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Abstract

We simulated the invasion of a proliferating, diffusing tumor within different surrounding tissue conditions using a hybrid
mathematical model. The in silico invasion of a tumor was addressed systematically for the first time within the framework
of a generalized diffusion theory. Our results reveal that a tumor not only migrates using typical Fickian diffusion, but also
migrates more generally using subdiffusion, superdiffusion, and even ballistic diffusion, with increasing mobility of the
tumor cell when haptotaxis and chemotaxis toward the host tissue surrounding the proliferative tumor are involved. Five
functional terms were included in the hybrid model and their effects on a tumor’s invasion were investigated quantitatively:
haptotaxis toward the extracellular matrix tissue that is degraded by matrix metalloproteinases; chemotaxis toward
nutrients; cell-cell adhesion; the proliferation of the tumor; and the immune response toward the tumor. Haptotaxis and
chemotaxis, which are initiated by extracellular matrix and nutrient supply (i.e., glucose) respectively, as well as cell-cell
adhesions all drastically affect a tumor’s diffusion mode when a tumor invades its surrounding host tissue and proliferates.
We verified the in silico invasive behavior of a tumor by analyzing experimental data gathered from the in vitro culturing of
different tumor cells and clinical imaging observations that used the same approach as was used to process the simulation
data. The different migration modes of a tumor suggested by the simulations generally conform to the results observed in
cell cultures and in clinical imaging. Our study not only discloses some migration modes of a tumor that proliferates and
invades under different host tissues conditions, but also provides a heuristic method to characterize the invasion of a tumor
in clinical medical imaging analysis.
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Introduction

Tumor invasion is one of the crucial characteristic stages in the

evolution of a tumor and is the main clinical sign of a malignant

tumor. More than 80% of clinical tumor patients die from tumor

invasion and metastasis. Some tumors, such as gliomas, are able to

invade at an early stage [1]. Tumor migration has been ascribed to

multiple factors, such as the inherent nature of tumor cells

themselves and their surrounding host tissue [2–4].

The host tissue is usually referred to as the tumor’s microen-

vironment and includes elements such as the extracellular matrix

(ECM), the matrix metalloproteinases (MMPs), the nutrient supply

surrounding the tumor, and the cell-cell adhesion. The ECM is a

complex mixture of macromolecules, such as collagens, laminin,

fibronectin, and vitronectin. It may also contain growth factors

and may be degraded to release special fragments that promote

tumor growth. By definition, haptotaxis is the directed migratory

response of cells to gradients of fixed or bound chemicals, i.e. a

response to gradients of bound MM such as fibronectin. Some

efforts have been done to characterize such directed movement

[5–7]. The physical removal of the ECM can allow a tumor to

spread, and its degradation may produce a positive biological

effect on tumor invasion [8]. The implications of the MMPs in

tumor invasion are described in the references by Matrisian [9],

Mignatti and Rifkin [10], and Thorgeirsson et al. [11]. The MMPs

can open migratory pathways and alter cell adhesion properties by

regulating several classes of cell-surface receptors, such as

cadherins, CD-44, integrins, and receptors for fibronectin,

laminin, and vitronectin. These receptors negatively regulate cell

motility and growth through cell-cell and cell-matrix interactions

[12–14]. The proteolytic degradation of the receptors and the

ECM components can release tumor cells from these constraints.

Aside from practical considerations, it is of academic significance

to investigate the invasion of tumors by taking into account both

cell-cell and cell-matrix interactions. These studies lay the

mathematical foundation for studying the proliferative growth

and diffusion of a tumor, which will be addressed specifically

below.

Ordinary differential equations (ODEs) have been successfully

used to formulate the proliferative growth process of a tumor, such
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as Gompertzian growth, logistic growth, and exponential growth

(see Araujo et al. [15] for a review). Deterministic reaction-

diffusion equations have been used to model the spatial spread of a

tumor, both at an early stage in its growth [16,17] and at a later

invasive stage [2,4,18–22]. Sander et al. [23], Anderson et al. [18],

and Kim et al. [19] used similar mathematical models to

reproduce the numerical patterns of tumor invasion. Their models

consisted of some partial differential equations (PDEs) that dealt

with the tumor cell density, nutrient concentration, and homotypic

factor concentration. Their studies made clear that a very strong

homotypic attraction and strong chemotaxis are indispensable for

the formation of a branching pattern. Verbeni et al. [24] found

that some morphogens, e.g. Hedgehog (Hh) molecules, may not

freely diffuse; Wu et al. [25] found that cell migration through 3D

ECM does not follow a random walk. They did not, however,

address the anomalous diffusion that can occur in a tumor

invasion process.

Diffusion is one of the most ubiquitous transport mechanisms in

nature. Quantifying diffusion processes remains a critical issue of

practical and academic importance in science and engineering

fields. The description of diffusion at a macroscopic level is based

on Fick’s hypothesis [26,27], which assumes proportionality

between the flux and the concentration gradient of a diffusing

physical quantity. A direct consequence of Fick’s approach is that

one-dimensional diffusion along a concentration gradient is

expected to scale as t0.5 in homogeneous and isotropic systems.

Fickian diffusion has been accepted as universal for more than a

hundred years and has been used to account for a variety of

phenomena, including heat conduction, moisture transport in

porous materials and ionic and membrane transport [28–30]. In

recent decades, however, diffusion deviating from the expected t0.5

scaling law has been increasingly reported in physics [31,32] and

in chemistry and biology studies [33–36], in addition to being been

grouped under the general concept of anomalous diffusion [37].

We explored the diffusion features of a tumor that proliferates

and invades inside the surrounding tissue with three interactive

sub-processes: the tumor cells adhere to the ECM components, the

tumor cells secrete MMPs and degrade the ECM and the tumor

cells invade the surrounding tissue. Our simulation shows that the

diffusion behavior of an invasive tumor, depending on the

surrounding matrix, may vary considerably from a typical Fickian

diffusion to anomalous diffusion (subdiffusion, superdiffusion, and

ballistic diffusion). More specifically, the migration of a tumor

inside a complex surrounding matrix is generally characteristic of

an anomalous diffusion. Both in vitro cell cultures and clinical

medical imaging data from tumor invasions support the simula-

tions. The effects of haptotaxis toward the ECM, chemotaxis

toward the nutrient supply, cell-cell adhesion, tumor proliferation,

and immune regulation on tumor invasive diffusion are discussed

in detail.

