious program
(TP) and a nonmalicious program (TN) are two distinct
concepts in this work. False malware samples are counted as
FP values, and the number of false malware samples is
counted as FN values. We calculated the following perfor-
mance metrics with these values. Accuracy refers to the
ability of a classifier to differentiate all positive instances as
correct and all negative instances as wrong:

accuracy �
TP + TN

TP + TN + FP + FN
. (13)

Precision refers to a classifier’s capacity to avoid clas-
sifying a negative instance as positive:

precision �
TP

TP + FP
. (14)

Recall measures the classifier’s capacity to identify all
positive instances correctly:

recall �
TP

TP + FN
. (15)

Precision and recall’s weighted average is F1-score:

F − measure � 2∗
Precision∗Recall
Precision + Recall

. (16)

4.2. Performance Analysis. To validate the proficiency of the
proposed transfer learning-based pretrained fine-tuned
CNN model, we conducted experiments to (1) verify the
impact of fine-tuning on classification performance, (2)
validate the effectiveness of deep features with the perfor-
mance of machine learning, and (3) performance compared
with previous works.

4.2.1. Impact of Fine-Tuning on Classification Performance.
Four different CNN pretrained models for the IoT device
malware identification are listed in Table 2 with their train
accuracy, test accuracy, train loss, and loss performance
metrics. Table 1 summarizes the model’s accuracy results on
datasets 1 and 2. SoftMax classification activation function
was used to obtain probabilistic predictions on datasets 1
and 2. Table 2 highlights the classification accuracies of the
transfer learning-based pretrained fine-tuned Inception-v3
model and baseline CNNs. +e proposed technique out-
performed all other CNN models regarding classification
accuracy. +e accuracy of the proposed approach was 0.969
on dataset 1 and 0.786 on dataset 2, respectively, which was
greater than that of the baseline methods (transfer learned
DenseNET201, MobileNET, and ResNET50). Hence, it can
be seen that the addition of fine-tuning with transfer
learning significantly improves the overall testing accuracy
of the pretrained Inception-v3 model. +e epoch curve can
examine the dynamic behavior of accuracy and loss values.
+is enables us to quickly identify the various patterns of
categorization values and overfitting. +e accuracy and loss
epoch curves for training and testing data are analyzed to
demonstrate the feasibility of the proposed approach.

Figure 6 shows the accuracy and loss curves of the four
CNNmodels on dataset 1.+e x axis shows the epoch values,
while the y axis shows the corresponding accuracy values.
+e experimental data from the first 50 epochs are utilized to
clear the display of any information. Pretrained Inception-v3
(transfer learning with fine-tuning) accuracy and loss are
depicted by the solid red lines on training and test dataset 1.
Figures 6(a) and 6(b) show that the proposed model’s
training and testing accuracies converge fast as the number
of epochs increases. +e proposed pretrained Inception-v3
model’s training and testing accuracies converge faster than
the other three pretrained CNNmodels. All three pretrained
CNNmodels have testing accuracies of roughly 0.947, 0.942,

GNB PREDICTIONS

PREDICTIONS
SOFT

VOTING
PREDICTIONS

50
 P

ro
m

in
en

t F
ea

tu
re

s

PREDICTIONS

PREDICTIONS

PREDICTIONS

SVM IoT Device Malware
Classification

IoT Device Malware
Detection

DT

LR

RF

K-NN

Figure 5: Proposed ensemble learning.

Table 1: Comparison of detection accuracy between four different CNN pretrained models.

