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Abstract: Background. Temporary artery clipping facilitates safe cerebral aneurysm management,
besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict
the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery.
Method. We devised a three-layer model to predict the safe clipping time for TAO. We considered age,
the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left
A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery,
mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left
ACAs, as well as the Fisher grading scale of brain CT scans as the input values for the model. Results.
This study included 125 patients: 105 patients from a retrospective cohort for training the model and
20 patients from a prospective cohort for validating the model. The output of the neural network
yielded up to 960 s overall safe clipping time for TAO. The input values with the greatest impact
on safe TAO were mean velocity of blood at left MCA and left ACA, and Fisher grading scale of
brain CT scan. Conclusion. This study presents an axillary framework to improve the accuracy of the
estimated safe clipping time interval of temporary artery occlusion in intracranial aneurysm surgery.

Keywords: aneurysm surgery; temporary artery occlusion; clipping time; artificial neural network

1. Introduction

Intracranial aneurysms have a prevalence of 3.2% in the general population [1]. Al-
though the majority of patients can remain asymptomatic, cerebral aneurysms have a
significant risk of rupture. Temporary artery occlusion (TAO) is an indispensable technique
to facilitate aneurysm dissection and clipping and to reduce the risk of intra-operative
rupture [2]. However, TAO may be complicated with detrimental consequences such as
cerebral ischemia and postoperative neurological deficits [3]. Thereby, estimating a safe
clipping time (SCT) for TAO is essential to give the surgeons the maximum window to
perform the surgery, and keep the patients safe from the complications of the surgery.
Although several intra-operative neurophysiologic monitoring and imaging methods have
been proposed for determining safe occlusion time [4,5], SCT is mostly estimated based
on clinicians’ expertise in real practice. The purpose of this study is to leverage machine
learning to identify the prominent clinical features determining the outcome of TAO and to
predict the SCT for intracranial aneurysm surgeries.

Machine learning can be used to extract meaningful relationships and patterns from a
set of features (model inputs) for estimating the future values of a phenomenon (model
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outcome). An artificial neural network (ANN) is a type of data mining and pattern
recognition method which reveals complex nonlinear relationships in addition to linear
correlations. ANNs have been widely used in a variety of neurosurgical applications,
such as predicting the occurrence of symptomatic cerebral vasospasm after aneurysmal
subarachnoid hemorrhage [6], traumatic brain injury outcome and survival [7,8], recurrent
lumbar disk herniation [9], and endoscopic third ventriculostomy success in childhood
hydrocephalus [10]. Regarding cerebral aneurysm surgeries, the majority of the studies
deployed these techniques to predict the aneurysm rupture [11,12], or for automated
detection of the aneurysms on imaging [13]. In this study, we aimed to evaluate the
feasibility and validity of ANN modeling in predicting the SCT and for determining the
prominent clinical features of cerebral aneurysm surgeries.

2. Methods

This study was conducted in Shariati Hospital, Tehran, Iran. To develop the ANN, we
used two separate datasets.

2.1. Retrospective Cohort, Training, and Testing Set of the Model

We retrospectively reviewed the medical records of all patients who underwent cran-
iotomy and clipping for aneurysm management between 2004 and 2011. Clinical data,
including demographic information, comorbidities, pre- and post-neurological exami-
nation, Fisher grading scale of computerized tomography (CT) scan imaging, pre- and
post-operative trans cranial doppler (TCD), location and diameter of the aneurysm(s),
and temporary artery clipping time and number(s), were extracted. The presence or
absence of flow-through vessels of the circle of Willis and possible anatomic variations
were indicated by either digital subtraction angiography (DSA), computed tomography
angiography (CTA), magnetic resonance angiography (MRA), or T2 weighted magnetic
resonance imaging (MRI). The mean velocity of flow in cerebral arteries was measured
from pre-operative TCD.