The remainder of this paper is organized as follows. In Sec. II,

we describe the mathematical model and the criteria used to

classify diffusion types. In Sec. III, we present the important results

of the simulation, in vitro cell cultures, and clinical imaging. The

discussion and analysis are performed in Sec. IV. The concluding

remarks are included in Sec. IV. The paper also includes

supporting information in which some simulation results, original

clinical images, and in vitro cell culture data and the methods used

to quantitatively process the data are given.

Methods

Ethics Statement
This study did not involve any human experiments as well as

treatment processes. The clinical images of tumors were acquired

in ordinary medical examinations for patients in Sun Yat-sen

University Cancer Center (cancer hospital), these examinations

were carried out totally for therapy and no additional drugs or

measures were used. This study was approved by the ethics

committee of Sun Yat-sen University Cancer Center and every

effort was also made to maximize the protection of patients’

privacy (e.g. the data were analyzed anonymously). Both the

research materials and results are used for scientific purposes

without conflict of interests.

Mathematical model
The schematic interactions between a tumor and the surround-

ing host tissue are shown in Fig. 1. Tumor cells interact with the

ECM when a tumor begins to invade its host tissues. The tumor

cells adhere to the surface of the ECM through integrins. The

MMPs, which are ECM degradation enzymes secreted by the

tumor cells, begin to degrade the ECM. The tumor cells can then

complete their invasion of the ECM or surrounding tissue [38,39].

The population density of tumor cells (n) quantifies the number of

tumor cells per unit volume. The symbols m and f denote the

MMP and the ECM concentrations, respectively. Provided that

the outer cells shedding from a tumor are quite sparse, there is a

sufficient supply of oxygen to a tumor. However, the outer cells are

Figure 1. Schematic diagram of the host tissue surrounding a tumor in response to cell invasion. The tumor cells adhere to the surface
of the ECM through integrins. Then, the tumor cells can invade into the ECM or surrounding tissue through the MMPs, which are ECM degradation
enzymes secreted by the tumor cells [30,31].
doi:10.1371/journal.pone.0109784.g001
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greatly dependent on the glucose concentration (G), which acts as

an energy source in combination with the oxygen supply (the

Warburg effect). The tumor cells tend to move up the glucose

concentration gradient, which is referred to as chemotaxis

[40–45].

The conservation equation for the tumor cell density n is:

Ln

Lt
z+:J~Pn, ð1� 1Þ

where J is the flux of the cells and Pn is a quantity relevant to both

the proliferation and death of the cells. The flux J consists of four

different parts:

J~JrandomzJhaptzJchemozJadh, ð1� 2Þ

where Jrandom, Jhapt, Jchemo, and Jadh are the fluxes contributed by

random motion, haptotaxis, chemotaxis, and cell-cell adhesion,

respectively. We assume that the ECM is a homogeneous medium

so that tumor cells move in random motion; the Jrandom is

expressed in the form

Jrandom~{Dn+n, ð1� 3Þ

where Dn is the diffusive coefficient of the tumor cells [46].

Haptotaxis is the directed migratory response of cells to gradients

of ECM, we assume that tumor cells are affected by the spatial

gradient of f, the haptotaxis flux is given by

Jhapt~c0f n+f , ð1� 4Þ

where c’f is the haptotaxis coefficient [46]. Tumor cells are

strongly attracted to glucose G (the Warburg effect), and tend to

move in the direction of the spatial gradient of G, hence, the

chemotaxis flux is given by

Jchemo~c0Gn+G, ð1� 5Þ

where c’G is the chemotaxis coefficient [19]. As discussed in cell-

based models [19,46–49] and observed in experiments, cells

adhere to each other when they are close enough, but push apart

when they are too compressed by neighboring cells. We expect

that cells experiencing cell-cell adhesion are less likely to be able to

move in regions of high cell density. We therefore assume that the

adhesive flux is proportional to the density of the cells and the

forces between them and inversely proportional to cell radius, R;

Jadh~ n:½gl0a
R

ðR

{R

ks
:n(xzx0):

x0

Dx0D
dx0�, ð1� 6Þ

where l’a is the adhesion coefficient, g is the viscosity parameter, ks

is a parameter that characterizes the adhesive force that the cells in

the R- microenvironment exert at a point x, x0 is the distance of

cells away from the position x; the more details are described in the

references by Armstrong et al. and Kim et al. [19,46].

The term Pn is related to the proliferation and death of cells and

is formulated by the logistic growth function and the immune

function [50,51]:

Pn~l0n(1{
n

K ’
){

b0n2

1zn2
, ð1� 7Þ

where l’ is the growth rate of the tumor cell, K’ is the carrying

capacity of the environment [52], and b’ is the immune coefficient

[34].

The ECM is a deformable network of fibers degraded by the

MMPs [53]. The degradation of the ECM is expressed by:

Lf

Lt
~{g0mf , ð2Þ

where g’ is the degradation coefficient of the ECM.

The MMPs are produced by the tumor cells. They diffuse with a

constant diffusivity Dm and decay at a linear rate, which is given

by:

Lm

Lt
~Dm+2mzk0n{s0m, ð3Þ

where Dm is the MMP diffusion coefficient, k’ is the MMP

production rate, and s’ is the MMP decay coefficient.

Following Kim et al. [19], we assume that the concentration of

glucose satisfies the reaction-diffusion equation:

LG

Lt
~DG+2G{l0Gn

G

Gzk0G
, ð4Þ

Table 1. Reference variables used in the tumor model.

