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THEORETICAL REVIEW

Assessing the practical differences betweenmodel selection methods
in inferences about choice response time tasks

Nathan J. Evans1

Abstract
Evidence accumulations models (EAMs) have become the dominant modeling framework within rapid decision-making,
using choice response time distributions to make inferences about the underlying decision process. These models are often
applied to empirical data as “measurement tools”, with different theoretical accounts being contrasted within the framework
of the model. Some method is then needed to decide between these competing theoretical accounts, as only assessing the
models on their ability to fit trends in the empirical data ignores model flexibility, and therefore, creates a bias towards
more flexible models. However, there is no objectively optimal method to select between models, with methods varying in
both their computational tractability and theoretical basis. I provide a systematic comparison between nine different model
selection methods using a popular EAM—the linear ballistic accumulator (LBA; Brown & Heathcote, Cognitive Psychology
57(3), 153–178 2008)—in a large-scale simulation study and the empirical data of Dutilh et al. (Psychonomic Bulletin and
Review, 1–19 2018). I find that the “predictive accuracy” class of methods (i.e., the Akaike Information Criterion [AIC], the
Deviance Information Criterion [DIC], and the Widely Applicable Information Criterion [WAIC]) make different inferences
to the “Bayes factor” class of methods (i.e., the Bayesian Information Criterion [BIC], and Bayes factors) in many, but not
all, instances, and that the simpler methods (i.e., AIC and BIC) make inferences that are highly consistent with their more
complex counterparts. These findings suggest that researchers should be able to use simpler “parameter counting” methods
when applying the LBA and be confident in their inferences, but that researchers need to carefully consider and justify the
general class of model selection method that they use, as different classes of methods often result in different inferences.
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Introduction

Over the past several decades, formalized cognitive mo-
dels have become a dominant way of expressing theore-
tical explanations and analyzing empirical data. These for-
malized models take the verbal explanations of theories of
cognitive processes, and express them as precise mathemat-
ical functions that make exact quantitative predictions about
empirical data. Formalized cognitive models have been
largely adopted within the area of rapid decision-making,
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with the evidence accumulation models (EAM) forming
the most dominant class of models (see Ratcliff, Smith,
Brown, & McKoon, 2016 for a review). EAMs propose that
decisions are the result of evidence from the stimuli accu-
mulating over time for each potential decision alternative (at
a rate called the “drift rate”), until the evidence for one of
the alternatives reaches a threshold level of evidence (called
the “decision threshold”) and a response is triggered (Stone,
1960; Ratcliff, 1978; Usher & McClelland, 2001; Brown &
Heathcote, 2008).

One of the primary uses of EAMs has been as a “mea-
surement tool” for empirical data analysis, in order to
provide more nuanced answers to research questions in
terms of the decision-making process, rather than in terms
of observed variables (Donkin, Averell, Brown, & Heath-
cote, 2009). These applications have been widespread, and
have greatly improved our understanding of psycholog-
ical theory in many instances. For example, a common
finding in the aging literature has been that older adults
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are slower than younger adults in many cognitive tasks,
with an initial—and prominent—explanation of this phe-
nomenon being the “cognitive slowdown” account, where
older adults had slower mental processing than younger
adults (Salthouse, 1996). Using EAMs, Ratcliff, Thapar,
and McKoon (2001) compared this account (i.e., older
adults have lower drift rates than younger adults) to an alter-
nate explanation: that older adults are simply more cautious
(i.e., have higher thresholds) than younger adults. Interest-
ingly, Ratcliff et al.’s findings indicated that in many tasks,
older and younger adults have near identical drift rates,
though older adults are much more cautious, providing strong
evidence against the general “cognitive slowdown” account.
EAMs have been used to answer a wide variety of simi-
lar research questions across a large number of fields and
areas, including intelligence (van Ravenzwaaij, Brown, &
Wagenmakers, 2011), alcohol consumption (van Raven-
zwaaij, Dutilh, & Wagenmakers, 2012), discrete choice
decision-making (Hawkins et al., 2014b), stop-signal
paradigms (Matzke, Dolan, Logan, Brown, & Wagenmak-
ers, 2013), absolute identification (Brown, Marley, Donkin,
& Heathcote, 2008), optimality studies (Starns & Ratcliff,
2012; Evans & Brown, 2017; Evans, Bennett, & Brown,
2018), personality traits (Evans, Rae, Bushmakin, Rubin, &
Brown, 2017), and a range of neuroscience data (Forstmann
et al., 2008, 2011; Turner, Forstmann, et al., 2013).

In order to use EAMs to decide between different
theoretical accounts, such as the “cognitive slowdown” and
“increased caution” accounts of slower task performance
for older adults discussed above, a method is needed to
decide which account is best supported by the empirical
data. However, this is not necessarily the account that most
closely matches the data (i.e., the “goodness-of-fit”), as
more flexible models can predict a wider range of potential
data patterns, and are able to “over-fit” to the noise in the
sample data, which can often result in a more flexible model
more closely matching the data than a simpler, but more
correct, model (Myung & Pitt, 1997; Myung, 2000; Roberts
& Pashler, 2000; Evans, Howard, Heathcote, & Brown,
2017). Therefore, selecting between models requires a
careful balance between goodness-of-fit and flexibility, a
process commonly referred to as “model selection”, which
is commonly performed through some quantification of
these two criteria, and expressed as some metric.

Unfortunately, there is no objectively optimal way to
select between models, with methods varying in both their
computational tractability and theoretical basis. Therefore,
the inferences that researchers draw about psychological
theory, such as the aging example above, can depend on
their choice of method to select between the competing
models. The simplest, most computationally tractable
metrics commonly used to perform model selection are

the Akaike Information Criterion (AIC; Akaike, 1974) and
the Bayesian Information Criterion (BIC; Schwarz, 1978),
with the χ2 test of relative deviance also being a well-
known method for the case of nested models. These metrics
only require simple frequentist methods of parameter
estimation, using the maximum likelihood estimate as
the measure of goodness-of-fit, and a transformation
of the number of free parameters in the model as
a measure of the flexibility (commonly referred to
as “parameter counting”). However, parameter counting
ignores “functional form flexibility”: how the model’s
specific function alters the amount of flexibility provided by
each parameter, and therefore, the model overall (Myung,
2000; Evans et al., 2017). This is particularly relevant
for models that contain highly correlated parameters,
such as EAMs, as the correlation in the parameters
often reduces the overall flexibility of the model. These
limitations have resulted in researchers adopting more
sophisticated, computationally taxing methods of model
selection, such as the Deviance Information Criterion
(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002)
and the Widely Applicable Information Criterion (WAIC;
Vehtari, Gelman, & Gabry, 2017). These metrics both
require Bayesian parameter estimation, with goodness-
of-fit being calculated as the average likelihood of the
data given the parameters (i.e., p(y|θ)) over the entire
posterior, and flexibility being calculated by some measure
of variability of the likelihood over the posterior. In
addition, recent research has highlighted methods that
can provide accurate approximations of the Bayes factor
in complex cognitive models within a reasonable time-
frame (Evans & Brown, 2018; Gronau et al., 2017; Annis,
Evans, Miller, & Palmeri, 2018; Evans & Annis, 2019),
with the Bayes factor commonly argued to provide the
optimal balance between goodness-of-fit and flexibility
within model selection. Bayes factors involve integrating
the unnormalized posterior probability (i.e., p(y|θ)p(θ))
over the entire parameter space, rewarding models for
having a high posterior probability, but penalizing models
for having an overly wide set of a priori predictions (Kass
& Raftery, 1995).

In addition to varying in computational tractability, these
methods vary on their theoretical basis for selecting between
models. AIC, DIC, and WAIC all attempt to find the
model with the best “predictive accuracy”, which is the
model that is able to best predict future empirical data,
given some fixed set of parameter values or distributions
(Akaike, 1974; Spiegelhalter et al., 2002; Vehtari et al.,
2017). These methods punish models for over-fitting to
the noise in sample data, as over-fitting will result in poor
prediction of future data (Myung, 2000; Yarkoni &Westfall,
2017). In contrast, BIC and the Bayes factor attempt to
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find the model that provides the best explanation for the
current data (though this can also be posed in terms of a
different type of “predictive accuracy” [Bayesian updating],
see Rouder & Morey, 2018), integrating over all possible
parameter value—rather than the fixed set of parameter
values/distributions in the predictive accuracy methods—
with this integration punishing models for being able to
predict large ranges of potential data trends (Schwarz, 1978;
Kass & Raftery, 1995; Evans & Brown, 2018). Therefore,
the choice of model selection method also has important
underlying theoretical implications.

Alternatively, some researchers have argued that parame-
ter estimation should be used to decide between theoretical
accounts, rather than model selection metrics that attempt to
balance goodness-of-fit and flexibility (Kruschke & Liddell,
2018). One of the most well-defined parameter estimation
approaches to date is the Region Of Practical Equivalence
(ROPE; Kruschke, 2011; Kruschke & Liddell, 2018), where
a region that is viewed as being “practically zero” is defined
a priori (i.e., the ROPE). The posterior distributions of the
parameters are then estimated from the data (i.e., Bayesian
parameter estimation), and if the 95% credible interval falls
completely within the ROPE then the parameter is viewed
as being zero. Alternatively, if the 95% credible interval
falls completely outside of the ROPE, then the parameter is
viewed as not being zero. However, any other result (e.g.,
partial overlap with the ROPE) is viewed as being “inde-
terminate”, meaning that the standard ROPE approach will
only decide in favor of a theoretical account when certainty
is high, and in other cases provide little information.

My study aims to provide the first systematic comparison
between a range of model selection methods in their
inferences between different theoretical accounts within
EAMs, as a follow-up to the recent many-lab study of Dutilh
et al. (2018). The study of Dutilh et al. (2018) attempted
to assess the quality of inferences about response time data
from expert researchers, where 17 teams of researchers were
each able to pick a general approach of their choice for
making assessments about empirical response time data, and
these inferences were assessed for both consistency with
the “selective influence” assumption (see Rae, Heathcote,
Donkin, Averell, & Brown, 2014 for a more detailed
discussion of this assumption), and consistency with one
another. However, due to the vast range of approaches
chosen by the relatively small number of teams (e.g.,
some teams opted for model-free, heuristic approaches),
the inferences of Dutilh et al. (2018) were quite general,
and specifics such as the impact of model selection method
were not discussed. The current study aims to take a
more systematic approach, assessing how these methods
practically compare in realistic situations. Specifically, I
use the Linear Ballistic Accumulator (LBA; Brown and

Heathcote, 2008), a widely applied and computationally
tractable EAM, to assess the inferences of nine common
methods of model selection in both simulated and empirical
data. Importantly, if there are few practical differences
between the methods, then concerns surrounding functional
form flexibility or the theoretical underpinnings of the
methods are of little importance, and researchers should
use the most computationally simple methods for greater
efficiency when applying the LBA. However, if there
are large differences, then researchers need to carefully
consider the theory and level of sophistication behind
different methods before choosing which one to use; a
practice that does not seem to currently be commonplace.