The information from the patients in the retrospective cohort was used to train the
model. To obtain the SCT, we excluded all patients with unfavorable outcomes or any signs
of ischemia. Patients with Glasgow coma scale (GCS) less than 11, presence of a neurologic
deficit in the pre-operative examination, post-operative decline in either motor or sensory
function, or any pathologic finding in neuroimaging other than the presence of aneurysm
were excluded from the training set.

2.2. Prospective Cohort and Validation Set of the Model

Between 2011 and 2013, we devised a protocol to prospectively include the patients
with surgical clipping of cerebral aneurysms (ruptured and un-ruptured). We only in-
cluded those with aneurysms of the anterior communicating artery (AcomA) or middle
cerebral arteries (MCA). Data were collected using the same protocol as the retrospective
cohort. In addition, all patients of the prospective cohort underwent diffusion weighted
imaging (DWI) MRI within 6 h and 24 h of the surgery to rule out cerebral ischemia. We
also measured the diameter of arteries in the circle of Willis (anterior cerebral arteries
(ACA), AcomA, and MCA) from CTA images. Image-J software (Image J 1.42q software,
U.S. National Institutes of Health, Bethesda, MA, USA) was used for this purpose. The
information obtained from the prospective cohort was used to test and validate the model.

2.3. Surgical Techniques

The surgical procedure for clipping of the aneurysms was either a standard pterional
craniotomy (MCA location) or frontotemporal craniotomy (AcomA location). For AcomA
aneurysms, the ipsilateral and contralateral A1 segments were exposed and temporarily
clipped. When the AcomA segment aneurysm was dissected and permanently clipped, the
temporal clipping of the A1 segments was subsequently removed. In MCA aneurysms,
the MCA was exposed from proximal to distal to identify the location of the aneurysm.
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Temporal clipping of the proximal MCA at the M1 segment was applied and then the
aneurysm was dissected. Subsequently, the temporal clip of the MCA was removed. The
duration of temporary vascular obstruction following clipping was measured in seconds.

2.4. Feature Selection for ANN Model

Through a comprehensive literature review and consultation with clinicians, a wide
variety of related clinical and physiological parameters with a possible impact on the SCT
were proposed. Based on the anatomical distribution of intracranial aneurysms and the
importance of compensatory blood flow mechanisms in each segment of the circle of Willis,
11 features were selected as the input for the ANN model.

Age, the diameter of the right and left MCAs, the diameter of the right and left A1
segment of ACAs, the diameter of AcomA, mean velocity of flow at the right and left
MCAs, mean velocity of flow at the right and left ACAs, and Fisher grading scale of brain
CT scan were considered as the input values for the model. The diameter of the P1 segment
of the right and left posterior cerebral arteries (PCAs) and flow in the posterior circulation
were excluded in our final model due to the low prevalence of posterior aneurysms.

2.5. Structure of the ANN Model

A three-layer structure neural network was used in this study: an input layer, one
hidden layer, and an output layer (Figure 1). The number of input values (units) in the
first layer of the model was equal to 11, the same as the number of selected features that
was proposed to affect the outcome of clipping and subsequent ischemia. For determining
the number and structure of the hidden layer, we considered the training accuracy and
generalization. The presence of too many hidden layers (which is needed for accuracy)
may cause overtraining, and this will result in a decline in generalization. To apply the
optimum number of neurons in the hidden layer, the model was run with different counts.
The architecture with five units on the hidden layer was accompanied by the lowest error.
The output layer consisted of only one neuron, representing the SCT as the outcome of
the model.
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The units within each layer of the model were connected with the units of the adjacent
layers through directed edges (weights). There were no connections between the units
within the same layer [14]. A nonlinear Sigmoid function was applied to the hidden layer,
and a linear function was applied to the output layer.