Pretrained model Total parameters Total depth Accuracy (dataset 1) Accuracy (dataset 2)
DenseNET201 18,520,103 707 0.947 0.757
MobileNET 3,337,383 87 0.942 0.764
ResNET50 23,798,631 175 0.868 0.387
Inception-v3 22,012,734 311 0.969 0.786

8 Computational Intelligence and Neuroscience

and 0.868 when the training accuracy is steady. However,
pretrained Inception-v3’ (transfer learning with fine-tuning)
testing accuracy ranges from 0.955 to 0.969%. Figures 6(c)
and 6(d) show the training and test loss epoch curves for the
pretrained Inception-v3 (transfer learning with fine-tuning)
and three different pretrained CNN models. In Figure 6(c),
ResNET50 has the worst training loss, with values ranging
from 3 to 0.18. +e pretrained Inception-v3 (transfer
learning with fine-tuning) has the lowest training loss, in-
dicating that it performs the best categorization. When the
training loss curve reaches 3, it declines slowly to 0.3. After
that, it acted reasonably predictable manner up to the fourth
epoch. In the fifth epoch, the loss rises to 0.28. Compared to
other state-of-the-art techniques, it works within a range of 3
to 0, which is the best-estimated train loss. Similarly, in
Figure 6(d), ResNET50 has the more testing loss, with values
ranging from 3 to 0.3. +e pretrained Inception-v3 (transfer
learning with fine-tuning) has the lowest testing loss, in-
dicating that it performs well for the classification task.
When the testing loss curve reaches 3, it declines slowly to
0.3. After that, it acted reasonably predictable up to the
fourth epoch. In the fifth epoch, the loss rises to 0.29.
Compared to three other state-of-the-art pretrained CNN
models, it acts within a range of 3 to 0.1, which is the best-
estimated test loss. Figure 7 shows the accuracy and loss
curves of the four CNNmodels on dataset 2. Figures 7(a) and
7(b) show that the proposed model’s training and testing
accuracies overlap fast as the number of epochs increases. In
Figure 7(a), ResNET50 has less training accuracy, with
values ranging from 0.1 to 0.44. +e pretrained Inception-v3
(transfer learning with fine-tuning) has the highest training
accuracy, indicating that it performs well for the classifi-
cation task. When the training accuracy curve reaches 0.1, it
increases slowly to 0.922. Compared to other state-of-the-art
techniques, it acts within a range of 0.1 to 0.9, which is the
best training accuracy. In Figure 7(b), ResNET50 has less
testing accuracy, with values ranging from 0.1 to 0.38. +e
pretrained Inception-v3 (transfer learning with fine-tuning)
has the highest testing accuracy, indicating that it performs
better for classification. When the testing accuracy curve
reaches 0.1, it increases slowly to 0.786. Even though the
proposed model does not correctly overlap train and test
data as the number of epochs increases, it nonetheless de-
livers less data overfitting than three different CNN

pretrained models. Figures 7(c) and 7(d) show the training
and test loss epoch curves for the pretrained Inception-v3
(transfer learning with fine-tuning) and three different
pretrained CNN models. In Figure 7(c), ResNET50 has the
worst training loss, with values ranging from 3 to 1.686. +e
pretrained Inception-v3 (transfer learning with fine-tuning)
has the lowest training loss, indicating the best categori-
zation results. When the training loss curve reaches 3, it
declines slowly to 0.1. Compared to other state-of-the-art
techniques, it acts within a range of 3 to 0, which is the best-
estimated train loss. Similarly, in Figure 6(d), ResNET50 has
the more testing loss, with values ranging from 3 to 1.779.
+e pretrained Inception-v3 (transfer learning with fine-
tuning) has the lowest testing loss, indicating that it per-
forms well for the classification task. When the testing loss
curve reaches 3, it declines slowly to 0.1. Compared to three
different CNN pretrained models, it acts within a range of 3
to 0, which is the best-estimated test loss.

As a result, the high training and testing accuracy curves
of the proposed model show that the data were well-trained
throughout learning. Fine-tuning and transfer learning
considerably minimize the risk of overfitting with an epoch
increase.