Method

The linear ballistic accumulator

Due to the large-scale nature of my simulation study (2500
data sets, resulting in 10,000 total models being fit and
90,000 model selection metrics being calculated), I focused
my assessment on a single, widely applied EAM: the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008;
see Rae et al., 2014; Ho et al. 2014; Evans et al., 2017;
Tillman, Benders, Brown, & van Ravenzwaaij, 2017; Evans,
Steyvers, & Brown, 2018 for applications). The LBA is
arguably the simplest EAM that provides inferences based
on the entire choice response time distributions (Brown &
Heathcote, 2008; though see Wagenmakers, Van Der Maas,
& Grasman, 2007 and Grasman, Wagenmakers, & Van Der
Maas, 2009 for simpler EAMs based on summary statistics),
allowing the simulation study to be performed within a
feasible computational time-frame.

The LBA proposes that decisions are based on the
noiseless, leakless, independent accumulation of evidence
for each alternative. The rate of evidence accumulation
for each alternative (i.e., the drift rate) differs randomly
between trials according to a truncated normal distribution
(lower bound of 0), and the amount of starting evidence for
each alternative differs randomly between trials according
to a uniform distribution (lower bound of 0). In addition,
some amount of time is assumed to be dedicated to non-
decision related processes, such as perception and motor
function (called “non-decision time”). The LBA contains
five parameters per accumulator (i.e., for each alternative):
the mean drift rate over trials (v), the standard deviation
in drift rate over trials (s), the decision threshold (b), the
upper bound of the uniform starting point distribution (A),
and the non-decision time (t0). As is commonly the case
in applications, I constrained the t0, A, and b parameters
to be the same across accumulators, with each accumulator
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having a different mean drift rate (vc and ve for the accu-
mulators reflecting the correct and incorrect responses,
respectively) and standard deviation in drift rate (svc and
sve). Per convention, svc was fixed to 1 to satisfy a scaling
property within the model (Donkin, Brown, & Heathcote,
2009).

To create different theoretical accounts within the LBA
to compare in each data set, I defined four sub-models that
allowed for different changes in parameter values across
“within-subjects” experimental conditions. These were (1) a
“null” model where all parameters were constrained to have
the same values across conditions, (2) a “drift” model where
the correct mean drift rate parameter (i.e., vc) was allowed
to have different values across conditions, (3) a “threshold”
model where the threshold parameter (i.e., b) was allowed
to have different values between conditions, and (4) a
“complex” model, where both vc and b were allowed to have
different values across conditions. Formally, the null model
was defined as:

vc ∼ T N(3, 3, 0, Inf )

ve ∼ T N(2, 3, 0, Inf )

sve ∼ T N(2, 3, 0, Inf )

A ∼ T N(2, 2, 0, Inf )

b − A ∼ T N(2, 2, 0, Inf )

t0 ∼ T N(0.5, 0.5, 0, Inf )

the drift model was defined as:

vc,i ∼ T N(3, 3, 0, Inf )

ve ∼ T N(2, 3, 0, Inf )

sve ∼ T N(2, 3, 0, Inf )

A ∼ T N(2, 2, 0, Inf )

b − A ∼ T N(2, 2, 0, Inf )

t0 ∼ T N(0.5, 0.5, 0, Inf )

where i indexes the condition, the threshold model was
defined as:

vc ∼ T N(3, 3, 0, Inf )

ve ∼ T N(2, 3, 0, Inf )

sve ∼ T N(2, 3, 0, Inf )

A ∼ T N(2, 2, 0, Inf )

bi − A ∼ T N(2, 2, 0, Inf )

t0 ∼ T N(0.5, 0.5, 0, Inf )

and the complex model was defined as:

vc,i ∼ T N(3, 3, 0, Inf )

ve ∼ T N(2, 3, 0, Inf )

sve ∼ T N(2, 3, 0, Inf )

A ∼ T N(2, 2, 0, Inf )

bi − A ∼ T N(2, 2, 0, Inf )

t0 ∼ T N(0.5, 0.5, 0, Inf )

Model selectionmethods

I compared the inferences of nine different model selec-
tion methods, which have all been previously suggested or
used for deciding between cognitive models. The first four
methods are the commonly implemented “information cri-
teria” discussed in the introduction: the Akaike Information
Criterion (AIC; Akaike, 1974), the Bayesian Information
Criterion (BIC; Schwarz, 1978), the Deviance Informa-
tion Criterion (DIC; Spiegelhalter et al., 2002), and the
Widely Applicable Information Criterion (WAIC; Vehtari
et al., 2017). I also included an alteration on the standard
DIC method that has been implemented previously within
the literature (Osth, Dennis, & Heathcote, 2017), where
the prior probability is included in the deviance calcula-
tions, meaning that the deviance is calculated based on the
unnormalized posterior probability rather than the model
likelihood.1 In addition, I included two recently proposed
methods of calculating Bayes factors in cognitive models,
which have been shown to provide an accurate approxima-
tion in simpler models where the integral is solvable (Xie,
Lewis, Fan, Kuo, & Chen, 2010; Friel, Hurn, &Wyse, 2014;
Friel & Wyse, 2012; Liu et al., 2016; Gronau et al., 2017):
Bayes factors using Bridge Sampling (BF-BS; Gronau et al.,
2017), and Bayes factors using Thermodynamic Integration
(BF-TI; Annis et al., 2018) through the Thermodynamic
Integration via Differential Evolution method (TIDE; Evans
& Annis, 2019). As a parameter estimation-based method, I
included an augmentation of the Region Of Practical Equiv-
alence (ROPE; Kruschke, 2011; Kruschke & Liddell, 2018)
method, which selects the region (i.e., either “practically
zero”, or “not zero”) with the most posterior density, stop-
ping the method from having indeterminate cases. Lastly, I
included the well-known χ2 test of relative deviance, which
is a simple maximum likelihood-based method.

The AIC, DIC, and WAIC each aim to provide an
approximation of predictive accuracy, being asymptotically

1Note that Osth et al. (2017) used a hierarchical model and
only included part of the prior—the probability of the individual
level parameters given the hyper-parameters [i.e., p(θ |φ)]—in the
calculation, meaning that they did not use the full unnormalized
posterior probability as I have here.
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equivalent to leave-one-out cross validation (LOO-CV).
AIC uses the maximum likelihood as a measure of
goodness-of-fit, and the number of free parameters as a
measure of flexibility, with more parameters resulting in
harsher penalties. DIC uses the average log-likelihood over
the posterior distribution as a measure of goodness-of-
fit, and the difference between this average and the log-
likelihood at some fixed, central point of the posterior as
a measure of flexibility, with greater differences resulting
in harsher penalties. Although the mean of the parameter
values over the joint posterior is often used as the point
estimate in this calculation (Spiegelhalter et al., 2002), I
instead use the point of minimum deviance in the posterior
for the point estimate (also recommended by Spiegelhalter
et al., 2002), as the use of the mean results in the
strong assumption that the joint posterior distribution is a
multivariate normal, and can result in negative estimates of
flexibility when this assumption is violated (Vehtari et al.,
2017). WAIC uses a similar measure of goodness-of-fit as
DIC, being the log of the average posterior likelihood for
each data point, but uses the variance in log-likelihood over
the posterior distribution as a measure of flexibility, with
greater variances resulting in harsher penalties.

Formally, AIC can be written as:

L̂ = log[p(y|θmax)]
PAIC = k

AIC = −2(L̂ − PAIC)

where log[] is the natural logarithm function, y is the data,
θ are the parameters, θmax are the parameter values that
give that maximum likelihood (i.e., maximize the function
p(y|θ)), and k is the number of free parameters in the
model. DIC can be written as:

D̄ = 1

S

S∑

s=1

log[p(y|θ s)]

PD = max[log[p(y|θ)]] − D̄

DIC = −2(D̄ − PD)

where S is the number of posterior samples, and max[] is the
maximum function over all posterior samples. WAIC can be
written as:

lpd =
n∑

i=1

log

[
1

S

S∑

s=1

p(yi |θ s)

]

Pwaic =
n∑

i=1

var[log[p(yi |θ)]]

WAIC = −2(lpd − Pwaic)

where n is the number of data points, and var[] is the
variance function over the posterior samples.

The BIC, BF-BS, and BF-TI each aim to provide an
approximation of the Bayes factor. BIC uses the maxi-
mum likelihood as a measure of goodness-of-fit, and the
number of free parameters combined with the number of
observations as a measure of flexibility, with more parame-
ters resulting in harsher penalties, and the relative penalty
between models increasing as the number of observations
increases. Both “BF” methods have no explicit measures of
goodness-of-fit or flexibility, with the marginal likelihood
(the Bayes factor is a ratio of the marginal likelihoods
of each model) containing a natural penalty for flexibility
through the integration of the unnormalized posterior
probability over the entire parameter space. BF-BS uses
the bridge sampling algorithm to estimate the marginal
likelihood for each model, requiring (1) samples from
the posterior distribution, (2) the definition of a proposal
distribution and samples from this distribution, and (3) the
definition of a bridge function. I use the recommendations
of Gronau et al. (2017) for the proposal distribution and
bridge function, defining the proposal distribution using
the mean and variance of the estimated posteriors, and the
optimal bridge function of Meng and Wong (1996). BF-TI
uses the TIDE method to estimate the marginal likelihood
for each model, requiring the estimation of the mean log-
likelihood for several “power posteriors”. A power posterior
is a posterior distribution estimated with the likelihood
placed to a specific power (i.e., p(y|θ)t ). To obtain the
marginal likelihood, a series of power posteriors must
be estimated with powers (known as “temperatures”; t)
between 0 and 1, which forms a discrete approximation of
a continuous integration curve between 0 and 1. Integrating
over this area with a simple integration rule provides the
marginal likelihood. The TIDE method estimates all power
posteriors simultaneously, with each temperature being a
different chain in a single run of the Different Evolution
Markov chain Monte Carlo (DE-MCMC; Ter Braak, 2006;
Turner, Sederberg, Brown, & Steyvers, 2013) sampling
algorithm.