Description Dimensional value Refs

L Length 1 cm [18,62]; this work

t Time 8 h–24 h(16 h) [18,62]; this work

nref Reference tumor cell density 6.76107 cells?cm23 [63]

fref Reference ECM concentration 1028R10211 M [64]

mref Reference MMPs concentration 130 ng?ml21 [65]

Gref Reference Nutrient concentration 6.061024 g?cm23 [66]

doi:10.1371/journal.pone.0109784.t001
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where DG is the diffusion coefficient, l’G is the rate of nutrient

consumption by the tumor cells and k’G is a consumption

parameter.

The PDEs (1-1), (2), (3), and (4) were solved numerically using

the commercial software COMSOL Multiphysics on a square

spatial domain V (a region of tissue) with appropriate initial and

boundary conditions for each variable. We assumed that the

tumor cells, ECM, and MMPs are confined within the domain of

tissue under consideration and selected no-flux boundary condi-

tions for the PDEs (1-1), (2), (3), and (4). We also assumed that the

glucose concentration on the migrating boundary of the tumor is

maintained invariably.

Non-dimensionalization and parameterization
We performed a non-dimensionalization of the PDEs by

rescaling the length with an appropriate scale L (e.g., the

maximum invasion distance of cancer cells, which is approxi-

mately 1 cm for a tumor at the early stage of invasion), the time

with t (the average time of cell mitosis), the tumor cell density with

nref, the ECM density with fref, the MMP concentration with mref,

and the glucose concentration with Gref. The symbols L, t, nref,
fref, mref, and Gref are appropriate reference variables selected for

reduction and they are specified in Table 1.

We reduced the quantities in the PDEs (1-1, 2, 3, and 4) with

the relevant reference variables:

~nn~
n

nref

, ~ff ~
f

fref

, ~mm~
m

mref

, ~GG~
G

Gref

, ~xx~
x

L
,~tt~

t

t
,

and dropped the tildes for notational convenience. We obtained

the scaled system of equations:

Ln

Lt
~dn+2n{cf +:(n+f ){cG+:(n+G)

{(la(n:nx)xz
1

12
la(n:nxxx)x)zln:(1{

n

K
){

bn2

1zn2
,

Lf

Lt
~{gmf ,

Lm

Lt
~dm+2mzkn{sm ,

LG

Lt
~dG+2G{lGn

G

GzkG

:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð5Þ

with the boundary conditions:

({dn)
Ln

Lx

D
x~0,1~0 ,

n
Lf

Lx x~0,1~0 ,

({dm)
Lm

Lx x~0,1~0 ,

GDx~0~G0, GDx~1~G1 :

8>>>>>>>><
>>>>>>>>:

ð6Þ

Although the glucose concentration G remains invariably on the

migrating boundary of the tumor, we set G1.G0, as more glucose

is consumed at the core of a tumor (x = 0) than at the migrating

boundary (x = 1).

For the sake of simplification, we assumed that an initial tumor

located at x = 0 spreads isotropically. The tumor’s spread can

therefore be reduced from two dimensions to one dimension,

ranging from x = 0 with an initial density of n(x,0) to x = 1. We

assumed that the tissue surrounding the tumor has been partially

degraded by the tumor, that the initial concentration profile of the

MMPs is proportional to the initial cell density and that the initial

glucose concentration satisfies a Gaussian distribution.

n(x,0)~ exp ({x2=e), x[½0,1� ,
f (x,0)~1{0:5 n(x,0), x[½0,1� ,
m(x,0)~0:5 n(x,0), x[½0,1� ,

G(x,0)~ exp ({(1{x)2�
eG

),x[½0,1� :

8>>>><
>>>>:

ð7Þ

where e and eG are the standard deviations of m and G, and e and

eG are two positive parameters.

The new dimensionless parameters are:

dn~
tDn

L2
, cf ~

tc0f
:fref

L2
, cG~

tc0G
:fref

L2
, la~

tgl0aks

L
,

l~l0, K~
K 0

nref

,b~
b0

nref

,g~tmref g0, dm~
tDm

L2
, k~

tk0nref

mref

,

s~ts0, dG~
tDG

L2
, lG~

tnref
:l0G

Gref

, kG~
k0G

Gref

:

ð8Þ

Table 2 lists the values used for the parameters in the

subsequent simulations. Unless otherwise specified, the simulation

space was discretized into 100 grids equally, and time steps were

self-adjusted with a relative tolerance of 0.001.

Diffusion type criterion
The diffusion type criterion was first proposed by Metzler et al.

[54]. Based on the description of diffusion theory, the root-mean

squared displacement (RMSD) of Brownian motion particles can

be used to represent the random motion of particles over time.

The RMSD usually relies on the evolution time (t), where RMSD

, tb and the power exponent b characterizes the nature of the

diffusion process. Fickian diffusion corresponds to b = 0.5. If 0,

b,0.5, the diffusion is identified as subdiffusion, implying a slower

diffusion process than Fickian diffusion. If 0.5,b,1.0, the

diffusion observed is superdiffusion and proceeds faster than

Fickian diffusion. If b$1.0, the diffusion is referred to as a ballistic

diffusion, which is a peculiar characteristic of rapid, long-range

motion.

Methodology
We adopted the finite difference method to quantify the

diffusion behavior of an isotropic tumor invasion in a one-

dimensional space. The number density of the tumor cell (n) varies

spatiotemporally with the evolution time (t) and spatial length (x).

Two types of data, the peak location and the half-width of the n
curve, were collected to quantify the diffusion process. The

dependence of either the peak location or the half-width of the n
curve on t was studied, depending on whether the shifting of the

peak location or the broadening of the half-width dominated.

Either the peak location or the half-width acts as a sort of diffusion

front similar to the spatial RMSD. The power exponent b was

calculated by fitting the relationship between the peak location of

n and t, using a power function and the least squares method.
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Both the in vitro cell cultures and clinical images were processed

using the leading commercial image analytical software Image Pro

Plus (IPP) for biology and medicine in order to extract outline of

tumors precisely. The algorithms and source codes for measuring

and calculating the mean radius of a tumor are presented in the

supporting information (Text S1).