4.2.2. Effectiveness of Deep Features with the Performance of
Machine Learning Classifier. When it comes to classifica-
tion, feature engineering is crucial. Image processing
methods used for feature extraction are inefficient and prone
to error. We employed a transfer learning-based pretrained
fine-tuned Inception-v3 model to extract 50 prominent
features for IoT device malware classification since the
features for IoTmalware from color images are complicated.
+e dataset was delivered to the trained CNN model when
the learning phase was complete. +e 50 most prominent
features of each malware image were retrieved from the
second last dense layer, which had 50 neurons. Large-scale
learning classifiers including GNB, SVM, DT, LR, K-NN,
and an ensemble classifier were used to replace the SoftMax
layer in the proposed approach. Accuracy, F1-score, pre-
cision, and recall were used as standard performance
measurements. For dataset 1, we found that the proposed
method with random forest performed well with an accuracy
of 0.985, F1-score of 0.99, precision of 0.99, and recall of

Table 2: Comparison of accuracy and loss between four different CNN pretrained models.

Dataset 1
Pretrained model Train accuracy Train loss Test accuracy Test loss
DenseNET201 (TL) 0.963 0.093 0.947 0.127
MobileNET (TL) 0.964 0.092 0.942 0.195
ResNET50 (TL) 0.929 0.18 0.868 0.303
Inception-v3 (TL + FT) 0.992 0.023 0.969 0.107

Dataset 2
DenseNET201 (TL) 0.803 0.629 0.757 0.804
MobileNET (TL) 0.792 0.637 0.764 0.805
ResNET50 (TL) 0.449 1.686 0.387 1.779
Inception-v3 (TL + FT) 0.922 0.021 0.786 0.073
TL, transfer learning; FT, fine-tuning.

Computational Intelligence and Neuroscience 9

0.99. Similarly, for dataset 2, we found that the proposed
method with random forest performed well with an accuracy
of 0.91, F1-score of 0.91, precision of 0.91, and recall of 0.91).
+e detailed results on both datasets are presented in Table 3.

+e proposed model’s overall and class-wise perfor-
mance in both IoT device malware datasets is listed in Ta-
ble 4. A high proportion of recall reflects successfully
classifying instances in both datasets. +e results indicate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10 20 30

Epochs

A
cc

ur
ac

y
40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10 20 30

Epochs

A
cc

ur
ac

y

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(b)

0
0

1

2

3

10 20 30

Epochs

Lo
ss

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(c)

0
0

1

2

3

10 20 30

Epochs

Lo
ss

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(d)

Figure 6: Training and test curves of four different CNN pretrained models on dataset 1. (a) Training accuracy. (b) Testing accuracy. (c)
Training loss. (d) Testing loss.

10 Computational Intelligence and Neuroscience

that the true positive ratio for both dataset 1 classes was high.
Consequently, the proposed model had the highest rate of
detection (98.5%). Compared to other classes in dataset 2,
the recall percentage for clicker++trojan and exploit was
lower (87%) as there was more misunderstanding in samples

from the clicker, clickfraud++riskware, fakeangry, and
fakeapps classes. A maximum classification rate of 91% was
achieved using dataset 2.

Table 4 lists that the proposed model could assist security
analysts in detecting IoT device malware with a lower error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10 20 30
Epochs

Ac
cu

ra
cy

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10 20 30
Epochs

Ac
cu

ra
cy

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(b)

0
0

1

2

3

10 20 30
Epochs

Lo
ss

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(c)

0
0

1

2

3

10 20 30
Epochs

Lo
ss

40 50

Inception_v3 (TL+FT)

DenseNet201 (TL)

MobileNet (TL)

ResNet50 (TL)

(d)

Figure 7: Training and test curves of four different CNN pretrained models on dataset 2. (a) Training accuracy. (b) Testing accuracy. (c)
Training loss. (d) Testing loss.

Computational Intelligence and Neuroscience 11

rate. Figure 8 shows the proposed model’s confusion ma-
trices for both IoT device malware datasets. Accordingly,
each class’s actual and predicted labels are shown vertically
and horizontally. In two normalized confusion matrices, the
prediction accuracies of instances were presented. In con-
fused matrices, normalized detection and classification rates
were shown.+e first dataset’s confusion matrices revealed a
malware detection rate of 0.99, similar to the benign de-
tection rate of 0.99. It revealed that the sample distribution in
the two classes was not biased. +e second dataset’s con-
fusion matrices revealed that the clicker + + trojan and ex-
ploit families had the lowest classification rates of 0.87
compared to other malware families. +e family

fakeinst + + trojan received the highest classification rate of
0.96.