Formally, BIC can be written as:

L̂ = log[p(y|θmax)]
PBIC = log[n]k
BIC = −2(L̂ − 1

2
PBIC)

and the extensive formal definitions for bridge sampling
and thermodynamic integration can be seen in Gronau et al.
(2017) and Annis et al. (2018), respectively.

The other three methods, DIC with the prior probability
included (DICp), the augmented ROPE (ROPEa), and the
χ2 test of relative deviance, do not clearly fit into either
category above. DICp is calculated in an identical manner to
DIC, but with the deviance calculation based on the unnor-
malized posterior probability. ROPEa is calculated in the
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same fashion as regular ROPE, where the selection process
is purely based on the parameter posterior densities; how-
ever, in cases that would usually be ruled as “indetermi-
nate”, ROPEa chooses based on the largest posterior density.
Note that as with ROPE, ROPEa makes decisions on param-
eters as separate, binary cases. Therefore, to select the
model with both drift rate and threshold varying over con-
dition, ROPEa would require the posterior distributions for
the change in drift rate and threshold over condition to each
mostly fall outside their respective ROPE. The χ2 method
uses a significance test to decide whether additional param-
eters are required to explain the data in the case of nested
models. Specifically, the difference in deviance—with the
“deviance” in this case being the maximum log-likelihood
multiplied by negative 2—is approximately distributed as a
χ2 with degrees of freedom equal to the difference in the
number of parameters. Significant values indicate that the
more complex model is required, whereas non-significant
values indicate that the simpler model is satisfactory. In
order to use the χ2 test to compare all four models, I firstly
assessed which “single effect” model (i.e., drift only or
threshold only) had the better deviance score (as they have
an equal number of parameters), and then compared the bet-
ter model to the null model. If this test was significant, then
the single effect model was compared to the drift and thresh-
old model to determine the best model, and if the test was
non-significant, then the null model was compared to the
complex model to determine the best model.

Formally, DICp can be written as:

D̄ = 1

S

S∑

s=1

log[p(θ s |y)]

PD = max[log[p(θ |y)]] − D̄

DICp = −2(D̄ − PD)

where max[] is the maximum function over all posterior
samples.

Model fitting

All models were fit using Bayesian parameter estimation, as
most of the model selection metrics assessed in this study
require posterior distributions. The posterior distributions
were estimated through Differential Evolution Markov
chain Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner
et al., 2013), with 3k parallel chains (with k being the
number of free parameters in the model), 1,000 samples
per chain discarded as burn-in, and 1000 samples per chain
taken from the joint posterior. For AIC, BIC, and the χ2

test of relative deviance, which all require the maximum
likelihood, I used the maximum likelihood contained within
the posterior distribution (i.e., p(y|θ)), which is equivalent

to the maximum likelihood obtained through maximum
likelihood estimation in situations where data are plentiful
and the prior is relatively uninformative. For BF-BS, I took
3k × 1000 samples from the proposal distribution. For BF-
TI, I fit each model with 40 temperatures, meaning that 40
chains were used instead of 3k. For ROPEa , the same value
used to define a “small” effect size for each parameter in
simulating the data was used to define the size of the ROPE
(i.e., vc = [−0.3, 0.3]; b = [−0.11, 0.11]).

Assessments of performance

I assessed the performance of the nine model selection
methods in three different ways: the selection of the
“correct” model, the selection of specific effects (i.e., drift
or threshold), and the consistent between metrics. Note
that I say “correct” (i.e., in inverted commas), as although
the data generating model is known, the data generating
model is not necessarily the model that best explains each
specific sample of randomly generated data. Therefore,
assessing the selection of the correct model is strictly an
“inversion” based test (see Lee, 2018 for an explanation of
the differences between inference and inversion).

The “selection of the correct model” assessment focused
on how often the methods selected the data generating
model as the best model, and the “selection of specific
effects” focused on how often the methods selected each of
the data generating effects in the best model, with the latter
providing a more in-depth assessment of the former. These
assessments were both performed according to two criteria:
the proportion of correct selections in the 100 simulation in
each cell of the design, and the average Brier score (Brier,
1950) over the 100 simulations. The Brier score is a scoring
method that provides a measure of accuracy for probabilistic
choices. Specifically, I used the original definition by Brier
(1950):

Brier Score = 1

R

R∑

i=1

(fi − oi)
2

where R is the number of possible outcomes, fi is the
predicted probability for outcome i, and oi is a binary
variable for whether outcome i occurred (1 if it did, 0 if
it did not). All possible Brier scores fall between 0 and
2, where 0 indicates the best possible performance and
2 indicates the worst possible performance. However, I
adjusted the resulting Brier scores to a scale that provides
a more intuitive interpretation, where scores are between
−1 and 1, −1 indicates the worst possible performance,
1 indicates the best possible performance, and 0 indicates
chance performance. In order to obtain the probability
assigned to each outcome for each model in a specific
data set, I calculated probability weights for each model.
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For models on the deviance scale (i.e., AIC, BIC, DIC,
WAIC, and DICp), the probability weight for model i was
calculated as:

Wi = exp(MSMi × (−0.5))
∑N

j=1 exp(MSMj × (−0.5))

where MSMi is the model selection method deviance for
model i, and N in the number of models being evaluated. For
models on the log-likelihood scale (i.e., BF-TI and BF-BS)
the probability weight for model i was calculated as:

Wi = exp(MSMi)∑N
j=1 exp(MSMj)

For ROPEa , the same concept was used as above, except
instead of a likelihood being used to calculate the weights,
it was the relative posterior density. However, the Brier
score cannot be easily calculated for the χ2 test of relative
deviance, as the choice is determined through a significance
test, which cannot be directly interpreted as a level of
evidence (Wagenmakers, 2007). Therefore, the χ2 test
of relative deviance was excluded from the Brier score
assessment.

The final assessment, the “consistency between metrics”,
focused on how often the different methods agree in their
chosen model. Specifically, for each replicate in each cell
of the design, I assess the proportion of instances where
the methods selected the same model, for each pairing
of methods. Note that this is the consistency in the joint
selections (i.e., out of the four possible models), and not
the consistency between the selection of separate drift and
threshold effects.

Simulation study

Simulations

I simulated 2500 total data sets, with each being a single
simulated “participant” with two “experimental” conditions,
and 300 simulated trials per condition. My choice of two
experimental conditions, rather than a larger number, was
to (1) minimize the potential sources of variability in the
design to allow comparisons to be as robust as possible,
and (2) mimic the pseudo-experiment design of Dutilh et al.
(2018), which my study intends to provide a follow-up to.
My choice of 300 trials per conditions was based around this
approximately reflecting the number of rapid decision (i.e.,
600) that participants often make in short rapid decision-
making experiments (e.g., Trueblood, Brown, Heathcote,
& Busemeyer, 2013; Hawkins et al., 2014a, b; Evans &
Brown, 2017; Evans et al., 2017; Evans, Hawkins, Boehm,
Wagenmakers, & Brown, 2017).

The 2500 data sets fell into one of five different quali-
tative types of effects: “null”, “drift”, “threshold”, “drift and
threshold extreme”, and “drift and threshold balanced”.
The “null” data sets were simulated using the same para-
meter values for both conditions, meaning that there was
no underlying difference between the two conditions. The
“drift” and “threshold” data sets were simulated with an
increased (decreased) drift rate (threshold) parameter value
for the second condition, respectively. The amount of
change in the parameter for each data set was set to be either
“small”, “moderate”, or “large”, with these different sizes
decided by a priori simulations that found what amount of
change resulted in 0.2, 0.5, and 0.8 effect size differences
between conditions in the response time distributions. This
created six different categories of one-way effects: drift rate
and threshold, with each having small, moderate, or large
differences in the parameter value. The “drift and threshold
extreme” data sets were simulated using an increase in drift
rate and a decrease in threshold for the same condition,
creating a more extreme difference between the conditions
in response time than a single effect. The “drift and
threshold balanced” data sets were using an increase in drift
rate for one condition, and a decrease in threshold for the
other condition (i.e., different conditions), with the effects
in response time balancing each other out to some extent.2

Combining small, moderate, and large effects in drift rate
and threshold factorially, for extreme and balanced effects,
created 18 different categories of two-way effects, making
25 categories of effects in total.

I simulated 100 “participants” (i.e., data sets) for each
of these 25 categories of effects, which served as replicates
of the effects to assess the consistency of inferences. To
minimize the potential sources of variability that could
causes inconsistencies, these simulated replicates were each
generated with identical parameter values. In addition,
across the 25 categories of effect, the same parameter
values were used for non-manipulated parameters. These
“baseline”, non-manipulated parameter values were:

vc = 3

ve = 2

svc = 1

sve = 1

A = 1

b = 2

t0 = 0.3

2It should be noted that the extreme and balancing effects are within
the response times, and that these parameter combinations actually
have the opposite effect on accuracy. However, this is not meant to
imply that response time is more important than accuracy, and the
“extreme” and “balance” naming is only used for clarity.
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Fig. 1 Plots of the proportion of correct selections for each model
selection method (different plots) for the 25 different cells of the
design (rows and columns). Lighter shades of green indicate better per-
formance, lighter shades of red indicate worse performance, and black
indicates intermediate performance, which can be seen in the color bar
to the left-hand side.White indicates cells that did not exist in the sim-
ulated design. Different cells display different data-generating models,

with the different columns being different generated drift rates, and
the different rows being different generated thresholds. For rows and
columns, ‘N’ refers to no effect, ‘S’ refers to a small effect, ‘M’
refers to a moderate effect, and ‘L’ refers to a large effect. When
both effects are present (i.e., not ‘N’), ‘E’ refers to an extreme differ-
ence between conditions, whereas ‘B’ refers to a balanced difference
between conditions

and drift rate and threshold were changed to the following
values when the effect was used to generate the data set:

vc b

Small 3.3 1.89

Moderate 3.75 1.74

Large 4.25 1.595

Results

Selection of correct model

Figure 1 displays the proportion of correct selections for
each model selection method (different plots) in each of
the 25 different cells of the simulated design, and Fig. 2

displays the average Brier scores.3 In general, the Brier
scores lead to the same conclusions as the proportion of
correct selections throughout the entire study, and so these
different criteria will not be discussed separately. However,
one important difference to note is that the performance
for all methods appears to be better (i.e., closer to the best
possible performance) for the Brier score criterion than the
proportion of correct selections. This suggests that when the
methods select the correct model, they do so with greater
confidence (i.e., higher probability) than when they select
the incorrect model, meaning that the probability assigned
to each model provides important information beyond the
discrete selection of the best model.