2.6. Training and Validating of the ANN Model

Five-fold cross-validation was used for this model. In each run of the modeling, 80%
of the retrospective cohort was randomly selected to train the ANN model. The remaining
20% of the dataset was used to test the performance of the model. During the training
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phase, the weights and interactions of the input variables were gradually determined
during each run. For this purpose, each set of input features was broadcast to every unit in
the hidden layer. After computing its activation, each unit in the hidden layer transferred
the signal to the unit of the adjacent output layer. In this way, the response of the network
was computed for a specific set of input values (feed-forward propagation phase). In the
backward propagation phase, the computed activation in the output layer (predicted SCT)
was compared with the observed SCT value (obtained from the patient’s medical record),
and the training error was calculated. The error was then propagated back to each unit of
the hidden layer and updated the weights between the output layer and the hidden units.
Correspondingly, the computed error in this layer was distributed to the input layer and
the weights between the hidden layer and input layer were updated as well. This process
was repeated several times, using different random sets of patients for training and testing
the ANN model.

Data from the prospective cohort of the patients were used to validate the model and
provide the performance metrics for the model. We used the trained ANN model (based
on data from the retrospective cohort) to predict the SCT for patients in the prospective
cohort. This cohort was kept unseen from the ANN algorithms in the training phase to
prevent bias and overfitting.

2.7. Importance of Each Clinical Feature in Predicting the SCT

To evaluate the importance of the input parameters in predicting the SCT, a model
sensitivity test was implemented. For this purpose, we considered a fixed weight of 1 for
all the input variables. In each turn, we increased the weight of one variable up to 10% and
evaluated the variation in the output value. After repeating this process for each input
parameter, we ranked the obtained sensitivity values.

2.8. Estimating the Errors

To evaluate the proposed pattern recognition model performance, two types of error
were proposed. The mean absolute deviation (Equation (1)) calculated the difference
between the clinical assigned SCT values in real practice and those predicted by the model.

Mean Absolute Deviation =
∑Ntr

i=1

∣∣SCTi − ˆSCTi
∣∣

Nte
% (1)

where N is the total number of patients, Ntr =
4N
K the total number of training samples,

Nte =
N
K the total number of test samples, K = 5 the realization of the K-fold validation

algorithm in our model, SCT stands for safe clipping time, and ˆSCTi is the predicted value
as the outcome of the model.

For relative error (Equation (2)), the mean absolute deviation was adjusted by the
greatness of the error according to each value of the observed outcome. This criterion
resulted in a better perception of the bias on the model. The relative error was considered
to report the bias of the model in this study.

Relative Error =
1

Nte
∑Ntr

i=1

∣∣∣∣∣ SCTi − ˆSCTi
SCTi

∣∣∣∣∣ % (2)

where the parameters are as above.
MATLAB software was used for mathematical modeling and designing the ANN.

The confidence interval of 95% was assigned to the outputs. We used a T-test to assess the
independence of the outputs by considering a p value less than 5% as significant.

3. Results

A total of 131 patients were evaluated for this study (105 patients from the retrospective
cohort and 26 patients from the prospective cohort). Six patients were excluded from
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the prospective cohort due to low GCS (4 patients) and positive DWI MRI indicating
postoperative cerebral ischemia (2 patients, none could be directly related to temporary
clipping). Demographic data of the included patients, location of the aneurysms, and also
details of the Fisher grading scale of each cohort are available in Table 1.

Table 1. Demographic and surgical characteristics of the patients in retrospective and prospec-
tive datasets.

Parameter Retrospective Dataset
(n = 105) Prospective Dataset (n = 20)

Age; Mean (Range); Years 48.7 (30–72) 50.2 (30–76)
Men; n (%) 32 (30.4%) 9 (45%)

Location of Aneurysm
Middle Cerebral Artery; n (%) 80 (76.1%) 14 (70%)

Anterior Communicating
Artery; n (%) 25 (23.9%) 6 (30%)

Fisher Grading Scale of CT
Scan Images
One; n (%) 28 (26.66%) 1 (5%)
Two; n (%) 46 (43.8%) 9 (45%)

Three; n (%) 23 (21.9%) 4 (20%)
Four; n (%) 8 (7.61%) 6 (30%)

The overall predicted TAO based on the prospective cohort was 90–960 s; 120–932 s in
AcomA, 240–960 s in right MCA, and 90–950 s in left MCA (Table 2). The average deviation
of predicted SCT by the ANN model in this study from the clinical observed SCT of the
unseen prospective cohort was 12%, leaving an 88% accuracy of the model.