Table 2. Parameters used in the tumor model.

Description Dimensional value Refs

Diffusion coefficient

Dn Tumor cell 1610211 cm2/s [19]

Dm MMP (861.5)61029 m2/s(861029) [67]

DG Nutrients(glucose) 1.361026 cm2/s [68]

Proliferation and immune parameters

l’ Tumor growth rate 1.0/t [50]

K’ The carrying capacity of the environment 10?n0 [50]

b’ Immune coefficient 2.2?n0/t [50]

Production, decay/consumption rates

’ Degradation of ECM 3.06108 cm3g21s21 [19]

k’ the production rate of MMP 6.9461028 s21 [19]

s’ Natural decay of MMP 5.061026 s21 [19]

l’G Consumption rate of the nutrients by cells 2.5661028/n0 s21 [19,23,69]

k’G Nutrient consumption parameter 2.061023 cm3/g [19,23,69]

Haptotaxis, chemotaxis, and adhesion force parameter

c’f Haptotaxis coefficient 2600 cm2 s21 M21 [63]

c’G Chemotactic sensitivity coefficient 2.7661024 cm5g21s21 [19]

l’a Strength of adhesion force between cells (161025R161023)dyne(861023) [19]

e positive parameter 0.00025 [70]; this work

eG positive parameter 1.125 [70]; this work

G0 The reduced Nutrient concentration on the core of tumor Exp,-(1-x)2/eG. [66,71]; this work

G1 The reduced Nutrient concentration far from the tumor 1 [66,71]; this work

doi:10.1371/journal.pone.0109784.t002

Table 3. The main parameters used in each simulation and the resulting calculated power exponent b values.

The main parameters b Standard Error Adj. R-Square Remarks

P1: cf = cG = la = l = b = 0 0.49618 0.00134 0.99960 Simple diffusion

P2: cf = 0.01, cG = la = l = b = 0 0.68564 0.00518 0.99860 Only haptotaxis

P3: cf = 0, cG = 0.00828, la = l = b = 0 0.52208 0.00334 0.99970 Only chemotaxis

P4: cf = cG = 0, la = 0.003, l = b = 0 0.40973 0.01406 0.98772 Only adhesion

P5: cf = 0, cG = 0.00828, la = 0.003, l = b = 0 0.46888 0.01722 0.98983 Chemotaxis + adhesion

P6: cf = 0.01, cG = 0, la = 0.003, l = b = 0 0.64126 0.00899 0.99869 Haptotaxis + adhesion

P7: cf = 0.01, cG = 0.00828, la = l = b = 0 0.72993 0.00581 0.99918 Haptotaxis + chemotaxis

P8: cf = 0.01, cG = 0.00828, la = 0.003, l = b = 0 0.66582 0.01038 0.99839 Haptotaxis + chemotaxis + adhesion

P9: cf = 0.01, cG = 0.00828, la = 0, l = 1.0, b = 2.2 0.87903 0.04864 0.98902 All of the effects except adhesion

P10: cf = 0.01, cG = 0.00828, la = 0.003, l = 1.0, b = 2.2 0.85377 0.05778 0.98327 All of the effects

P11: cf = 0.01, cG = 0.00828, la = 0.003, l = 0.5, b = 2.2 0.70455 0.026804 0.99443 All of the effects(a weaker proliferation rate)

P12: cf = 0.01, cG = 0.00828, la = 0.003, l = 1.0, b = 4.4 0.77814 0.041857 0.98915 All of the effects(a stronger immunization)

P13: cf = 0.08, cG = 0.06, la = 0, l = 2.8, b = 1.1 1.36420 0.08157 0.99392 All of the effects except adhesion (very
malignant)

P14: cf = 0.08, cG = 0.06, la = 0.00003, l = 2.8, b = 1.1 1.35020 0.08457 0.99373 All of the effects (very malignant, weak
adhesion)

doi:10.1371/journal.pone.0109784.t003
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Figure 2. Tumor invasion is unaffected by the microenvironment. (a–d) The time evolution of the n, MMP, ECM, and glucose in a one-
dimensional spatial length x at time (a) t = 0, (b) t = 1, (c) t = 10, and (d) t = 20. (e) The cell density n(x,t) when t ranges from 0 to 20. The inset shows t
ranging from 0 to 0.08. (f) The curve fitting the half-width of cell density versus evolution time data, xh-t, b = 0.4961860.00134. Simulation parameters:
cf = cG = l = b = la = 0. The rests of the parameters were fixed. The ECM is degraded by the MMP; the simulated exponent b in this situation is almost
0.5, the typical Fickian diffusion.
doi:10.1371/journal.pone.0109784.g002
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Results

Simulation results
To investigate the effects of the microenvironment around a

tumor on the tumor’s invasion, the terms representing ECM

haptotaxis, glucose chemotaxis, tumor proliferation, immuniza-

tion, and cell-cell adhesion were included singly and in combina-

tion in the set of PDEs (eq. 5). The general power exponents b
calculated under each simulation condition (parameter) are

summarized in Table 3 in advance for the convenience of

subsequent comparison and discussion. The simulation results

listed in Table 3 for different parameters will be detailed further in

the subsections.

Tumor invasive diffusion without the effects of ECM

haptotaxis, glucose chemotaxis, tumor proliferation,

immunization, and cell-cell adhesion. P1 in Table 3 repre-

sents tumor invasion unaffected by the microenvironment

(surrounding host tissue). The resulting spatial variations in the

n, MMP, ECM, and glucose at the times t = 0, 1, 10, and 20 are

plotted in Figs. 2(a)–(d), respectively. According to Fig. 2(e), a

broadening of the half-width of the n curve, not a shifting of the

peak locations of the n curve, is observed after different evolution

periods. Therefore the half-width, instead of the peak locations of

the n curve, was used to quantify the tumor’s diffusion. The half-

width increases with the evolution time, as indicated in Fig. 2(f).