4.2.3. Performance Comparison with Previously Published
Works. We compared the suggested malware classification
technique with previous published studies in terms of
detection accuracy. Yen et al. [18] used CNNs to decompile
a mobile app into code, subsequently visualized using the
TF-IDF method. Color graphics of Android platform
modules were utilized for training ResNET networks to
identify attacks. As opposed to pooling layers, Farhan
et al.’s DCNN approach uses capsule layers [28]. Chimera

Table 3: Performance of deep features with different machine learning classifiers.

Dataset 1
Classifier Precision Recall F1-score Accuracy
Decision tree 0.98 0.98 0.98 0.982
Logistic regression 0.9 0.9 0.9 0.896
Random forest 0.99 0.99 0.99 0.985
K-nearest neighbor 0.98 0.98 0.98 0.984
Ensemble learning 0.98 0.98 0.98 0.984

Dataset 2
Decision tree 0.88 0.88 0.88 0.875
Logistic regression 0.25 0.27 0.25 0.273
Random forest 0.91 0.91 0.91 0.91
K-nearest neighbor 0.88 0.88 0.88 0.881
Ensemble learning 0.9 0.9 0.9 0.902
For dataset 1, we found that the proposed method with random forest performed well with an accuracy of 0.985, F1-score of 0.99, precision of 0.99, and recall
of 0.99. Similarly, for dataset 2, we found that the proposed method with random forest performed well with an accuracy of 0.91, F1-score of 0.91, precision of
0.91, and recall of 0.91).

Table 4: Classwise performance.

Dataset 2
Families Precision Recall F1-score
Addisplay 0.91 0.89 0.9
Addisplay + + adware 0.89 0.91 0.9
Adload 0.92 0.92 0.92
Adsware 0.9 0.9 0.9
Adware + + adware 0.9 0.91 0.91
Adware + + grayware + + virus 0.88 0.88 0.88
Adware + + virus 0.91 0.9 0.9
Adwareare 0.92 0.92 0.92
Backdoor 0.92 0.92 0.92
Banker + + trojan 0.94 0.91 0.92
Click 0.92 0.92 0.92
Clicker 0.88 0.91 0.9
Clicker + + trojan 0.89 0.87 0.88
Clickfraud ++ riskware 0.91 0.91 0.91
Exploit 0.86 0.87 0.86
Fakeangry 0.88 0.9 0.89
Fakeapp 0.94 0.9 0.92
Fakeapp ++ trojan 0.96 0.95 0.95
Fakeinst + + trojan 0.96 0.96 0.96
Average 0.91 0.91 0.91

Dataset 1
Benign 0.99 0.99 0.99
Malware 0.99 0.99 0.99
Average 0.99 0.99 0.99

12 Computational Intelligence and Neuroscience

et al. [20] utilized images that had been converted to DEX
files, as well as Android purpose and intent and system call
trends. Dense, convolutional, and textural neural networks
were employed to discover patterns from various sorts of
data. Naeem et al. [21,29] utilized malware binary image
data from the SIFT-GIST (CSGM) description to locate
malware that can execute on different systems. Mercaldo
et al. [22] created a way for classifying malware based on
grayscale images captured by mobile apps. Table 5 sum-
marizes the models, characteristics, and datasets employed
in the aforementioned publications. +e malware detec-
tion accuracy is also mentioned in the table based on these

works on their respective IoT malware datasets. Some
research outperformed the suggested method in terms of
accuracy. A straight comparison may not be effective due
to the diversity of datasets used in these studies. It is
feasible to obtain good outcomes with feature engineering,
but it may not be scalable and may not work well with
recent days malware vulnerabilities. When compared to
SIFT or other feature extractors, the proposed method has
the same benefits. As a result, the proposed transfer
learning-based pretrained fine-tuned Inception-v3 model
produces more accurate results than typical handcrafted
features.