3Note that for every figure, an equivalent table with the exact
numerical values can be found in the Appendix.
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Fig. 2 Plots of the Brier scores of correct selections for each model
selection method (different plots) for the 25 different cells of the
design (rows and columns). Lighter shades of green indicate better per-
formance, lighter shades of red indicate worse performance, and black
indicates intermediate performance, which can be seen in the color bar
to the left-hand side.White indicates cells that did not exist in the sim-
ulated design. Different cells display different data-generating models,

with the different columns being different generated drift rates, and
the different rows being different generated thresholds. For rows and
columns, ‘N’ refers to no effect, ‘S’ refers to a small effect, ‘M’
refers to a moderate effect, and ‘L’ refers to a large effect. When
both effects are present (i.e., not ‘N’), ‘E’ refers to an extreme differ-
ence between conditions, whereas ‘B’ refers to a balanced difference
between conditions

There appear to be two overarching trends in the correct
selections. Firstly, all methods correctly identify almost
every replicate when both effects are part of the data
generating model and each effect is either moderate or large.
This suggests that (1) the methods are indistinguishable
in these circumstances, and (2) by inversion standards,
all methods show near-optimal performance in these
circumstances. Secondly, the performance of the methods
appears to be clearly separated in the small effect and
null data sets. In general, AIC, DIC, and WAIC appear
to show good performance in each of these cells of the
design, whereas BIC, BF-BS, BF-TI, DICp, and ROPEa

show near-optimal performance when either no effect is
present (i.e., the null data set) or a single moderate/large
effect is present, but show poor performance when one or
both of the effects are small. This suggests that (1) no

method appears to perform “better” than all others under
all potential conditions, and (2) some methods are more
consistent in their selection accuracy across the different
potential combinations of effects, whereas others are more
polarizing.

In addition to these general trends, there appear to
be three other important, and potentially surprising, more
specific results. Firstly, when including the prior probability,
the DIC method (i.e., DICp) has a similar pattern of
performance across the cells of the design to the Bayes
factor methods, as opposed to the predictive accuracy
methods that the standard DIC method belongs to. The
performance of DIC and DICp deviate from one another
a great deal, suggesting a large influence of including the
prior probability. Secondly, the conceptually simple ROPEa

method performs very well, even though augmentations

Psychon Bull Rev (2019) 26:1070–10981078



were made to the standard ROPE method to force it to
select a model in every instance. In general, the augmented
ROPE seems to perform as well as, if not better than,
the Bayes factor. Lastly, and perhaps most importantly,
the simpler parameter-counting methods perform extremely
well. In each cell of the design, AIC performs about as
well as both of its more complex counterparts, DIC and
WAIC, and BIC performs about as well as its more complex
Bayes factor counterparts. This is extremely important, as
the use of more complex metrics is commonly advocated
on theoretical bases, but in this practical context, their
performance does not seem to be any better than the simpler
methods. The simple χ2 deviance test (DEV) also shows
good performance, though it does not seem to clearly map
onto either class of selection method.

Selection of specific effects

Figure 3 displays the proportion of correct drift selections
for each model selection method in each of the 25 different
cells (Fig. 4 for the Brier scores), and Fig. 5 displays the
same for threshold selections (Fig. 6 for the Brier scores).
As the previous section already displayed near-optimal
performance for all methods in data sets where both effects
were present and moderate or large in size, showing that
all methods almost always select both drift and threshold
effects in these situations, the focus of this section will be
on the other, more distinguishing cells of the design.

There appear to be several key trends in the effect
selection. Firstly, there appears to be little-to-no difference
in how the methods identify different types of effects (i.e.,
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Fig. 3 Plots of the proportion of correct selections for the drift rate
effect for each model selection method (different plots) for the 25 dif-
ferent cells of the design (rows and columns). Lighter shades of green
indicate better performance, lighter shades of red indicate worse per-
formance, and black indicates intermediate performance, which can be
seen in the color bar to the left-hand side. White indicates cells that
did not exist in the simulated design. Different cells display different

data-generating models, with the different columns being different
generated drift rates, and the different rows being different generated
thresholds. For rows and columns, ‘N’ refers to no effect, ‘S’ refers
to a small effect, ‘M’ refers to a moderate effect, and ‘L’ refers to a
large effect. When both effects are present (i.e., not ‘N’), ‘E’ refers
to an extreme difference between conditions, whereas ‘B’ refers to a
balanced difference between conditions
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Fig. 4 Plots of the Brier score of correct selections for the drift rate
effect for each model selection method (different plots) for the 25 dif-
ferent cells of the design (rows and columns). Lighter shades of green
indicate better performance, lighter shades of red indicate worse per-
formance, and black indicates intermediate performance, which can be
seen in the color bar to the left-hand side. White indicates cells that
did not exist in the simulated design. Different cells display different

data-generating models, with the different columns being different
generated drift rates, and the different rows being different generated
thresholds. For rows and columns, ‘n refers to no effect, ‘S’ refers to
a small effect, ‘M’ refers to a moderate effect, and ‘L’ refers to a large
effect. When both effects are present (i.e., not ‘N’), ‘E’ refers to an
extreme difference between conditions, whereas ‘n refers to a balanced
difference between conditions

drift or threshold) of similar effect sizes, with drift and
threshold being selected fairly similar amounts in equivalent
cell of the design. Secondly, the “Bayes factor” type
methods are much more conservative than the “predictive
accuracy” type methods. The clear distinction here is in
cases where the effect does not exist (first column of Fig. 3,
and first row of Fig. 5), or is small (second and third
columns of Fig. 3, and second row of Fig. 5). In each of
these cases, BIC, BF-BS, BF-TI, ROPE, and DICp rarely
select the effect, in contrast to AIC, DIC, and WAIC, which
more commonly select the effect. This results in AIC, DIC,
and WAIC commonly suggesting that an effect exists when
it does not, but also results in BIC, BF-BS, BF-TI, ROPE,
and DICp often suggesting that no effect exists when it does,
but is small. This finding probably isn’t surprising given that

the “predictive accuracy” methods do not aim to identify
the true model and asymptotically select the more flexible
model, and Bayes factors with uninformed priors are known
to be conservative. However, it is interesting to note that this
conservative nature only makes a practical difference when
the effect is small or non-existent.

Thirdly, the selection of one effect (e.g., drift rate)
appears to be largely independent of whether or not the other
effect (e.g., threshold) is non-existent, small, moderate, or
large. For example, when looking at Fig. 3, the number
of selections of a drift rate effect when it exists and is
small (columns 2 and 3) appears to differ little based on
whether the threshold effect is small (row 2), moderate (row
3), or large (row 4). Lastly, when both effects are present
and small, whether the effects are “extreme” (i.e., drift rate
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Fig. 5 Plots of the proportion of correct selections for the threshold
effect for each model selection method (different plots) for the 25 dif-
ferent cells of the design (rows and columns). Lighter shades of green
indicate better performance, lighter shades of red indicate worse per-
formance, and black indicates intermediate performance, which can be
seen in the color bar to the left-hand side. White indicates cells that
did not exist in the simulated design. Different cells display different

data-generating models, with the different columns being different
generated drift rates, and the different rows being different generated
thresholds. For rows and columns, ‘N’ refers to no effect, ‘S’ refers
to a small effect, ‘M’ refers to a moderate effect, and ‘L’ refers to a
large effect. When both effects are present (i.e., not ‘N’), ‘E’ refers
to an extreme difference between conditions, whereas ‘B’ refers to a
balanced difference between conditions

increasing and threshold decreasing in the same condition)
or “balanced” (i.e., drift rate increasing and threshold
decreasing in different conditions) appears to have some
impact on the identification of each effect. Specifically,
DICp, BF-BS, BF-TI, and BIC all seem to show fewer
selection of each effect when the effects are “balanced”,
compared to when they are “extreme”, suggesting that two
opposing effects that push the response time distributions
to be similar to one another may be difficult to identify.
However, it should be noted that this trend is smaller
and less consistent across methods than the other trends
discussed.

Consistency betweenmetrics

As the relationship between methods was extremely similar
in many cells of the design, I collapsed over several for

ease of communication. Firstly, as there was little difference
between the methods in previous assessments when both
effects were present and moderate or large in size, I collapse
over these 8 cells. Secondly, as there was generally little
difference between the impact of moderate and large effects
in previous assessments, I collapse over those cells in all
instances. Lastly, as there was little difference between
drift rate and threshold of effects in previous assessments,
I collapse over these two types of generated effects. This
leaves eight collapsed cells to assess the consistency of the
methods over, which can be seen in Fig. 7.

There appear to be two key general trends in the
consistency assessment. First and foremost, all methods are
extremely consistent with one another when both effects
are present and moderate-to-large in size. This further re-
iterates that the choice in model selection method makes
little difference in situations with sizable effects. Secondly,
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Fig. 6 Plots of the proportion of correct selections for the threshold
effect for each model selection method (different plots) for the 25 dif-
ferent cells of the design (rows and columns). Lighter shades of green
indicate better performance, lighter shades of red indicate worse per-
formance, and black indicates intermediate performance, which can be
seen in the color bar to the left-hand side. White indicates cells that
did not exist in the simulated design. Different cells display different

data-generating models, with the different columns being different
generated drift rates, and the different rows being different generated
thresholds. For rows and columns, ‘N’ refers to no effect, ‘S’ refers
to a small effect, ‘M’ refers to a moderate effect, and ‘L’ refers to a
large effect. When both effects are present (i.e., not ‘N’), ‘E’ refers
to an extreme difference between conditions, whereas ‘B’ refers to a
balanced difference between conditions

there appears to become a much greater distinction between
the predictive accuracy and Bayes factor methods in the
other cells of the design, where one or both of the effects
are small or non-existent. The difference appears to be least
prevalent when one effect is large and the other does not
exist, and most prevalent when both effects exist, are small,
and are “balanced”, further showing that the key distinction
between the methods is for small effects. However, in
all cases, the consistency within each class of method is
very high, with AIC, DIC, and WAIC all being consistent
with one another, and BIC, BF-BS, and BF-TI also being
consistent with one another.