The power exponent b was calculated by fitting a curve to the half-

width versus time data, using a power function , tb and the least

squares method. The power exponent b = 0.4961860.00134 was

obtained, which is very close to the Fickian diffusion index b = 0.5.

The tumor invasion in this situation is therefore characteristic of

normal diffusion satisfying the Einstein relationship.

The trend of the ECM curve obviously reflects MMP

degradation, because the ECM concentration declines as the

MMP concentration increases at the same location, but at a later

time. The macromolecules within the ECM are readily degraded

by different proteolytic enzymes, which are the MMPs [55].

Therefore the ECM can be hydrolyzed distinctly when the MMPs

permeate it.

Tumor invasive diffusion with haptotaxis and

heterogeneity of the ECM. Haptotaxis and the heterogeneity

of the ECM play an important role in the diffusion process of a

tumor invasion. Figs. 3(a–d) show the variations in the n, MMP,

and ECM at different times under the condition P2 in Table 3.

Figure 3. Tumor invasive diffusion with haptotaxis of the ECM. (a–c) The time evolution of the n, MMP, ECM, and glucose in a one-
dimensional spatial length x at (a) t = 0, (b) t = 0.1, and (c) t = 1. (d) A power function curve is fitted to the time and peak position of n, xm-t,
b = 0.6856460.00518. Simulation parameters: The haptotaxis coefficient cf = 0.01 and cG = l = b = la = 0. The rests of the parameters were fixed. The
peak location of the n curve shifts considerably with the evolution time when haptotaxis of the ECM is included and the exponent b is larger than 0.5,
signifying occurrence of superdiffusion.
doi:10.1371/journal.pone.0109784.g003
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The tumor invasion here is obviously different from the situation

with no ECM. The peak location of the n curve shifts considerably

with the evolution time when haptotaxis and the heterogeneous

distribution of the ECM are included. The shifting of the peak

location reflects the proliferative invasion of a tumor into the

surrounding tissue, as the peak of n, which behaves as a sort of

diffusion front, migrates into the interior of the ECM. The ECM

concentration varies drastically near its border with the tumor

when haptotaxis is included, indicating that coupling between the

ECM and the tumor cell can expedite ECM degradation by the

MMPs. Accompanying this degradation, the tumor cells invade

using a combination of diffusion and haptotaxis. The peak of the

tumor cell density n at t = 0.1 and 1 indicates that a cluster of

tumor cells forms on the diffusion front of a spreading tumor due

to haptotaxis migration, which is consistent with Anderson et al.

[18,19,39]. This phenomenon can also be verified by in vitro cell

cultures and clinical observations, which will be described later in

this article.

A further simulation demonstrates that the power exponent b
increases with the haptotaxis coefficient cf (Fig. 4), which agrees

with Kim et al. [19]. The exponent b is larger than 0.5 in the

presence of the ECM surrounding a tumor. The diffusive invasion

of a tumor that experiences haptotaxis toward its host ECM is

therefore superdiffusion, implying a more rapid diffusion.

According to the previous studies [56,57], the homogeneity of

the ECM can affect cell migration. We investigated the effect of

the heterogeneity of the ECM on a tumor’s invasive diffusion using

a simple heterogeneous distribution of the ECM, changing the

initial conditions of the ECM distribution as follows:

f (x)~
1{0:5: exp ({x2�

e), x[½0,x0�,

1{A:Dsin (p(x{x0))D{0:5: exp ({x0
2�

e), x[½x0,1�:

8<
: ð9Þ

where x0 = 0.05, because the ECM is of a uniform distribution

when x.0.05 (Fig. 3(a)) and A is a dimensionless parameter.

Increasing A’s value gives a more heterogeneous ECM distribu-

tion. The initial distribution is adjustable, to obtain a non-uniform

distribution of the ECM when x.0.05.

Figs. 5(a) and (b) show the influence of the heterogeneous

distribution of the ECM on a tumor invasion. In Fig. 5(c), the peak

position x of the cell density n and time t data are fitted by x,tb.
According to Fig. 5(c), the exponent b decreases with the

heterogeneity of the ECM, but still remains larger than 0.5. This

result indicates that either a heterogeneous ECM distribution or a

lower ECM concentration weakens haptotaxis toward the ECM,

but that diffusion is still faster than when haptotaxis is excluded.

Judging by the value of the exponent b, the tumor invasion in this

case is also superdiffusive.

The effect of glucose chemotaxis on the diffusion process

of tumor invasion. The same method was used to evaluate the

effect of glucose chemotaxis on the diffusion process of a tumor

invasion. The ECM haptotaxis coefficient, adhesion coefficient,

tumor growth rate and immune coefficient were kept constant.

Table 3 lists the parameters (P3 glucose only, P9) and results. The

simulation results are given in the supporting information (File S1).

The values for the exponent b based on P9 versus various

chemotaxis coefficients are given in Fig. 6. Including the effects of

chemotaxis toward the glucose source surrounding a tumor (cG?0)

raises the exponent b and the superdiffusive tumor invasion is

enhanced further by chemotaxis toward glucose. According to the

criterion of diffusion, chemotaxis toward glucose promotes a

tumor invasion, resulting in superdiffusion.

The effect of cell-cell adhesion on the diffusion of a tumor

invasion. The influence of cell-cell adhesion on the diffusion of

a tumor invasion was also explored. The results are shown in

Table 3 (P4, P5, P6, P8, P10, and P14). When the effect of only

cell-cell adhesion is included in the microenvironment of a

growing tumor (P4, Fig 7), the exponent b is 0.40973, smaller than

Figure 4. The simulated exponent b with a variety of haptotaxis coefficients cf. The b increases with the cf, indicating that a tumor’s
invading is enhanced by haptotaxis of the ECM. Simulation parameters: cG = l = b = la = 0. The rests of the parameters were fixed.
doi:10.1371/journal.pone.0109784.g004
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0.5, indicating that the diffusion behavior of a tumor invasion in

pure cell-cell adhesion state is of subdiffusion. Diminishing the

diffusive invasion of a tumor by cell-cell adhesion could also be

identified in other situations involving cell-cell adhesion (P5, P6,

P8, P10, and P14), as compared to their counterparts without cell-

cell adhesion.