0.89
0.08

0
0.01

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.1
0.91
0.01

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0.01
0.92
0.04
0.01
0.01
0.01

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0.04
0.9

0.04
0.01
0.01

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0.01
0.04
0.91
0.04
0.02

0
0
0
0
0
0
0
0
0
0
0
0

0
0

0.01
0.01
0.02
0.88
0.06
0.02

0
0
0
0
0
0
0
0
0
0
0

0
0

0.01
0

0.01
0.06
0.9

0.01
0
0
0
0
0
0
0
0
0
0
0

0
0

0.01
0
0

0.01
0.01
0.92
0.03
0.01
0.01

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0.03
0.92
0.04
0.01

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0.01
0.02
0.91
0.03

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0.01
0.02
0.03
0.92

0
0

0.01
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0.02
0.91
0.1
0
0
0

0.01
0
0

0
0
0
0
0
0
0
0
0
0

0.01
0.07
0.87
0.01
0.01

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0.01
0.91
0.04
0.02
0.01

0
0

0
0
0
0
0
0
0
0
0
0
0
0

0.01
0.04
0.87
0.05
0.02

0
0.01

0
0
0
0
0
0
0
0
0
0
0
0
0

0.02
0.07
0.9

0.03
0.01
0.01

0
0
0
0
0
0
0
0
0
0
0
0
0

0.01
0.01
0.02
0.9

0.02
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.01
0.02
0.95
0.02

0
0
0
0
0
0
0
0
0
0
0
0
0

0.01
0
0
0

0.03
0.96

fa
ke

in
st

++
tr

oj
an

ba
nk

er
++

tr
oj

an
ba

ck
do

or

Predicted Label

A
ct

ua
l L

ab
el

ad
w

ar
ea

re
ad

w
ar

e+
+v

ir
us

ad
w

ar
e+

+g
ra

yw
ar

e+
+v

ir
us

ad
w

ar
e+

+a
dw

ar
e

ad
di

sp
la

y+
+a

dw
ar

e
ad

di
sp

la
y

ad
sw

ar
e

ad
lo

ad

fa
ke

ap
p+

+t
ro

ja
n

fa
ke

ap
p

fa
ke

an
gr

y
ex

pl
oi

t
cl

ic
kf

ra
ud

++
ri

sk
w

ar
e

cl
ic

ke
r+

+t
ro

ja
n

cl
ic

ke
r

cl
ic

k

fakeinst++trojan

banker++trojan
backdoor

adwareare
adware++virus

adware++grayware++virus
adware++adware

addisplay++adware
addisplay

adsware
adload

fakeapp++trojan
fakeapp

fakeangry
exploit

clickfraud++riskware
clicker++trojan

clicker
click

(a)

0.010.99

0.990.01
Malware

Benign

Predicted Label

Ac
tu

al
 L

ab
el

Be
ni

gn

M
al

w
ar

e

(b)

Figure 8: Confusion matrices of both IoT device malware datasets for the proposed model.

Table 5: Comparison of the proposed model with previously published works.

Published works
(year) Detection model Feature type Data source Accuracy

(%)

Yen et al. [18] Convolutional neural network Code retrieved from APKs with image-
based characteristics — 92

Ullah et al. [28] Deep convolutional neural network Code retrieved from APKs with image-
based characteristics R2-D2 IoTdevice dataset 97.46

de Oliveira et al.
[20]

Combined CNN+DNN+TN neural
network model

Characteristics extracted from static
and dynamic analyses Omnidroid 90.90

Hamad et al. [21] K-nearest neighbor Code retrieved from APKs with image-
based characteristics R2-D2 IoTdevice dataset 97.29

Hamad et al. [29] Deep convolutional neural network Code retrieved from APKs with image-
based characteristics

