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ABSTRACT “Candidatus Dehalogenimonas etheniformans” strain GP couples growth
with the reductive dechlorination of vinyl chloride and several polychlorinated
ethenes. The genome sequence comprises a circular 2.07-Mb chromosome with a
G1C content of 51.9% and harbors 50 putative reductive dehalogenase genes.

Members within the genus Dehalogenimonas are obligate organohalide-respiring
bacteria implicated in the turnover of naturally occurring and anthropogenic

chlorinated compounds in anoxic environments (1, 2). An enrichment culture capable of
dechlorinating vinyl chloride (VC) and several polychlorinated ethenes to ethene was
established with grape pomace compost as the source material (3). Proteogenomics
analysis implicated a novel Dehalogenimonas bacterium, strain GP, with 95.3 to 99.5%
16S rRNA gene sequence similarity to available Dehalogenimonas isolates (4–6). A dilu-
tion-to-extinction procedure in defined mineral salt medium containing 1 g liter21 ampi-
cillin, 0.1 g liter21 vancomycin, acetate as the carbon source, hydrogen as the electron
donor, and 1,1-dichloroethene as the electron acceptor was used to achieve isolation of
strain GP (7).

Genomic DNA from strain GP biomass was extracted using the cetyltrimethylammo-
nium bromide method (8). For Nanopore sequencing, large fragments of genomic
DNA were obtained using the Blue Pippin automatic nucleic acid fragment recovery
system (Sage Science, MA), and barcodes were added using the Nanopore EXP-
NBD104 kit. Automated capillary electrophoresis was used to determine the fragment
sizes before a library with an average insert size of 10 kb was constructed using the
Nanopore SQK-LSK109 ligation kit, and sequencing was performed with a Nanopore
PromethION system (9). The fast5 file was transformed using Nanopore’s Guppy soft-
ware, and quality control was performed using the NanoPlot plotting tool (10) with a
threshold value of Q. 7. The 87,547 Nanopore reads represent a total length of
560,844,341 bp and have a median read length of 6,406 bp and an N50 read length of
10,114 bp. For Illumina sequencing, DNA was sonicated to generate fragment lengths
of ,350 bp, followed by end polishing and T-A ligation before library preparation
using a NEBNext Ultra DNA library prep kit (New England Biolabs, Ipswich, MA). Paired-
end sequencing (2� 150 bp) was performed using a NovaSeq PE150 flow cell (Illumina,
San Diego, CA). The sequence reads were trimmed and filtered (https://github.com/
lh3/readfq), resulting in 4,073,240 high-quality reads. Assembly using NanoPore raw
long reads (coverage, 271�) and Illumina short reads (coverage, 591�) was performed
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using Unicycler version 0.4.7 (11) and polished using Pilon version 1.20.1 (12). Unicycler
version 0.4.7 was used to identify overlapping contig ends, indicating chromosomal
circularization. Gene prediction and functional annotation were performed using the
NCBI Prokaryotic Genome Annotation Pipeline (13).

The genome comprises one circular 2,068,322-bp chromosome with a G1C content
of 51.9%. The genome contains 2,029 coding sequences, 47 tRNA genes, and single
copies of the 5S, 16S, and 23S rRNA genes. The GP genome harbors 50 nonidentical
reductive dehalogenase (rdh) subunit A genes, including cerA (locus tag number
HX448_10020), which encodes a VC rdh (3). Four of the fifty putative rdhA genes are ad-
jacent to a downstream rdhB gene encoding a predicted membrane anchor. The GP ge-
nome harbors two formate dehydrogenase genes, locus tag numbers HX448_03659 and
HX448_07080, the former encoding a protein with a selenocysteine at position 193 and
90.65% amino acid identity to formate dehydrogenase (Dform_00419) of D. formicexe-
dens strain NSZ-14T (6). Average nucleotide identity (ANI) analysis using JSpeciesWS
version 3.5.1 (14) determined that strain GP shares 78.39%, 71.46%, 69.51%, and
68.61% ANI with D. formicexedens strain NSZ-14T (GenBank accession number
CP018258.1), D. alkenigignens strain IP3-3T (shotgun sequencing project accession num-
ber LFDV00000000.1), Dehalogenimonas sp. strain WBC-2 (GenBank accession number
CP011392.1), and D. lykanthroporepellens strain BL-DC-9T (GenBank accession number
CP002084.1), respectively. The new data expand the Dehalogenimonas pangenome and
rdh sequence diversity.

Data availability. The genome has been deposited at the DNA Data Bank of Japan,
the European Nucleotide Archive, and GenBank (accession number CP058566.1). The
BioSample and BioProject accession numbers are SAMN15398252 and PRJNA258024,
respectively. The raw reads were deposited in the Sequence Read Archive under acces-
sion numbers SRR12774736 (Nanopore) and SRR12774735 (Illumina).
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