The experimental results
A cell culture invasion assay provided a physiological approach

for assessing tumor invasion and offered a visual component that

could be quantified through image analysis. Preliminary results

from the in vitro culturing of cancer cells and clinical imaging of

cancer patients were used to verify the simulation results. We

measured the size of a tumor at different evolution times and

determined the fractal dimension of the periphery between a

growing tumor and the surrounding tissue from both the in vitro
cultures and clinical images. Figs. 8 show representative images of

growing cultured cells (MDA-MB-231) without a matrix (a,d) and

with a matrix (e,h). The cultured cells with a matrix appear to

invade the surrounding matrix with a more open, dendritic

diffusion front, whereas the cells without a matrix simply spread

with a closed smooth diffusion front. The average radius of the two

sets of cells over time is plotted in Fig. 9 and fitted with the power

function tb. For these b values the statistical errors were estimated

from three independent measurements. Prevalence estimates are

reported with corresponding 95% logit confidence intervals (CI).

The exponent b is 0.1891860.01961 for the cells without a matrix

and 0.8324960.01061 for the cells with a matrix. The exponent b
is larger than 0.5 in the culture of MDA-MB-231 cells with a

matrix and smaller than 0.5 in the culture of MDA-MB-231 cells

without a matrix. A tumor can therefore spread either rapidly or

slowly, depending on whether the matrix surrounding the tumor is

involved. The same method was used to analyze other cell lines

and the results are listed in Table 4. The materials information of

cell cultures is shown in the supporting information (File S2). The

data and curve fitting are shown in the supporting information

(File S3).

Judging by the diffusion type criterion and the results in

Table 4, the diffusion of the cell cultures with a matrix can be

identified as superdiffusion and without a matrix as subdiffusion.

The in vitro results in Table 4 conform to the simulation results

Figure 5. Tumor invasive diffusion with heterogeneity of the ECM. (a–b) The time evolution of the n, MMP, and ECM in a one-dimensional
spatial length x when the ECM is heterogeneous, at times (a) t = 0 and (b) t = 1. The inset shows the enlarging curves of the n and MMP at a different
time. (c) The curve fitting the time and peak position of n data, xm-t, at different values of A. The exponent b decreases with the heterogeneity of the
ECM. Simulating parameters: P2 in Table 3, where cf = 0.01 and cG = l = b = la = 0. The rests of the parameters were fixed.
doi:10.1371/journal.pone.0109784.g005
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presented above that show that ECM haptotaxis accelerates a

tumor invasion.

Clinical image data were also included to account for the

spreading of a tumor in a clinical diagnosis. The Sun Yat-sen

University Cancer Center provided data from three cancer

patients who had been clinically diagnosed with a metastatic

adrenal tumor (patient 1 with an expansive growing tumor) or a

metastatic liver tumor (patient 2 with an infiltrative growing

tumor, patient 3 with three infiltrative growing tumors). The

clinical images data and curve fitting are shown in the supporting

information (File S4). For the sake of convenience, the liver tumor

lesions in the two patients were numbered tumors A, B, C, and D

Figure 6. The simulated exponent b with a variety of chemotaxis coefficients cG. The b increases with the cG, implying that a tumor’s
invading is promoted by glucose chemotaxis. Simulation parameters: cf = 0.01, l = 1.0, b = 2.2, and la = 0. The rests of the parameters were fixed.
doi:10.1371/journal.pone.0109784.g006

Figure 7. The time evolution of the n at different times. The inset is the curve fit to the time and peak position of the cell density data, xm-t,
b = 0.4097360.00382, where la = 0.003. Parameters: cf = cG = l = b = 0, the rests of the parameters were fixed. The exponent b is smaller than 0.5,
signifying occurrence of subdiffusion.
doi:10.1371/journal.pone.0109784.g007
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(liver tumor A is the liver metastasis from choroidal melanoma

with low-grade malignancy; liver tumor B, C, and D are the liver

metastases from colorectal cancer with high-grade malignancy).

The adrenal tumor demonstrated a typical expansive growth,

whereas the liver tumors displayed invasive spreading. The tumor

sizes were measured and the size-time relationships are displayed

in Fig. 10. The power exponent b was calculated using the same

route as before. The exponent b and statistical data are listed in

Table 5.

According to the power exponent b listed in Table 5 and the

migrating patterns of the tumors seen in the clinical images, the

adrenal tumor demonstrates an expansive but slow growth

characteristic of subdiffusion, whereas the invasive liver tumors

spread faster, characteristic of superdiffusion or even ballistic

diffusion. It is not difficult to interpret the phenomenon that an

invasive tumor can spread faster than an expansive tumor, as a

spreading invasive tumor can break through the enclosure of

basement membrane surrounding the tumor with sufficient

nutrient exchange between the tumor and its surrounding host

tissue. The peripheral border of an invasive tumor will be more

open and rougher than an expansive tumor, which facilitates

tumor invasion into the surrounding host tissue, especially when

subjected to haptotaxis or chemotaxis stimuli from the ECM or

nutrients.

Fractal analysis is a convenient, accurate method available for

evaluating the roughness of a tumor border [58–61]. The border

fractal dimensions of both the in vitro cultured cells and the

clinical tumors were measured. The border fractal dimensions of

the in vitro cultured cells are shown in Fig. 11. The border fractal

dimension of the in vitro cells cultured without the ECM remains

fixed at 1.1, whereas the cells cultured with the ECM rises from

1.1 to 1.4, accompanying the dendritic growth on the border

between the cultured cells and the ECM. The dendritic growth

pattern of a proliferating tumor also serves as an indicator that the

tumor is penetratively invading the surrounding host tissue.