R2-D2 IoTdevice dataset
and malimg 98

Mercaldo et al.
[22] Deep neural network Code retrieved from binaries with

image-based characteristics
Google play store and

AMD 91.8

Yadav et al. [30] Pretrained efficient net convolutional
neural network

Code retrieved from binaries with
image-based characteristics R2-D2 IoTdevice dataset 95.7

Proposed
approach Pretrained Inception-v3 Code retrieved from APKs with image-

based characteristics R2-D2 IoTdevice dataset 98.5

Computational Intelligence and Neuroscience 13

5. Performance Distribution

5.1. Feature Interpretation. To ensure the superiority of the
learned patterns, we used the t-distributed stochastic
neighbor embedding (t-SNE) [31] approach to display the
image representations contained in the features of the IoT
device malware dataset. High-dimensional data points are
fed into the t-SNE algorithm, which depicts the points
exactly in the low dimension domain. It aims to preserve
both the local and global structure of the data, such as data
clusters. Furthermore, it can attain such high performance
while having limited processing resources. We used t-SNE to
generate a two-dimensional representation of the charac-
teristics retrieved from the second-to-last dense layer. t-SNE
tuning parameters are perplexity� 100.0 and a number of
iterations� 700. Feature representation in two dimensions
for the IoTdevice malware dataset is shown in Figure 9. +e
figure shows that the suggested model does a remarkable job
of distinguishing between “benign (0)” and “malware (1)”
data instances.

5.2. ExplainableModel. Two important experiments, such as
explainable AI and t-SNE visualization, are carried out to
validate the proposed approach. To generate more accurate
findings, we used the gradient-weighted class activation
mapping (Grad-CAM) approach to locate the model’s most
valuable regions of the image. Consequently, the security
analyst will see which portions of the IoTmalware image are
predictive of a particular forecast. We also designed a cu-
mulative heatmap to aid security analysts in understanding
the classifier’s results. +e cumulative heatmap [9], a

graphical depiction of model performance, can give security
analysts quick insight into the model’s behavior. To make
greater use of Grad-CAM, security analysts may employ
automated heat map analysis to troubleshoot models
without prior knowledge of the problem or patterns. +e
following stages outline the explainability of the proposed
transfer learning-based pretrained fine-tuned Inception-v3
model.

5.2.1. Heatmap. When it comes to explaining deep neural
networks, the heatmap generated by integrated gradients is
one of the most used methods. It tells you which pixels are
most crucial for making predictions. A security analyst may
inspect the machine’s pixels to discover the exact malware
attack and its patterns. +e model classifies a subset of the
test dataset samples based on these characteristics. As part of
the inference process, Grad-CAM analyses the pictures to
determine which areas are most suited for categorization.
Each instance in this subgroup is shown using a heatmap.

5.2.2. Cumulative Heatmap. +e average value for each pixel
is used to create cumulative heatmaps. We construct a
heatmap that depicts “unique features” of that exact family.
As a result of this, a security analyst will be able to investigate
a large number of pixels for a certain malware attack more
quickly and with less effort.

Figure 10 shows the original images from two separate
IoT device malware datasets, the heatmap generated by the
Grad-CAM, and the significance of the regions on the
original image by overlaying the heatmap. Cumulative
heatmaps are created by overlaying all heatmaps from the

0

1

Figure 9: Two-dimensional pattern representation of the suggested model on the IoT device malware dataset (“0”: benign and “1”:
malware).

14 Computational Intelligence and Neuroscience

Heatmapadware++grayware++
virus Overlay with Heatmap

Heatmapclicker

D
at

as
et

-1
D

at
as

et
-2

Overlay with Heatmap

HeatmapMalware Overlay with Heatmap

HeatmapBenign Overlay with Heatmap

Figure 10: First column: original image; second column: heat map; third column: overlay with heatmap.

Computational Intelligence and Neuroscience 15

same family and applying pixel-by-pixel averages to create a
new image. +e final outcome is only an image containing
information on the IoT device malware family’s inferences.