In addition, there appear to be two specific, but
important, points to note here. Firstly, DIC and WAIC
are extremely consistent with one another in every cell of
the design. Although this may seem like a minor point,
the lack of difference between these methods is of key

importance. Specifically, WAIC has been suggested as a
major theoretical improvement to DIC, and the assessment
of the variance in the posterior likelihood is thought to be
a superior assessment of flexibility than DIC’s more simple
flexibility assessment. However, there appears to be little
practical difference between the methods, suggesting that
WAIC is of little-to-no benefit over the more simple DIC.
Secondly, although the consistency between the two Bayes
factor approximations of BF-BS and BF-TI is extremely
high, they do not show perfect agreement. This is potentially
concerning, as both methods are intended to estimate the
exact same quantity (the marginal likelihood) in an unbiased
manner, and have been shown to do so accurately in models
where the marginal likelihood is analytically solvable (Xie
et al., 2010; Friel et al., 2014; Friel & Wyse, 2012; Liu
et al., 2016; Gronau et al., 2017). This suggests that
the small number of posterior samples used to perform
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Fig. 7 Plots the agreement in selected model between each of the eight
model selection methods (rows and columns of each plot) for eight dif-
ferent groupings of the data (different plots). Lighter shades of green
indicate greater agreement, lighter shades of red indicate greater dis-
agreement, and black indicates intermediate agreement, which can be
seen in the color bar to the left-hand side. For the groupings of the

data, ‘n refers to no effect, ‘S’ refers to a small effect, and ‘M/L’ refers
to a moderate or large effect. The two different letters refer to whether
the data were generated with both effects, one effect, or neither effect.
When the data were generated with both effects, the subscript ‘bal’
refers to a balanced difference between conditions, and the subscript
‘ext’ refers to an extreme difference between conditions
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these assessments may have resulted in approximation
error within one/both of these methods. Therefore, future
research should aim to explore the sources of variability in
these different methods.

This section also re-enforces several previous key
points regarding the relationships between the different
methods. Firstly, there appears to be a practical distinction
between the “predictive accuracy” methods and the “Bayes
factor” methods, with these classes of methods only
providing largely consistent inferences when all effects
evaluated exist and are sizable. This is very important to
showcase, as researchers often use these different classes
of methods interchangeably as general “model selection
metrics”. However, the classes of methods are theoretically
very different, and as shown here, can come to very
different practical inferences. Secondly, DICp shows a
much closer relationship to the “Bayes factor” methods than
the “predictive accuracy” methods, including the standard
DIC calculation, suggesting that the inclusion of the prior
probability in the DIC calculation drastically changes
its inferences, and makes it closer to an approximation
of the Bayes factor (with uninformed priors) than the
predictive accuracy. Thirdly, the augmented version of
ROPE performed very similarly to the Bayes factor.
However, ROPEa was not always in perfect agreement
with the Bayes factor, showing closer agreement to the
predictive accuracy methods in the “small balanced” cell,
which resulted in it having “better” performance than the
Bayes factor in this cell. Lastly, the simpler methods of
model selection showed a very close relationship to their
more complex counterparts. In most cells of the design,
AIC is extremely consistent with DIC and WAIC, and BIC
is extremely consistent with the BF-BS and BF-TI. This
suggests that although there are many theoretical advantages
to using these more complex methods of model selection,
the practical advantages of using them over more simple
approximations may be limited, and therefore, many users
may wish to opt for the simpler alternatives.

Prior sensitivity assessment

One key finding of the simulation study was that both
BIC and Bayes factors performed conservatively when
compared to AIC, DIC, and WAIC. As mentioned above,
this is probably not surprising given that Bayes factors
with uninformative priors are known to be conservative.
Specifically, when applying Bayes factors to simple,
statistical models, previous research has shown that effects
are less likely to be detected when uninformed priors are
placed on the “effect size” parameter (i.e., the difference
in condition means normalized by the standard deviation),
compared to when using more informed priors (Lindley,
1957; Rouder, Morey, Speckman, & Province, 2012).

Here, I provide a follow-up assessment to evaluate
how more informative priors practically impact the LBA
models selected by the Bayes factor. As the Bayes
factor provided near-optimal selection for moderate and
large effects even with uninformative priors, I focus this
assessment on the 5 cells of the design that are most
likely to be impacted by using informed priors: the no
effect, small drift rate effect, small threshold effect, small
drift rate and threshold “extreme” effect, and small drift
rate and threshold “balanced” effect. In order to place
more informative priors on the difference in the parameter
values between conditions,4 I re-parameterized the models
that allowed differences between conditions to estimate
the mean value of the parameter over conditions, and
the difference in the parameter value between conditions,
rather than the previous estimation of a parameter for each
condition. Formally, this meant that the values for parameter
X in conditions 1 and 2 were given by:

X1 = Xmean − Xdiff

X2 = Xmean + Xdiff

where Xmean is the parameter mean over conditions, and
Xdiff is the parameter difference between conditions. For
the parameter reflecting the mean over conditions, I used the
same priors as the previous analysis:

vc ∼ T N(3, 3, 0, Inf )

bi − A ∼ T N(2, 2, 0, Inf )

and for the parameter reflecting the difference between con-
ditions, I defined four different levels of “informativeness”
as different priors:

UP ∼ N(0, 10)

WIP ∼ N(0, 1)

MIP ∼ N(0, 0.1)

HIP ∼ N(0, 0.01)

where UP is a completely uninformative prior (even less
informative than those used in the previous analysis), WIP

is a weakly informative prior (slight more informative than
those used in the previous analysis), MIP is a moderately
informative prior, and HIP is a highly informative prior.
As the focus of this assessment was only on the impact of
informative priors, I only applied one of the methods (bridge
sampling) of approximating the Bayes factor.

Figure 8 displays the proportion of correct selections
(top-left panel) for each prior in each of the 5 different

4Note that I use the difference between conditions instead of the effect
size used in statistical models, as there is no standard deviation in the
parameter estimates to normalize the difference by.
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Fig. 8 Plots of the correct (left panels), drift (middle panels), and
threshold (right panels) selections, as proportions (top panels) and
average Brier scores (bottom panels). Lighter shades of green indicate
better performance, lighter shades of red indicate worse performance,

and black indicates intermediate performance, which can be seen in the
color bar to the left-hand side. Different rows of cells display different
data-generating models, and different columns display different priors

cells of the design selected for this analysis, and the average
Brier scores (bottom-left panel). TheWIP shows extremely
similar performance to the priors used in the previous
analysis, showing near-optimal performance when no effect
is present, poorer performance when a single, small sized
effect is present, and extremely poor performance when
both effects are present and small in size. The UP shows
even more conservative performance, selecting optimally
when no effect is present, but poorly for a single effect,
and misidentifying almost every data set when both effects
are present. In contrast, the MIP shows more balanced
performance, with selection no longer being optimal when
no effect is present, but drastically improving when either
one or both effects are present. However, the HIP appears
to become overly liberal, showing poorer performance in all
cells of the design except the case where both effects are
present and combined in an “extreme” manner.

The correct selection of specific effects (middle and
right panels) supports the previous insights. The UP and

WIP very rarely select an effect when it is not present,
though often do not select effects that are present. TheMIP

performs better in this regard, mostly selecting effects when
they are present and failing to select effects when they are
not present, except for in the “balance” cell where selection
is poorer. The HIP provides the opposite performance to
the UP and WIP , often selecting effects regardless of
whether they are present, except for in the “balance” cell,
where selection is at approximately chance.

Importantly, these results show that the level of
informativeness within the prior has a practical impact
in the selection of psychological theory within the LBA
when using Bayes factors, and using more informed priors
can result in better performance. However, making these
priors overly narrow (i.e., the HIP in this case) can have
detrimental effects on the selection process, resulting in
many effects that are not present being detected, and other
strange patterns of selection (e.g., the “balance” cell of the
design). Therefore, the use of informed priors can provide
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advantages for model selection with Bayes factors, though
to provide sensible results these priors must be sensibly
informed.

Impact of sample size

As discussed at the beginning of the simulation study,
I restricted my assessment to only a single number of
trials per condition (300), which reflected an approximate
number of rapid decisions that participants make in a
short experiment. However, the number of trials can differ
greatly between studies that apply EAMs, with some
studies having as few as 40 trials per condition (e.g., Voss,
Rothermund, & Voss, 2004) and others having thousands
of trials per condition (e.g., Dutilh, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2009). Importantly, different

model selection methods can be impacted in different ways
by the number of trials: for example, the flexibility penalty
in BIC is dependent on the number of trials, whereas in
AIC the flexibility penalty remains constant over differing
numbers of trials.

Here, I provide a follow-up assessment to evaluate
how differing numbers of trials per condition impact the
selections made by the predictive accuracy and Bayes factor
classes of methods. As both classes of methods showed
near-optimal selection for moderate and large effects, I
focus this assessment on the five cells of the design that
provided the greatest distinction between the classes of
methods. For each of these five cells, I simulated using four
different numbers of trials per condition: 30, 100, 300 (i.e.,
the data sets from the previous assessment), and 900. As
with the first simulation study, I simulated 100 data sets (i.e.,
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Fig. 9 Plots of the proportion of correct (top panels), drift (middle
panels), and threshold (bottom panels) selections for each model selec-
tion method (different columns of panels) for the 20 different cells of
the design (rows and columns). Lighter shades of green indicate better

performance, lighter shades of red indicate worse performance, and
black indicates intermediate performance, which can be seen in the
color bar to the left-hand side
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“participants”) for each of these 20 cells. As there seemed
to be general agreement within each class of methods in
the previous simulation study, I only use four methods
within this assessment: AIC (predictive accuracy, parameter
counting), DIC (predictive accuracy, functional form), BIC
(Bayes factor, parameter counting), and bridge sampling
(Bayes factor, functional form; using the same priors as in
the original simulation study results).

Figure 9 (top row) displays the proportion of collection
selections for the different methods (different panels) across
different cells of the design, and Fig. 10 (top row) displays
the average Brier scores. For all methods the overall
performance improves as sample size increases, especially
within the cells of the design where effects are present. The
middle and bottom panels of these figures show that this
improvement is due to effects being selected less often for

smaller sample sizes than larger sample sizes, with this trend
continuing to largest number (900) of trials per condition,
meaning that increasing the number of trials increases the
“power” to detect these effects.