Table 2. Output values. The safe clipping time interval is based on the aneurysm location.

Site of Obstruction Safe Time Interval (Seconds)

Overall 90–960
Right Middle Cerebral Artery 240–960
Left Middle Cerebral Artery 90–950

Anterior Communicating Artery 120–932

A sensitivity analysis of the input values showed that mean velocity of the left M1,
mean velocity of the left A1, and Fisher grading scale had the greatest impact on SCT
(Table 3).

Table 3. Ranked output of the sensitivity analysis.

Rank Input Value Sensitivity (%)

1 Mean velocity of flow at left MCA (middle cerebral arteries) 73.82 ± 1.95
2 Mean velocity of flow at left ACA (anterior cerebral arteries) 67.23 ± 2.74
3 Fisher grading scale of brain CT scan 65.71 ± 5.31
4 Mean velocity of flow at right ACA 63.87 ± 4.82
5 Diameter of right MCA 59.22 ± 5.24
6 Diameter of AcomA (anterior communicating artery) 57.56 ± 3.13
7 Diameter of left MCA 55.59 ± 3.13
8 Diameter of left A1 45.74 ± 2.47
9 Age 41.35 ± 1.78

10 Mean velocity of flow at right MCA 32.19 ± 3.62
11 Diameter of right A1 23.45 ± 2.15
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4. Discussion

Surgical management of aneurysms is among the most critical procedures in neuro-
surgery. Temporary artery occlusion (TAO) is a fundamental component in facilitating
aneurysm dissection. The main purpose of this study was to introduce an alternative
intelligent predictive tool besides the commonly accepted clinical experience, rather than
providing an absolute value for SCT. However, the ANN model in this study demonstrated
that the clipping time might be considered as safe for intervals longer than those practiced
in the clinic. We observed that mean velocity of flow at the left MCA and left ACA, in
addition to the Fisher grading scale of brain CT scans have the greatest impact on the
outcome of the TAO.

Although a detrimental consequence of clipping is ischemia, several mechanisms such
as redirection of blood flow from the contralateral side through communicating arteries
of the Willis circle, leptomeningeal and collateral vessels, and cortical anastomosis can
compensate for the hypo-perfusion and eliminate the cerebral ischemia [15–18]. Aging has
been shown to reduce the efficacy of collateral flow and cortical anastomosis capacity by
decreasing the collateral number and diameter, increasing tortuosity, and impairment of
remodeling capacity [19–21].

In addition, the difference in predicted SCT for different vessels might have a biological
basis. Predicted SCTs were higher in the left hemisphere. The difference in the origin of
right and left common carotid arteries (aortic arc versus the brachiocephalic artery on the
right side), the curvature of the vessels, carotid intima-media thickness (CIMT), and other
hemodynamic characteristics of the vessels in the right and left side may result in variation
between flow in the right and left circulation [22,23]. Blood flow in each vascular section
is a function of the velocity of blood and diameter of the vessel at that section (Flow =
Velocity × Diameter). Accordingly, by considering the similar diameter of vessels on both
sides, the higher velocity of the blood on the left side might be representative of the greater
flow in the left circulation. This might be the underlying reason why the velocity of the left
ACA and MCA has a major impact on the outcome. The higher incidence rate of aneurysm
formation and greater wall shear stress (WSS) and wall shear stress gradient (WSSG) on
the left side in comparison with the right in our study (not presented in this draft), may
verify this assumption. Additionally, the difference in blood flow may produce a higher
compensatory potential for the dominant side in case of vessel occlusion, by redirecting the
blood flow through the Willis circle toward the site of obstruction. Consequently, the extra
ten seconds of safe occlusion time in the right MCA TAO (960 s versus 950 s for left MCA
TAO), although clinically insignificant, may demonstrate this bonus reperfusion provided
by the contralateral dominant side.