6. Conclusions

A transfer learning-based pretrained fine-tuned Inception-
v3 model is proposed in this study to identify IoT device
malware. It can withstand both unpacked and packed
malware, regardless of the platform on which it is run. First,
it employs the IoT device malware image as input to the
pretrained Inception-v3 network to extract critical charac-
teristics. Second, the collected features are transfer learned
via GMP and dense layers and inserted into a classification
method. +ird, the dual training of projected model is
proposed in order to fine-tune weights. Finally, the SoftMax
classifier distinguished between malicious and benign im-
ages with a precision of 96.9% on dataset 1. We evaluated the
model with three different CNN-based pretrained models.
SVM, RF, GNB, LR, KNN, and DT classifiers and ensemble
classifiers with CNN models were used for large-scale
learning. +e proposed approach obtained maximum clas-
sification and detection accuracies of 98.5% and 91%, re-
spectively, with RF on both available datasets. According to
the findings, the proposed approach outperformed every
indicator compared to the alternatives. Besides this, fine-
tuning and transfer learning considerably minimize the risk
of overfitting in the proposed method.

In the future, we intend to use principal component
analysis to improve malware classification on IoT devices.
Besides this, we intend to examine the suggested model on a
number of large-scale public datasets of Android malware,
such as Drebin and AndroZoo. It is possible to obtain
numerous folds of training and testing data using cross-
validation via deep neural networks. It can alleviate prob-
lems such as over- or underfitting.

Data Availability

+e data used to support the findings of this study are
available from the first author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was partially supported in part by the Zhoukou
Normal University High Level Talent Scientific Research
under grant no. ZKNUC2021027.

References

[1] D. Uppal, V. Mehra, and V. Verma, “Basic survey on malware
analysis, tools and techniques,” International Journal on
Computational Science & Applications, vol. 4, no. 1,
pp. 103–112, 2014.

[2] R. Vinayakumar and S. SomanPoornachandranSachin
Kumar, “Detecting Android malware using long short-term

memory (LSTM),” Journal of Intelligent and Fuzzy Systems,
vol. 34, no. 3, pp. 1277–1288, 2018.

[3] R. Vinayakumar, K. Soman, and P. Poornachandran, “Deep
android malware detection and classification,” in Proceedings
of the 2017 International conference on advances in computing,
communications and informatics (ICACCI), September 2017.

[4] K. Liu, S. Zhang, and H. Liu, “A review of android malware
detection approaches based on machine learning,” IEEE
Access, vol. 8, pp. 124579–124607, 2020.

[5] Z. Wang, Q. Liu, and Y. Chi, “Review of android malware
detection based on deep learning,” IEEE Access, vol. 8,
pp. 181102–181126, 2020.

[6] J. Zhao, R. Masood, and S. Seneviratne, “A review of computer
vision methods in network security,” IEEE Communications
Surveys & Tutorials, vol. 23, 2021.

[7] H. M. Ünver and K. Bakour, “Android malware detection
based on image-based features and machine learning tech-
niques,” SN Applied Sciences, vol. 2, no. 7, p. 1299, 2020.

[8] H. Chen, “Android malware classification using XGBoost
based on images patterns,” in Proceedings of the 2018 IEEE 4th
Information Technology and Mechatronics Engineering Con-
ference (ITOEC), December 2018.

[9] M. S. Hossain, G Muhammad, and N Guizani, “Explainable
AI and mass surveillance system-based healthcare framework
to combat COVID-I9 like pandemics,” IEEE Network, vol. 34,
no. 4, pp. 126–132, 2020.

[10] Y. Ding, R. Wu, and F. Xue, “Detecting android malware
using bytecode image,” in Proceedings of the International
Conference on Cognitive Computing, June 2018.

[11] S. Gu, S. Cheng, and W. Zhang, “From image to code: exe-
cutable adversarial examples of android applications,” in
Proceedings of the 2020 6th International Conference on
Computing and Artificial Intelligence, Springer, Tianjin,
China, April 2020.