However, the performance of the different classes of
methods in each cell of the design differed between the
numbers of trials. For the smaller numbers of trials (30
and 100), the Bayes factor methods very rarely suggest
that an effect is present, regardless of the true generating
model. This results in near-perfect performance when no
effect is present, but poor performance when either one
or both of the effects are present. The predictive accuracy
methods suggest that an effect is present slightly more
often than the Bayes factor methods for smaller numbers of
trials, resulting in slightly better performance when effects
are present, and slightly poorer performance when they
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Fig. 10 Plots of the Brier scores for the correct (top panels), drift (mid-
dle panels), and threshold (bottom panels) selections for each model
selection method (different columns of panels) for the 20 different cells
of the design (rows and columns). Lighter shades of green indicate

better performance, lighter shades of red indicate worse performance,
and black indicates intermediate performance, which can be seen in
the color bar to the left-hand side
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are not. However, it should be noted that at an absolute
level, the predictive accuracy methods still perform poorly
(i.e., below chance) in detecting these effects when the
number of trials are small. For the largest number of trials
(900), the predictive accuracy methods are near-perfect in
detecting effects when they are present, resulting in near-
perfect performance for the cells of the design where both
effects are present. However, these methods also suggest
that effects are present in some cases when they are not,
resulting in poorer performance for the single effect and null
cells. In contrast, the Bayes factor methods are near-perfect
for the null and single effect cells, but fail to detect both
effects in many cases for the “balance” and “extreme” data
sets.

Interestingly, both Bayes factor methods show similar
performance in all cells of the design, throughout all sample
sizes. This again suggests that BIC provides an adequate
approximation to the Bayes factor with uninformative priors
for comparing different theories within the LBA framework.
However, this is not the case for the predictive accuracy
methods. Although AIC and DIC perform similarly when
the number of trials are small, their performance continues
to diverge as the number of trials increases. Specifically, as
the number of trials increases, both AIC and DIC improve at
detecting when effects are present, increasing their overall
performance. However, as the number of trials increases
AIC remains fairly stable at detecting when effects are not
present, whereas DIC begins to false alarm increasingly
often, resulting in DIC having poorer performance than AIC
for single effect and null cells. This is likely due to DIC
providing a more accurate approximation of leave-one-out
cross validation than AIC. When using cross validation in
cases where the null model is true, the estimated difference
in parameter value between conditions in the more flexible
model will become increasingly closer to zero (i.e., the fixed
value of the null model) as the amount of data increases,
which will result the more flexible model being identical to
the simpler model in predicting the left out data (Gronau &
Wagenmakers, 2018). However, as AIC contains an explicit
flexibility penalty based on the number of free parameters
in the model, the null model retains an advantage over the
more flexible model in cases where the null model is true.

Empirical study (data of Dutilh et al., 2018)

So far, I have assessed how these different model selection
methods perform when compared to one another on
simulated data, where the ground truth is known and is
one of the models specified. These simulations provide a
useful benchmark for assessing the performance of model
selection methods, as the model selected by each method
can be directly compared to the ground truth used to

generate the data, allowing an assessment of how often
the method makes the “correct” selection. However, these
simulations are limited in a practical sense, as all models are
likely to be wrong is some way (e.g., Box & Draper, 1987),
and therefore, the ground truth within the simulations is
unlikely to be the same one that exists within empirical data.
Importantly, this model mis-specification could result in the
comparisons from the previous simulated assessment not
necessarily extrapolating to practical implementations of the
LBA to empirical data. In addition, noise is often present
in empirical data, due to factors such as measurement
noise and contaminated responses, which can also make
inferences more difficult (Evans & Brown, 2018).

In order to address the potential limitations of my
simulated assessments, I performed the same assessments
on the data of Dutilh et al. (2018). Note that within
empirical data there is no objectively “correct” inference,
but following Dutilh et al. I defined the “correct” inference
as the one that follows the selective influence assumption:
that is, difficulty manipulations only influence drift rate,
and speed–accuracy instructions only influence threshold
(though see Voss et al., 2004 and Rae et al., 2014
for potential problems with this assumption). However,
I believe that less weight should be placed on the
identification of the “correct” effect in these situations, and
more weight should be placed on what inferences are made
in each situation and the consistency between methods.
Importantly, the latter assessments will allow some insight
into whether the conclusions from the simulated study hold
for empirical data.

A full explanation of the (Dutilh et al. 2018) experiment
can be found in Dutilh et al., though I will provide a brief
outline here. Twenty participants completed 18 blocks of
a random dot motion task, each with 156 trials, which
required participants to judge whether the general pattern of
a cloud of dots was towards the left or right of the screen.
Each block contained trials that differed in the proportion
of dots moving coherently in the correct direction, and
blocks differed in either the instructions that participants
received, the proportion of trials that had dots moving
in each direction, or any combination of these effects.
The proportion of dots moving coherently in the correct
direction attempted to make some trials more difficult
than others, being used as a direct manipulation of drift
rate. The instructions that participants received differed
between blocks in whether participants were encouraged to
emphasize the accuracy of their performance, or the speed
of their performance, being used as a direct manipulation
of threshold (though see Voss et al., 2004 and Rae
et al., 2014 for how instructions may influence other
parameters). The proportion of trials that had dots moving
in a specific direction was intended to create a response bias
in participants, and used as a direction manipulation of bias.
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Although the study of Dutilh et al. (2018) was collected
as a single experiment, it was split into 14 “pseudo-
experiments” that each had two conditions, which either
differed in difficulty, instructions, bias, or any combination
of these three effects. For the purpose of my assessment,
I only use the five pseudo-experiments that fit within
the framework of my previous simulations: a “none”
experiment, a “drift” experiment, a “threshold” experiment,
a “drift and threshold extreme” experiment, and a “drift
and threshold balanced” experiment. In each experiment,
I treat each participant as a replicate of that effect, and
performed the same assessments as in the simulation study.
In general, the size of the effect in response time for the drift

rate manipulation was quite small (mean over participants
= 0.248; SD= 0.198), whereas the size of the effect
for the threshold manipulation was quite large (mean over
participants = 0.964, SD = 0.423).

Results

Selection of correct model

To begin, I assessed how often each model selection method
selected the “correct” model, based upon the selective
influence assumption for each manipulation. The top-left
panel of Fig. 11 displays the correct selections for each
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Fig. 11 Plots of the proportion (left panels) and Brier scores (right
panels) of correct selections (top panels), drift rate selections (middle
panels), and threshold selections (bottom panels) for each model selec-
tion method (columns) for the five different cells of the design (rows).

Lighter shades of green indicate more selections, lighter shades of red
indicate less selections, and black indicates intermediate performance,
which can be seen in the color bar to the left-hand side
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model selection method in each of the five cells of the
pseudo-experimental design, and top-right panel displays
the average Brier scores.

Overall, the performance of the methods is much worse
here than within the simulated data, which could potentially
be attributed to the selective influence assumption being
incorrect (Voss et al., 2004; Rae et al., 2014), or the greater
difficulty in making inferences within empirical data, where
the model fit is unlikely to be the true generating process.
Although performance is near-optimal in the “balanced”
case and the no effect case, performance is worse in the
other three classes of effects. AIC, DIC, and WAIC all
perform poorly in identifying drift only and threshold only
effects and decently in the extreme case, whereas DICp,
BIC, BF-BS, and BF-TI perform poorly in the drift and
extreme cases, but perform well in the threshold case.
ROPEa appears to perform decently in all three of these
classes of effects, suggesting that it may be performing the
best of all of the methods.

In hindsight, the poor performance in the “extreme”
data set and near-optimal performance in the “balanced”
data set may be explained by the findings of Rae et al.
(2014). Specifically, Rae et al. found that when given speed
instructions, participants had both a lower threshold and a
lower drift rate, suggesting that instructions also influence
drift rate.5 Interestingly, in the “balanced” data these two
drift rate effects move in the same direction, but in the
“extreme” data they move in opposite directions. Therefore,
the poor performance in the extreme data set could be
directly attributed to a failure of the selective influence
assumption, where there are opposing drift rate effects that
balance one another.

Selection of specific effects

The reasons why each method performed poorly in certain
cells are made clearer in the middle and bottom panels of
Fig. 11, which display the proportion of drift and threshold
selections, respectively. In the “balanced” and no effect
cases, all models almost always select both effects and
neither effect respectively, which follows from their near-
optimal performance in these cells. Within the drift data,
where all methods performed poorly, AIC, DIC, WAIC,
and ROPEa all select a drift rate effect in most data sets,
whereas DICp, BIC, BF-BS, and BF-TI select a drift rate

5However, note that because of the scaling degeneracy in EAMs, this
lowering of both parameters may have actually reflected an increase in
the accumulation noise.

effect a little over half the time. However, AIC, DIC,
WAIC, and ROPEa all also regularly select a threshold
effect, whereas DICp, BIC, BF-BS, and BF-TI rarely do.
Therefore, although all methods perform poorly in these
data, the reasons are quite different: AIC, DIC, WAIC, and
ROPEa all select an overly flexible model too often, and
DICp, BIC, BF-BS, and BF-TI all select an overly simple
model too often, which is consistent with the findings of
the simulated study. The other poor performances follow
similar reasoning: AIC, DIC, WAIC, and ROPEa often
select both drift rate and threshold effects in the threshold
data set, and DICp, BIC, BF-BS, and BF-TI often select
only the threshold effect in the “extreme” data set.

Consistency betweenmetrics

Figure 12 displays the proportion of data sets where the
same model was selected by each of the different methods
for each cell of the design. Interestingly, despite the “poor”
performance of different methods in different cells of the
design, the performance appears to be quite consistent
between the methods overall. As expected from the analysis
in the previous sub-sections, the agreement is highest in the
“balanced” and no effect cells, with differences between
methods being minimal. Differences appear to be largest
within the single-effect data sets, and again appear to be
clustered into groups, where the “Bayes factor” methods
show high levels of agreement with one another, but differ
from the “predictive accuracy” methods, which also show
high levels of agreement with one another. However, two
major exceptions to this rule appear to exist. Firstly, as
with the simulated study, DICp is most consistent with
the Bayes factor methods, and not very consistent with
the standard DIC calculation. Secondly, in the threshold
data, AIC shows closer agreement with the Bayes factor
methods than the predictive accuracy methods. This could
be due to either (1) a failing of the simple parameter
counting approximation of AIC, or (2) the limited number of
replicates with these data (20). However, in an overall sense,
the simple approximation of AIC and BIC again show close
agreement with the more complex methods that they aim
to approximate, suggesting their adequacy in these types of
comparisons between models.

Discussion

The current study provided a systematic assessment of
how different model selection methods perform in prac-
tical situations for the analysis of response time data
using evidence accumulation models (EAMs). Specifically,
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Fig. 12 Plots the agreement in selected model between each of the eight model selection methods (rows and columns of each plot) for five
cells of the design. Lighter shades of green indicate greater agreement, lighter shades of red indicate greater disagreement, and black indicating
intermediate agreement, which can be seen in the color bar to the left-hand side

I used the Linear Ballistic Accumulator (LBA; Brown and
Heathcote, 2008), a simple and commonly applied model
of decision-making, and compared two different types of
theoretical accounts that are commonly of interest for
researchers who apply these models: drift rate and decision

threshold. My study compared 9 different model selection
methods, including two general classes of model selection
methods—predictive accuracy measures and Bayes factor
approximations—which varied in their theoretical under-
pinnings, sophistication in dealing with model flexibility,
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and computational tractability. Although previous literature
has shown theoretical differences between many of these
methods, my study aimed to assess whether these differ-
ences would influence the inferences made in practical
designs that EAMs are commonly applied to. I performed
these comparisons for a large-scale simulation study, as well
as the empirical data from Dutilh et al. (2018).