4.1. Selected Features as Input of the Model

WSS and WSSG can affect the SCT by promoting aneurysm formation. Permanent
pathologic alteration of vasculature, such as disruption of the internal elastic lamina
or thinning of the media along with increasing the number and tortuosity of collateral
vessels, were introduced as complications of WSS and WSSG [19,24–27]. Alteration in
hemodynamic parameters such as the diameter of vessels and velocity of blood flow can
change WSS and WSSG [28–30]. Thereby, we considered the diameter of ACAs, MCAs,
and AcomA, and the mean velocity of ACAs and MCAs as an indirect measure of WSS
and WSSG.

Primarily, we considered the diameter of the P1 segment of right and left PCA and flow
in posterior circulation as other predictors of SCT. Previous studies suggested that AcomA
is more prominent in maintaining the blood flow after obstruction than the posterior
communicating arteries [25,31]. Besides this, aneurysms are not uniformly distributed [32].
Less than 1% of intracranial aneurysms occur at the vertebra–basilar junction, basilar artery,
and superior cerebellar artery bifurcation. ACA and MCA bifurcations together account
for more than 50% of intracranial aneurysms [33]. Consequently, we did not include the
diameter of right and left P1 and flow in the posterior circulation in our final model.
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4.2. Limitations and Error Estimation

The strength of this study was to include information of the patients from two different
cohorts in model training, using cross-validation from a retrospective cohort, and model
testing using a prospective cohort. Using a very select number of features with clinical
value was important to ensure our study did not suffer from missingness, which could have
introduced selection bias. We considered a comprehensive panel of clinical and imaging
features as the input to assess the feasibility of our approach. However, the Institutional
Review Board (IRB) prevented us from including sex as an input variable in the validation
cohort due to the deidentification process for datasets including less common pathologies
with fewer than 100 patients. Despite considering various imaging modalities to monitor
the possible post-operative ischemia, determining the exact underlying cause of ischemia
(e.g., impact of final clipping rather than temporary clipping, vasospasm, and other intra-
or post-operative complications) was challenging, and we did not include patients with
cerebral ischemia in our models. Adding intraoperative variables and patients with adverse
outcome could improve the predictive value of our ANN model.

The average deviation of predicted SCT from clinically assigned SCT (relative error
of our ANN) was equal to 12%. In the training phase, we used five-fold cross validation,
which resulted in average relative regression errors of 4.3% (training set) and 11.3% (test
set). This training error can be considered quite low and acceptable for training process.
After finalizing our regression model, we employed our final model to estimate SCT for the
validation set (prospective cohort). This result indicates that our model does not suffer from
overfitting or underfitting or unequal distribution over different subsets. Although, an 88%
accuracy is a promising result for our pilot study with a total of 131 patients, the model
would benefit from validation and justification over larger datasets. However, considering
the prevalence of cerebral aneurysms which need surgical intervention, including a large
cohort of patients is not simple. Furthermore, in this pilot feasibility study, we used
ANN as our machine learning framework, however; comparative analysis with other
modeling tools and deep learning methods may provide better performance. We will
employ commonly used regression models in our future study to better visualize the power
of our model compared to previously used linear models in the medical literature.

5. Conclusions

The main goal of this study was to present an axillary framework to improve the
accuracy of the estimated safe clipping time interval of temporary artery occlusion during
intracranial aneurysm surgery. The proposed method was an offline approach that can
provide a prediction for the SCT in TAO before the surgery. However, to provide an
accurate and precise SCT during the surgery, integration of online measurements and
frequent updates of the predicted clipping time is required. To design a model with higher
generalization, further studies with more clinical variables, larger sample size, and more
diverse demographics are recommended.
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