[12] X. Xiao and S. Yang, “An image-inspired and cnn-based
android malware detection approach,” in Proceedings of the
2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ovember 2019.

[13] Y. Ding, H. Zhang, and W. Xu, “Android malware detection
method based on bytecode image,” Journal of Ambient In-
telligence and Humanized Computing, pp. 1–10, 2020.

[14] A. Lekssays, B. Falah, and S. Abufardeh, “A novel approach for
android malware detection and classification using con-
volutional neural networks,” in Proceedings of the 15th In-
ternational Conference on Software Technologies, ICSOFT,
Lieusaint, France, July 2020.

[15] J. Jung, “Android malware detection using convolutional
neural networks and data section images,” in Proceedings of
the 2018 Conference on Research in Adaptive and Convergent
Systems, October 2018.

[16] W. Zhang, D. Luktarhan, and B. Lu, “Android malware de-
tection using tcn with bytecode image,” Symmetry, vol. 13,
no. 7, p. 1107, 2021.

[17] N. Lachtar, D. Ibdah, and A. Bacha, “Toward mobile malware
detection through convolutional neural networks,” IEEE
Embedded Systems Letters, vol. 13, no. 3, pp. 134–137, 2021.

[18] Y.-S. Yen and H.-M. Sun, “An Android mutation malware
detection based on deep learning using visualization of im-
portance from codes,” Microelectronics Reliability, vol. 93,
pp. 109–114, 2019.

[19] X. Zhang, C. Wu, and C. Zhang, “MalCaps: a capsule network
based model for the malware classification,” Processes, vol. 9,
no. 6, p. 929, 2021.

16 Computational Intelligence and Neuroscience

[20] A. de Oliveira and R. J. Sassi, “Chimera: an android malware
detection method based on multimodal deep learning and
hybrid analysis,” TechRxiv, 2020.

[21] H. Naeem, “A cross-platform malware variant classification
based on image representation,” KSII Transactions on Internet
and Information Systems (TIIS), vol. 13, no. 7, pp. 3756–3777,
2019.

[22] F. Mercaldo and A. Santone, “Deep learning for image-based
mobile malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 16, no. 2, pp. 157–171, 2020.

[23] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: color-inspired
convolutional neural network (cnn)-based android malware
detections,” in Proceedings of the 2018 IEEE International
Conference on Big Data (Big Data), December 2018.

[24] S. Freitas, R. Duggal, and D. H. Chau, “Malnet: a large-scale
cybersecurity image database of malicious software,” 2021,
https://arxiv.org/abs/2102.01072.

[25] D. Vasan and Q. AlazabWassanNaeemSafaeiZheng, “IMCFN:
image-based malware classification using fine-tuned con-
volutional neural network architecture,” Computer Networks,
vol. 171, Article ID 107138, 2020.

[26] M. Khalilia, S. Chakraborty, and M. Popescu, “Predicting
disease risks from highly imbalanced data using random
forest,” BMC Medical Informatics and Decision Making,
vol. 11, no. 1, p. 51, 2011.

[27] O. Sagi and L. Rokach, “Ensemble learning: a survey,”WIREs
DataMining and Knowledge Discovery, vol. 8, no. 4, Article ID
e1249, 2018.

[28] F. Ullah and L. Naeem, “Cyber security threats detection in
internet of things using deep learning approach,” IEEE Access,
vol. 7, pp. 124379–124389, 2019.

[29] H. Naeem and S. Ullah, “Malware detection in industrial
internet of things based on hybrid image visualization and
deep learning model,” Ad Hoc Networks, vol. 105, Article ID
102154, 2020.

[30] P. Yadav, N. Menon, and Ravi, “EfficientNet convolutional
neural networks-based android malware detection,” Com-
puters & Security, vol. 115, Article ID 102622, 2022.

[31] L. Van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9, no. 11,
2008.

Computational Intelligence and Neuroscience 17

https://arxiv.org/abs/2102.01072