The findings of my study revealed two general patterns in
the relationship between the different methods. Firstly, there
were several large inconsistencies between the “predictive
accuracy” methods (AIC, DIC, WAIC) and the “Bayes fac-
tor” methods (BIC, BF-BS, BF-TI) in the models selected,
with the predictive accuracy methods generally being more
liberal, and the Bayes factor methods generally being more
conservative. Theoretically this result is not particularly sur-
prising, as predictive accuracy methods will favor the more
flexible model as the amount of data approaches infinite,
and Bayes factors with uniformed priors are considered
to be conservative. However, in practice these theoretical
differences are often ignored, with a convenient method
being applied as a general “model selection metric”, with
the class of model selection method chosen rarely justi-
fied. These findings suggest that the theoretical difference
is quite meaningful, and can often make a meaningful dif-
ference to the inferences about the data. In addition, one
potentially interesting sub-finding is that these inconsis-
tencies are only present when the effect of interest (e.g.,
drift rate) is non-existent or small, and that methods show
extremely high consistency when the effect is moderate or
large. Therefore, although there are inconsistencies between
the classes of methods when any potential effects are small,
when all potential effects are large then all methods provide
equivalent results.

Secondly, there appeared to be few differences between
the simple “parameter counting” methods of model
selection, and the more complex variants that accounted for
functional form flexibility. Specifically, within each class
of methods discussed above, the simple approximations
showed high levels of consistency with the more complex
methods. AIC showed a high level of agreement with both
DIC and WAIC, and BIC showed a high level of agreement
with both Bayes factor approximation methods. Although
it is known that the flexibility of the model is more than
simply the sum of its free parameters, with the way that
they are functionally combined also impacting upon the
flexibility of the model, my findings appear to suggest that
the parameter counting heuristic provides a fairly accurate
approximation of flexibility when applying the LBA. These
two general findings both appeared to be robust across both
simulated and empirical data, suggesting that these findings
should extrapolate to similar experimental context that the
LBA might be applied to.

The findings of my study also revealed some more
specific patterns in the relationship between the methods.
Firstly, DIC and WAIC came to the same conclusions in
almost every circumstance, suggesting that these methods
are, for practical purposes, almost identical. Although
WAIC has been motivated for its theoretical benefits over
DIC, these do not appear to be practically applicable in
the situations assessed here, suggesting WAIC provides
little additional benefit over DIC when applying the LBA.
Secondly, the addition of the prior probability to the
DIC calculation (e.g., basing the deviance on p(y|θ)p(θ)

instead of p(y|θ)) greatly changed its inferences, with
DICp showing a closer relationship to the Bayes factor
than to the standard DIC calculation. This suggests that
when a researcher wants a measure of predictive accuracy,
they should use the standard DIC calculation; however,
if they are looking for a simple Bayesian method that
provides a similar result to the Bayes factor, then DICp

may be an interesting alternative. Thirdly, the augmentation
of the estimation method ROPE appeared to perform quite
well, and showed similar performance in many instances
to the Bayes factor. Therefore, when the “zero region”
for ROPE is chosen in a principled manner, the method
appears to provide a promising method of practically
comparing models. Fourthly, although bridge sampling
and thermodynamic integration both provide an unbiased
approximation of the marginal likelihood that has been
shown to be accurate for simpler models where the
marginal likelihood is solvable, there were some minor
inconsistencies in their selections. This could potentially
be due to either one or both methods having too greater
approximation error in the limited number of samples
that were used, or the fact that the TIDE method is a
further approximation of the TI method (Evans & Annis,
2019) which may have given it greater approximation error.
Future research should investigate the practical differences
between these approximation methods across different
models and numbers of samples. Lastly, the performance
of the methods differed greatly across differing numbers
of trials, with methods being poorer (overly conservative)
when the number of trials were small. Interestingly, the
performance of the Bayes factor methods remained similar
to one another across all numbers of trials, whereas AIC and
DIC deviated from one another by increasing amounts with
increasing numbers of trials, where DIC provided a greater
number of false alarms than AIC.

Whichmodel selectionmethods should researchers
use?

In general, the most commonly used model selection
methods can differ from one another in two key ways:
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their level of sophistication in dealing with flexibility, and
their theoretical underpinning. However, choosing a specific
method can be a difficult process due to the vast number of
model selection methods available. Here, I attempt to make
some useful recommendations for researchers who wish to
apply the LBA—or other EAMs—to empirical data.

Firstly, the results of this study appear to indicate that the
level of sophistication in dealing with flexibility has little
consequence on the inferences, and therefore, researchers
should feel comfortable choosing a simple method that they
can efficiently and robustly implement, such as AIC or BIC.
Although several papers have shown more sophisticated
methods of model selection to be theoretically better
than simpler methods, there appear to be few practical
differences between them when applying the LBA. This
logic also extends to DIC and WAIC, where there appear
to be even fewer practical differences, meaning that if
the goal of researchers is predictive accuracy, they would
likely be best served applying whichever method comes
default within their estimation package of choice. However,
these consistencies do have two key exceptions: one for the
predictive accuracy methods, and one for the Bayes factor
methods. For predictive accuracy methods, the parameter
counting AIC and the more sophisticated DIC begin to differ
when the number of trials increases, with DIC appearing to
more closely reflect what would be expected by leave-on-
out cross validation than AIC. However, from an “inversion”
standpoint, this actually results in DIC providing a worse
performance than AIC. For Bayes factor methods, BIC
only provides a close approximation to the Bayes factor
with uninformative priors on the parameters, and when
informative priors are implemented on the parameter value
difference between conditions, the Bayes factor becomes
much less conservative, and improves from an “inversion”
standpoint. Therefore, in cases where researchers wish to
use informed priors, more sophisticated methods of margi-
nal likelihood approximation should be used over BIC.

Secondly, the results of this study appear to indicate
that the class of model selection method used—predictive
accuracy or Bayes factor—can have major consequences for
the inferences made. Therefore, researchers should carefully
consider and justify the class of model selection method that
they choose to implement (i.e., not just blindly applying a
random class of method). Although both classes of methods
show near-perfect agreement when a moderate or large
effect is present, with both always selecting in favor of
the effect, the classes diverge in the cases of small or
null effects. However, the choice between the classes of
methods may be difficult for many users of the LBA,
as they may not have a theoretical preference for either

“predictive accuracy” or “the best account of these data”,
and the Bayes factor can also be thought of in terms of a
different type of “predictive accuracy” (Rouder & Morey,
2018), meaning that the choice may seem arbitrary. In these
situations, I would recommend choosing a class of method
based on the treatment of model flexibility, or the practical
impacts observed in this study. In terms of choices based
on the treatment of model flexibility, predictive accuracy
methods can be viewed as treating flexibility as the ability
of models to overfit to the noise in a sample of data, as
they only penalize models based on the observed flexibility
that results in this overfitting. In contrast, Bayes factor
methods can be viewed as treating flexibility as the ability
of models to predict many different patterns of data, as they
penalize models for having a highly spread prior probability.
Therefore, researchers who believe that models should
only be penalized based on overfitting to noise in data
should use predictive accuracy methods, and researchers
who believe that models should also be penalized for having
a large range of a-priori predictions should use Bayes
factor methods. In terms of choices based on the practical
impacts, this study showed that predictive accuracy methods
are generally more liberal, detecting most effects that are
present while also providing some false alarms, whereas
Bayes factor methods are generally more conservative,
rarely providing false alarms while also missing many small
effects. Therefore, researchers who are more worried about
missing effects should use predictive accuracy methods,
and researchers who are more worried about incorrectly
detecting effects should use Bayes factor methods.

Lastly, the results of this study appear to indicate that
considering the probability assigned to each model results
in better performance (by inversion standards). Therefore,
it is important that researchers consider both which model
is chosen as the best model by the model selection method,
as well as the strength of evidence in favor of the winning
model over the other models. Previous applications of
the LBA have largely focused on only which model was
selected as the best model, and have mostly ignored
the strength of evidence in the selection. However, this
study found that performance was improved for all model
selection methods when accounting for the probability
assigned to each model, suggesting that the methods are
more likely to show high confidence in selecting correct
models than incorrect models. The strength of evidence in
favor of each model can be easily obtained for all of the
methods used within this manuscript (excluding the χ2 test
of relative deviance) by expressing the selection metric as
relative probability weights for each model (e.g., Hawkins,
Forstmann, Wagenmakers, Ratcliff, & Brown, 2015).
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How should informed priors be selected for Bayes
factors?

As discussed above, BIC provides similar performance
to Bayes factors with uninformed priors when testing
psychological theories within the LBA framework, making
advanced marginal likelihood estimation methods of limited
value in these situations. However, Bayes factors become
less conservative when more informed priors are used,
meaning that researchers may wish to apply Bayes factors
with informed priors on the effect parameters. The choice
of priors is largely subjective, and can be highly influential
in the resulting model chosen, meaning that informed priors
must be chosen with care. Although recommending exact
informed priors for researchers to use is beyond the scope
of this study, in this section I attempt to provide a brief,
general discussion of some of the different ways for how
informed priors might be developed. Specifically, I discuss
three broad potential approaches for conceptualizing and
developing informed priors: priors as a belief, priors as
previous information, and priors as an optimal inference
tool. Readers who are interested in developing or using
informed priors should also see Lee and Vanpaemel (2018),
who provide a much more comprehensive discussion of
informed priors for cognitive models.

Priors as a belief

Within the Bayesian framework, priors are often posed as
the subjective belief that a person has about probability of
each possible outcome before having observed the current
data (Jeffreys & Wrinch, 1921). Under this interpretation
the posterior is the subjective belief for each possible
outcome after having observed the current data, with the
Bayes factor being the change in belief from the prior to
the posterior based on the current data. Subjective beliefs
provide a convenient method for creating informed priors, as
the prior is simply whatever the researcher believes a-priori.
For example, in the case of the LBA, a researcher might
believe that the difference in drift rate between experimental
conditions based on a randomly chosen manipulation is
most likely to be 0, that positive and negative effects are
equally likely, and that smaller effects are more likely than
larger effects, with differences above 3 in magnitude being
highly unlikely, but still possible. Based on this verbal
description of the researcher’s belief, a normal distribution
(i.e., smaller effects are more likely than larger effects) with
a mean of 0 (i.e., most likely value of 0) and standard
deviation of 1 (i.e., values with magnitude above 3 occur
in approximately 0.25% of cases) might provide a practical

formalized representation of their belief that can be used as
the prior distribution.