The border fractal dimensions of the clinical tumors, measured

using medical images, of selected tumor patients are displayed in

Fig. 12. The growth of the expansive adrenal tumor is confined

Figure 8. The images are taken from in vitro culturing of cells from the breast line MDA-MB-231. Upper row: MDA-MB-231 cells without a
matrix on the (a) 1st day, (b) 2nd day, (c) 3rd day, and (d) 4th day. Bottom row: MDA-MB-231 cells with a matrix on the (e) 1st day, (f) 2nd day, (g) 3rd
day, and (h) 4th day. All cells were maintained in DMEM 10 mg/ml gentamycin at 37uC in 5% CO2, the matrix was derived from murine EHS sarcoma
cells and collagen. (a–h) reprinted figures with permission from Trevigen Inc (Cultrex Catalog #: 3500-096-K).
doi:10.1371/journal.pone.0109784.g008

Figure 9. The average radius of MDA-MB-231 cancer cell cultures versus culture time. (a) MDA-MB-231 cells without a matrix and (b) MDA-
MB-231 cells with a matrix. The exponent b is larger than 0.5 for the cells with a matrix and smaller than 0.5 for the cells without a matrix.
doi:10.1371/journal.pone.0109784.g009
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inside its clear-cut basement membrane and its border fractal

dimension remains at a low level (1.05,1.1) during growth. In

contrast, the border fractal dimension of the infiltrative liver tumor

A maintains a high level (approximately 1.25) during invasion and

the invasive border is blurred and rougher than in the expansive

tumor. The liver tumor B is clinically diagnosed as a metastatic

tumor that has separated from its primary surrounding host tissue.

Its border fractal dimension is smaller than that of its primary

counterpart, as its border remains close and smooth.

Discussion

We combined mathematical modeling and experimental

validation approach to uncover the diffusion processes that occur

in tumor invasion under different growth microenvironments. The

Table 4. The measured value of the exponent b for different in vitro tumor cells with and without the ECM.

Cell line b Standard error Adj. R-square Remarks

A549 0.12621 0.00974 0.93309 Without matrix

SiHa HCC 0.39328 0.05153 0.94231 Without matrix

MDA-MB-231 0.18918 0.01961 0.96939 Without matrix

MDA-MB-231 0.83249 0.01061 0.99941 With matrix

U87 MG(ULA) 0.6439 0.03858 0.9895 With matrix

U87 MG(agar) 0.8988 0.06269 0.98948 With matrix

doi:10.1371/journal.pone.0109784.t004

Figure 10. The relationship between tumor size (r) and time (t) in clinical tumors. (a) the adrenal tumor, (b) liver tumor A, and (c) liver
tumor B. The exponent b of the adrenal tumor is smaller than 0.5; the b is between 0.5 and 1.0 for liver tumor A and larger than 1.0 for liver tumor B.
doi:10.1371/journal.pone.0109784.g010
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effects of ECM haptotaxis, glucose chemotaxis, cell-cell adhesion,

tumor proliferation, and immunization on the diffusion of a tumor

invasion were investigated. We extended the existing models of

tumor cell migration [18,19] by including haptotaxis, chemotaxis,

logistic growth, and immunity [50,51] to address the spatiotem-

poral growth of a tumor under more realistic conditions.

Tumor proliferation was found to have a positive role and

immunization a negative role in tumor invasion. An increase in the

tumor growth rate accelerates the diffusion process of a tumor

invasion (P10, P11 in Table 3), whereas enhancing the intensity of

the immune response counteracts a tumor invasion (P10, P12 in

Table 3).

The ECM surrounding a tumor plays a crucial role in the

diffusion of a tumor invasion, as shown in the simulations, in vitro
tumor cell cultures, and clinical medical image analysis. Outer

tumor cells that are subject to ECM haptotaxis can easily shed the

tumor core and invade ECM-rich locations, displaying a peak of

tumor cell density inside the ECM (Figs. 3(b) and (c)). The invasion

of a tumor is accelerated by the tractive effect of ECM haptotaxis

and the tumor cells infiltrate into the ECM superdiffusively. Both

the simulations and in vitro cell cultures suggest that a larger ECM

haptotaxis effect facilitates diffusion, leading to a faster tumor

invasion over a wide range. Combining these results with a border

fractal dimension analysis, we gained insights into the relationship

between ECM haptotaxis and the border fractal dimension of a

growing tumor. An increase in the border fractal dimension shows

that the openness and roughness of the tumor border are

considerably promoted by the ECM, revealing an active interflow

of mass and energy between the tumor and its neighboring host

tissue. The active interactions between a tumor and its surround-

ing host tissue, namely haptotaxis and chemotaxis in this study,

intensify the diffusion of a tumor invasion.

Heterogeneity of the distribution of the ECM influences a

tumor invasion considerably, by weakening the implantation of

tumor cells within the ECM and limiting the auxo-action of the

ECM on tumor invasion. The implantation of tumor cells,

however, takes place only as long as the ECM surrounding the

tumor is involved (Fig. 5). Moreover, tumor diffusion is strongly

dependent upon the lesion location. A malignant tumor that is

adjacent to rich peripheral vessels, such as liver tumors B, C, and

D, diffuses rapidly and the power exponent b is even larger than

1.0 (Fig. 10(c), Table 5), representing ballistic diffusion (P14 in

Table 3, Table 5) with distinctive rapid, long-range jumps by

which diffusive particles separate themselves from the diffusion

Table 5. The calculated values of the exponent b for three tumor patients.

Clinical data b Standard Error Adj. R-Square Remarks

Patient 1: Adrenal tumor 0.37242 0.05342 0.92119 Expansive growth

Patient 2: Liver tumor A 0.58897 0.00360 0.99994 Infiltrative growth with low-grade malignancy

Patient 3: Liver tumor B 1.56669 0.39052 0.89552 Infiltrative growth with high-grade malignancy

Patient 3: Liver tumor C 2.90653 0.23663 0.98801 Infiltrative growth with high-grade malignancy

Patient 3: Liver tumor D 2.24941 0.71183 0.83540 Infiltrative growth with high-grade malignancy

doi:10.1371/journal.pone.0109784.t005

Figure 11. The border fractal dimensions of the in vitro cultured MDA-MB-231 cells. The border fractal dimension of the in vitro cells
cultured with a matrix is larger than that of the cells cultured without a matrix.
doi:10.1371/journal.pone.0109784.g011
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source and move away quickly. In clinical diagnosis, the migration

of a metastatic tumor behaves in a similar way. We therefore

identified a tumor with a power exponent b larger than one, i.e. a

ballistic diffusive tumor, with a metastatic tumor. The power

exponent b serves as an indicator of tumor invasion and

metastatization.