However, some researchers view the subjective nature of
belief-based priors as being problematic, as researchers with
different a priori subjective beliefs may make inconsistent
inferences about the data (see Vanpaemel, 2010; Lee
& Vanpaemel, 2018 for discussions). Using the above
example, a different researcher may believe that differences
above 0.3 in magnitude are highly unlikely, resulting in their
use of a much tighter prior with a standard deviation of 0.1.
As shown within this study, this exact difference in prior
will often result in different inferences being made, meaning
that the researchers could make different conclusions about
whether a drift rate effect is present or not within the same
data set. One option to try and make “priors as a belief”
more objective is expert elicitation (Kadane & Wolfson,
1998; Gronau, Ly, & Wagenmakers, 2017). Specifically,
expert elicitation involves attempting to define a prior based
on the overall belief of experts within the field, where
information about what the distribution should look like is
elicited from these experts through a series of questions.
Importantly, expert elicitation provides a prior that is a
subjective belief, but also allows the prior to be “objective”
in the sense of being consistent across researchers. Indeed,
expert elicitation has been used in simpler statistical models
to obtain informed priors for Bayes factors (Gronau et al.,
2017), and provides a promising, and potentially easy to
obtain, method of forming agreed-upon informed priors for
cognitive models.

Priors as previous information

One of the key benefits of the Bayesian framework is
the ability to easily provide cumulative knowledge. As
in the famous adage “today’s posterior is tomorrow’s
prior” (Lindley, 1972; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010), the posterior distributions from one
study can be used as the prior distributions for subsequent
studies, such as extensions or replications. This process
can allow information from previous studies to be directly
integrated into future studies, allowing precise estimates
for parameter values to be developed over numerous
experiments. However, these ideals can also be applied more
generally to develop informed priors for the parameters
of models (see Lee & Vanpaemel, 2018 for a detailed
discussion), rather than precise posterior distributions for
only a single experimental paradigm. For example, in
the case of the LBA, a researcher could obtain the data
from a large number of empirical studies and estimate the
difference in drift rates between all of the experimental

Psychon Bull Rev (2019) 26:1070–10981094



manipulations in all of the studies. These estimates could
then be used to develop an informed prior that is reflective
of what drift rate differences have been observed in previous
studies. Importantly, this approach allows the removal of
some of the subjective nature of priors, with the informed
priors being formed based on empirical observations and
developed according to clear, objective principles.

Although developing informed priors from previous
experimental data provides a promising and objective
method of developing informed priors, the approach also
contains some potential limitations. Firstly, the approach
of using previous posterior distributions for future priors
makes the strong assumption that the same parameter is
being estimated in both situations. However, this is not
as simple as using the same model and parameterization:
changes in experimental context may result in fundamental
changes to the underlying parameter value, meaning that
the previous posterior would no longer be an appropriate
prior for the new context. Therefore, care has to be
taken to ensure that informed priors developed through
this method are not extrapolated beyond the contexts that
informed them. Secondly, recent research has suggested
that empirically based priors are of limited meaning and
value in unidentifiable models (Spektor & Kellen, 2018).
Importantly, EAMs such as the LBA are known to be
“sloppy” models, which have degeneracy in the parameter
values due to high correlations between the parameters
(Holmes, 2015), meaning that empirical based priors may
not be the best option for the LBA.

Priors as an optimal inference tool

Another potential way that priors could be thought about
are as tools for inference. Rather than a prior being a
belief, or the results from previous data, the Bayesian
framework could potentially incorporate priors that attempt
to optimize the detection of effects, as the findings of this
study suggested that the detection properties differ greatly
based on the priors. Although priors are commonly based
on “belief” or “information” (though see Rouder et al.,
2012 for a discussion of how default priors can be useful),
my reason for suggesting priors as tools for inference has
a similar underpinning to that of optimal experimental
designs (e.g., Myung & Pitt, 2009). Specifically, optimal
experimental designs attempt to maximize the amount of
information obtained in an experiment – or minimize the
time the participants have to spend on an experiment—
by incorporating the information already obtained and
using it to provide participants with trials that maximize
information gain. Recent research has also developed
optimal design analysis in the Bayesian framework for
simple statistical models (Schönbrodt & Wagenmakers,
2018; Stefan, Gronau, Schönbrodt, & Wagenmakers, 2018),

which assesses how likely an experimental design is
to provide strong evidence for a hypothesis, allowing
researchers to choose their sample size, or in the case
of Bayesian optional stopping the evidence boundaries, to
maximize information gain. Perhaps a similar logic could
be applied with priors, allowing researchers to see how
different choices of priors would effect their detection
of effects within their proposed experimental design, and
allowing them to choose a prior—before analyzing the
data—that provides optimal properties. Future research may
benefit from a detailed exploration of how priors can
be selected in a manner that can optimize the statistical
properties of the Bayes factor.

What about hierarchical models?

Hierarchical models have become a popular method over the
last decade of estimating the parameters of cognitive models
(Shiffrin, Lee, Kim, & Wagenmakers, 2008; see Evans &
Brown, 2017 and Evans, Brown, Mewhort, & Heathcote,
2018 for applications). Although a “hierarchical model” can
technically refer to any model with some parameters that
are structured hierarchically, hierarchical cognitive models
most commonly involve Bayesian parameter estimation on
groups of participants, where the parameters of the model
are estimated for each participant, and the parameters of
these participants are constrained to follow some group level
distribution. For example, in a hierarchical LBA, the correct
drift rate of a null model is commonly defined as:

vc,s ∼ T N(μvc , σvc , 0, Inf )

where s indexes participants. In contrast, a model with
an difference in correct drift rate between conditions is
commonly defined as:

vc,i,s ∼ T N(μvc,i
, σvc,i

, 0, Inf )

i indexes the condition.
Despite the increasing popularity of hierarchical models,

I decided to exclude them from my assessment for two
main reasons. Firstly, the inclusion of multiple participants
per data set in the simulation study would have increased
the computational burden drastically (i.e., by a factor of
the number of participants included), meaning that the
assessment likely would have had to be less comprehensive
to fit into a reasonable computational time frame. Therefore,
I chose to perform a more comprehensive and robust
assessment on non-hierarchical models, rather than a lesser
version involving hierarchical models.

Secondly, and most importantly, there are many poten-
tial theoretical difficulties when performing comparisons
between nested hierarchical models (i.e., using them as
“measurement tools”), which are still largely unresolved
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within the literature. Previous research has already high-
lighted the issues with “two-stage” approaches, where
model parameters are estimated with hierarchical cognitive
models and then placed into a subsequent statistical test
(e.g., a t-test), as this will lead to biases in favor of an effect
(Boehm, Marsman, Matzke, & Wagenmakers, 2018). How-
ever, the potential issues are not limited to estimation-based
approaches to hierarchical model comparisons. Specifically,
there are three key statistically relevant ways that the hier-
archical models can potentially differ from one another:
whether or not they allow (1) each participant to have a
drift rate value that differs from other participants (i.e.,
a “random intercept”; see Singmann & Kellen, 2018 for
explanations of different types of “random effects”), (2)
each participant to have a difference between their drift rate
values that differs from other participants (i.e., a “random
slope”), and (3) the average drift rate value to differ from
some fixed value (i.e., 0; the “fixed effect” of interest).
In the hierarchical model definitions above, the common
“null” hierarchical model only allowed random intercepts,
constraining all participant slopes to take on the same, fixed
value of 0. In contrast, the common “drift” hierarchical
model allows all three of these freedoms.

Although this second reason for not assessing hierar-
chical models may seem like a niche statistical point, not
properly considering this issue can have meaningful theo-
retical consequences on the inferences made. In the example
above, the null model makes the very strong assumption
that there are no individual differences between participants
in their difference in drift rate between conditions, due to
not having random slopes: essentially, the model allows no
random variability in the effect. Therefore, even if the true
drift rate effect is centered on 0 (i.e., no effect), having
some amount of between-person variability in the exact drift
rate difference between conditions will result in the “drift”
model being the superior model. However, it is not clear
whether this strong assumption is a reasonable one to make,
and researchers may differ on their opinions of whether or
not the null model should include random slopes. In addi-
tion, if random slopes are deemed to be necessary for null
models, then assessments still need to be made on the best
way to define this new hierarchical null model. The “ran-
dom slopes” issue is also not restricted to comparisons made
using Bayesian hierarchical model selection; the same logic
and strong constraints (i.e., no random variability) applies
to group-based comparisons made using non-hierarchical
models, such as summing the AIC or BIC values over
participants (e.g., Rae et al., 2014). Therefore, although I
believe the assessment of whether the findings of this article
generalize to hierarchical models is important, I also believe
that this is best left for future research when the ran-
dom slopes issue in hierarchical cognitive models has been
resolved.

Limitations and future research

Although I believe the current study has many useful
findings, as highlighted above, there are also several
limitations that should be acknowledged. First and foremost,
my study only focused on how these methods relate
to one another for applications of the LBA. Although
it seems plausible that these findings would transfer to
similar EAMs, such as the diffusion model, this is not
necessarily the case, and future research should explore
whether the general patterns of results hold for other
models. Secondly, in order to minimize the potential sources
of variability in evaluating the consistency of the methods
in my simulated study, I used a fairly restricted range
of parameter values in generating the data, with these
values being based on my past experiences of fitting
the LBA to empirical data. Although this limitation was
somewhat resolved by also assessing empirical data, future
assessments on simulated data could potentially focus on
specific cells of my design that I found to cause the greatest
inconsistencies between methods, and explore a greater
portion of the parameter space within them. Lastly, it should
be noted that my assessment only covered within-model
comparisons, using the LBA as a nested measurement
tool. In the context of these within-model comparisons,
the functional form differences between the theoretical
accounts is limited, which might explain why accounting
for functional form flexibility did not provide much of a
difference to simple parameter counting. However, when
comparing between different classes of models to compare
how well they explain the decision-making process, the
functional form may differ a great deal between the
models, and accounting for functional form flexibility might
become more important. Therefore, the results of this study
should probably be restricted to applications of EAMs as
measurement tools.
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