When the glucose source surrounding a tumor is considered, the

extreme thermodynamic costs of the oxidative Warburg cycle

consumed by tumor cells drive the cells to move up the resulting

glucose concentration gradient [44], using chemotaxis. The

mobility of tumor cells is enhanced by chemotaxis. Therefore,

the tumor invasion speeds up to a more apparent superdiffusion

when the glucose consumption of a tumor is taken into account (P3

and P9 in Table 3, Fig. 6).

When either cell-cell adhesion or cell-cell adhesion plus dilute

glucose are taken into account, the tumor invasion is a subdiffusive

process (P4 and P5 in Table 3). Our simulation confirmed that

cell-cell adhesion weakens tumor diffusion, resulting in a smaller

exponent b (P4 and P5 in Table 3), but still contributes to the

formation of a tumor cell density peak, which is a cluster of tumor

cells forming on the diffusion front of a spreading tumor (Fig. 7).

Cell-cell adhesion maintains the form of the cell cluster and

prevents dispersion. The effect of cell-cell adhesion was compli-

cated here, because both the form of cell cluster and the

movement of cell cluster itself in space were taken into account

simultaneously. Liu et al. [44] regarded cell invasion as an

alternation process between adhesion and the elimination of

adhesion. According to Liu et al. [44], cell-cell adhesion occurs at

the leading front cells. The posterior cells adhesively follow the

leading cells. New cells continuously take over the leading

positions and the invasion front is continuously refreshed. Tumor

cells can obtain a tractive effect from the process of alternating

between adhesion and elimination of adhesion, which allows them

to finally move to the front. Our simulation indicates that cell-cell

adhesion not only contributes to the form of the cell cluster at the

invasion front of the tumor, but also hinders the mobility of the

invasion front in a subdiffusive way.

In conclusion, a tumor invasion is a complicated diffusion

process and is strongly dependent on the surrounding microen-

vironment where the tumor is located. Our study used simulation,

in vitro cell culture, and clinical medical imaging to reveal that a

tumor invasion, depending on the status of the surrounding host

matrix, can follow a broad spectrum of anomalous diffusion,

ranging from subdiffusion to superdiffusion and ballistic diffusion,

when haptotaxis and chemotaxis are involved. We now summarize

our main findings. (1) A parameter referred to as the power

exponent b was devised to characterize the proliferation and

diffusion of an invasive tumor. (2) Both haptotaxis, initiated by the

ECM and chemotaxis toward the glucose nutrient supply promote

tumor invasion and lead to superdiffusive and even ballistic

diffusive tumor invasion. We identified superdiffusion (0.5,b,1.0)

and ballistic diffusion (b$1.0) with the invasion and metastatiza-

tion, respectively, of a malignant infiltrative tumor. (3) Cell-cell

adhesion contributes to the form of the cell cluster at the invasion

front of a tumor and hinders the mobility of the invasion front in a

subdiffusive way. (4) The border fractal dimension of a tumor is an

indicator for the openness and roughness of the tumor border. It is

considerably promoted by the ECM, implying the occurrence of a

more active interflow of mass and energy between a tumor and the

neighboring host tissue.

It should be emphasized that the method that we introduced in

this work to classify the diffusion of a tumor invasion needs further

more verifications by tumor biology and clinical medicine before

the power exponent b is acceptable as a practical indicator for

characterizing tumor invasion and metastatization.

Supporting Information

Text S1 Matlab file to analysis the boundary of a cancer
in an image. The algorithms and source codes are used for

measuring and calculating the mean radius of a tumor.

(TXT)

File S1 The simulation results of P1–P14 in Table 3.

(DOC)

File S2 The materials and Methods information of cell
cultures.

(DOC)

File S3 The data and curve fitting of A549 cell line, SiHa
HCC cell line, U87 MG cell line (ULA), and U87 MG cell

Figure 12. The border fractal dimensions of the clinical tumors. (a) The border fractal dimensions of the adrenal tumor. (b) The border fractal
dimensions of the liver tumors A and B, analyzed using clinical medical images. The border fractal dimension remains at a low level for the adrenal
tumor and maintains a high level for the infiltrative liver tumor A. The liver tumor B is clinically diagnosed as a metastatic tumor that has separated
from its primary surrounding host tissue.
doi:10.1371/journal.pone.0109784.g012
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line (agar). The A549 cell line was cultured without matrix, and

the original images can be found in Essen BioScience Inc, Catalog

Number: 4491 [1]; the SiHa HCC cell line was also cultured

without matrix. Please refer to Kim’s work [2] for the original

data; both of the U87 MG cell lines were cultured with matrix,

and the original data can be found in Vinci’s work [3].

(DOC)

File S4 The original graphs and curve fitting of Clinical
images. The Sun Yat-sen University Cancer Center provided

data from three cancer patients who had been clinically diagnosed

with a metastatic adrenal tumor (patient 1 with an expansive

growing tumor) or a metastatic liver tumor (patient 2 with an

infiltrative growing tumor, patient 3 with three infiltrative growing

tumors). The liver tumor lesions in the two patients were

numbered tumors A, B, C, and D (liver tumor A is the liver

metastasis from choroidal melanoma with low-grade malignancy;

liver tumor B, C, and D are the liver metastases from colorectal

cancer with high-grade malignancy). This study was approved by

the ethics committee of Sun Yat-sen University Cancer Center

and protected the patients’ private information.

(DOC)
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